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Abstract 

Measuring the similarity between nominal variables is an important problem in data 

mining. It's the base to measure the similarity of data objects which contain nominal 

variables. There are two kinds of traditional methods for this task, the first one simply 

distinguish variables by same or not same while the second one measures the similarity 

based on co-occurrence with variables of other attributes. Though they perform well in 

some conditions, but are still not enough in accuracy. This paper proposes an algorithm 

to measure the similarity between nominal variables of the same attribute based on the 

fact that the similarity between nominal variables depends on the relationship between 

subsets which hold them in the same dataset. This algorithm use the difference of the 

distribution which is quantified by f-divergence to form feature vector of nominal 

variables. The theoretical analysis helps to choose the best metric from four most 

common used forms of f-divergence. Time complexity of the method is linear with the size 

of dataset and it makes this method suitable for processing the large-scale data. The 

experiments which use the derived similarity metrics with K-modes on extensive UCI 

datasets demonstrate the effectiveness of our proposed method. 
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1. Introduction 

Measuring the similarity between data objects is one of the most important problem in 

the data mining tasks which involve similarity or distance computation such as clustering, 

outlier analysis, and nearest-neighbor classification, we need ways to assess how alike or 

unalike objects are in comparison to one another[1]. 

If the data objects are defined by the vectors formed with continued variables, the 

similarity can be computed using Minkowski Distance and the most common ones of 

them are Manhattan Distance and Euclidean Distance. When the data objects are 

represented by nominal variables, the similarity cannot be measured straightforwardly 

because the comparison of categorical variables has only two states of same and not same. 

Traditional similarity measuring algorithm for categorical variables can be mainly divided 

into two categories. The distinction between these two categories is whether consider the 

difference among variables or not. 

The representative of the first kind of algorithms is Simple Matching Distance (SMD) 

[4-5], which is the most common algorithm to measure nominal variables for 

unsupervised learning. Let X and Y be two data objects described by categorical 

variables, then the similarity measure between X and Y can be defined by the total 

mismatches of the corresponding attribute of the two objects. The smaller the number of 

mismatches is, the more similar the two objects. 

However, SMD is too simple to keep much information in datasets, which made 

researchers to find an appropriate way to measure categorical attributes with data-driven 
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method. This kind of measures account the frequency distribution of different variables in 

the same attribute as the key characteristic [4]. Some other algorithms further computing 

similarity for categorical variables in unsupervised learning are based on frequently co-

occurring items [4,7].When under the condition of supervised learning, the relationship 

between attributes and class label are involved to improve the accuracy.  

Stanfill and Waltz proposed VDM(Value Distance Matrix) [2] and then Cost and 

Salzberg [3] proposed MVDM(Modified Value Distance Matrix) based on VDM. MVDM 

suggested computing the similarity between two categorical variables with respect to class 

label. Ahmad and Day [6] proposed a rapid algorithm of MVDM and which considers the 

relationship between variables and all other attributes columns and it can be used in 

unsupervised learning. Ganti et al. [7] described a notion that to attribute pairs in the same 

attribute column, co-occurrence with other attribute can show their similarity. Many other 

similarity measuring methods are also based on frequency of co-occurrence [9-11]. Wang 

presented the CAVS [8] method which uses a similar formula and considers both intra-

coupled and inter-coupled relationship between variables. The second kind of methods 

based on a theory that greater similarity is assigned to the attribute value pair which owns 

approximately equal frequencies [7] and furthermore the attribute values are similar if 

they co-occur with the same relative frequency for other attribute columns. 

However, the algorithms mentioned above suffer the different problems, which are 

showed in the following two examples. Table 1 shows a part data of the UCI dataset 

Balance. Data objects in the dataset are described by 5 attributes: left-weight, left-

distance, right-weight, right-distance and balance status. The first four attributes seem like 

numerical, but they are treated as categorical variables in computing process. Meanwhile 

the attribute type of the dataset is also labeled as categorical in UCI machine learning 

repository. When we measure the similarity between data objects with SMD, instances 1
C  

and 2
C are 0.25, which equals to the similarity between instances 1

C  and 3
C . Because the 

reason is that 1
C  and 2

C  are both in the R set while 1
C  and 3

C  belong to the different set 

R and B, and thus the result is not accurate. Another observation of SMD is similarity 

between instances 4
C and 5

C , i.e. 0, which means there is no relationship between them. 

For they both belong to the subset L, the result is obviously incorrect.  

Table 1. A Part Data of the Balance Dataset 

 left-weight left-distance right-weight right-distance balance status 

C1 1 2 1 4 R 

C2 2 1 2 4 R 

C3 3 2 2 3 B 

C4 4 3 5 2 L 

C5 5 4 4 1 L 

C6 3 5 3 5 B 

 

This example shows that treating categorical variables with methods like SMD will 

take adverse effects in data mining, because of nominal variables carrying more complex 

information than “same and not same”. But algorithms like SMD neglect the difference 

among different variables. Since the similarity between categorical variables can not be 

measured directly, it’s necessary to have the help of the hidden information in the data set 

for the similarity analysis. 

The basic idea of MVDM is that the similar attribute variables in the same column 

must have the approximately frequency of occurrence. However this assumption is 
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generally not reasonable. This example is extracted from the Adult dataset in UCI 

machine learning repository which contains 14 attributes and 2 classes. The probability 

distribution of attribute column work-class is showed in Figure 1. 

 

 

Figure 1. Distribution of Attribute Work-Class 

According to the theory that similar variables have approximately frequency, the 

variable 'Private' will be quite different to all the other variables but as the common sense 

the work-class of private is not a strange type of work. From the similarity between these 

values given by MVDM showed in Figure 2, we can see another problem is the almost 

equal similarities between 'Private' and the other variables which should be different. That 

means the following step of clustering or classification cannot get useful information. 

Both examples show that it is very difficult to analyze the similarity for categorical 

variables. 

 

 

Figure 2. Similarity between 'Private' and other Variables 

In this paper we propose a method based on Hellinger Distance to measure the 

similarity between two categorical variables in unsupervised learning. The algorithm 

captures the attribute value frequency distribution of different subset separated by 

categorical variables binding the same attribute and considers the relationship between all 

attributes in datasets with a high accuracy and relatively low time complexity. We 
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evaluate theoretical and experimental analysis among the four common forms of f-

devergence and choose Hellinger Distance as the optimal one. We compare our proposed 

measure with two existing metric on extensive UCI categorical data sets in terms of 

clustering qualities. 

Section 2 describes our proposed method and the content in Section 3 is experiments 

with real world datasets. The result will be compared with other two standard algorithms. 

Finally we conclude this paper in Section4. 

 

2. Proposed Algorithm 

 
2.1 Definition of Similarity 

Similarity can be seen as distance in a measurable space, so if we present the similarity 

in form of a vector then we can easily compute the distance. Clearly the problem is how 

to describe the variables with the form of vector. The SMD method focus on measuring 

the similarity between data objects. The feature vector is formed by only 0 and 1, the 

similarity is the L1 norm of the feature vector. The MVDM method computes distance 

between two categorical variables with respect to class column and uses the difference of 

the distribution of classes as the characteristic value. The similarity is the L1 norm of the 

vector. The unsupervised learning version uses the similarity of variables by all the other 

attributes as the characteristic values. 

Our solution spreads dataset into subsets by categorical variables which we want to 

measure the similarity between them and every subset presents a variable. In subsets, each 

dimensionality is presented by a set of distribution. The L1 norm of the vector which 

conformed by distances between distributions from different subsets will be the distance 

between the subsets and this distance can be used as the similarity between two 

categorical variables by which the two subsets be separated. 

 

2.2 Hellinger Distance 

We choose Hellinger distance as the divergence for our method to measure the distance 

between distributions. In probability and statistics, the Hellinger distance (also called 

Bhattacharyya distance as this was originally introduced by Anil Kumar Bhattacharya) is 

used to quantify the similarity between two probability distributions. It is a type of the f-

divergence and the f-divergence has many special cases including but not only KL-

divergence, 
2


-divergence and Hellinger distance. The Hellinger distance is defined in 

terms of the Hellinger integral which is introduced by Ernst Hellinger in 1909 [8-10]. The 

reason of why we choose the Hellinger distance for our method to measure the distance 

between distributions will be discussed in Section 3.  

Let ( ,  ) denotes a measurable space with P and Q as two continuous distributions 

with respect to the parameter  . The definition of Hellinger distance can be given as  

2

( , ) ( - )
H

W

D P Q P Q d  
                       (1) 

It can also be defined for a countable space ,  

2
( , ) 0 .5 * ( ( ) ( ) )

H
D P Q P Q


 


 

               (2) 

 

2.3 Distance in Unsupervised Learning 

We compute distance between two categorical values with respect to every other 

attribute in dataset as the characteristic value of the distance vector, the L1 norm will give 
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the final distance. The proposed algorithm to compute the distance between every pair of 

categorical variables for all attributes in following manner. 

 

 

Algorithm HDS (Hellinger Distance Similarity) 

Input: Categorical Dataset D with m attributes and n data objects 

Output: Distance between all pairs of attribute variables for all attributes  

1:For each attribute Ai { 

2:    Separate dataset into subsets by categorical variables in Ai 

3:    For each pair of subsets (w1, w2) { 

4:        For each other Attribute Aj (Aj Ai){ 

5:            Compute Hellinger distance  

6:            

2

1 2 1 2
( , , ) 0 .5 * ( ( ) ( ) )

j
H j A

D w w A w w


 


 
 

7:        } 

8:    Compute L1 norm for distance vector 
1 2 1 2

1,

( , ) ( , , )

m

H H j

j j i

d w w d w w A

 

 
 

9:    } 

10:} 

 

For example, as the dataset shown in Table 1, the categorical variables R, L, B separate 

the dataset into 3 subsets. The subset R conformed by data objects C1 and C2 which has 4 

distributions, the distribution of attribute left-weight is showed in Table 2. The subset L is 

conformed by data objects C4 and C5, which distributions of attribute left-weight is 

showed in Table3. The distance for left-weight attribute between these two subset 

computed by 2.1 is 
2 2 2 2 2 2

(R , L , le ft w e ig h t) 0 .5 * (( 0 .5 0 ) ( 0 .5 0 ) ( 0 0 ) ( 0 0 .5 ) ( 0 0 .5 ) ) 1
H

D              
The distances for 3 other attributes can also be computed by the same formula. For this 

dataset, they all equal to 1. 
( , ) 1 1 1 1 4

H
D R L       
High value of the distance suggests the high dissimilarity level between the subsets. 

Obviously, if every pair of distributions is similar, the distance between the subset will be 

close to 0. 

Table 2. Distributions of Attribute Left-Weight in Subset R 

X 1 2 3 4 5 

Px 0.5 0.5 0 0 0 

 

Table 3. Distributions of Subset L 

X 1 2 3 4 5 

Px 0 0 0 0.5 0.5 
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Because the categorical variables can not be measured directly like the numerical 

variables, the information hidden in the dataset can be used for measuring. The MVDM 

and algorithms similar to it use the co-occurrence as the material of the similarity. 

However, this method dose not fit all conditions. Thus, we take the distribution as the 

characteristic and use Hellinger Distance to measure the dissimilarity between the subset 

instead. 

 

3. Theoretical Analysis 

 

3.1 Why Hellinger Distance  

This section compares four common used f-divergence to explain why the Hellinger 

Distance is finally be used in our algorithm. 

In mathematics, a metric or a distance function is required to satisfy the following 

conditions: non-negativity, symmetry, and triangle inequality. If only satisfy the first two 

conditions are satisfied, the functions will be called semi-metric. Some functions can only 

satisfy the condition of non-negativity then they will be called divergence. Machine 

learning usually use the f-divergence to measure the probability.  

Let f(t) be a convex function defined for t>0, with f(1)=0. The f-divergence between 

two probability distributions P and Q is defined by[11] 

( )
( ) ( ) ( )

( )
k l

a

P x
d P Q Q x f

Q x
 

                                         (3) 

The f-divergences is introduced and studied independently by Csiszar [12], Morimoto 

[13] and Ali & Silvey [14] and is sometimes known as Csiszar f-divergence, Csiszar-

Morimoto divergence or Ali-Silvey distance. The most common examples of f-divergence 

are Kullback-Liebler divergence, Jensen-Shannon divergence, Pearson-x
2 

divergence and 

Hellinger Distance.  

When 1

( ) ln ( ) ln ( )

n

i

f i

i i

p
f t t t d P Q p

q

   
, the case is Kullback-Liebler divergence 

which is also called relative entropy, cross entropy or directed divergence. The KL-

divergence is non-negative but it does not has the symmetric property and also does not 

obey the Triangle inequality. In additional, the KL-divergence has another disadvantage: 

if qi=0 and pi/=0, the divergence is meaningless. Another popular method of measuring 

the similarity between two probability distributions is Jensen-Shannon divergence. It is 

based on the KL-divergence. 

1

1
( ) ( ( ) ( )) 0 .5 * ( ) ln ( )

2

n

i

js k l k l i i

i i

p
d P Q d P Q d Q P p q

q

   
                  (4) 

The Jensen-Shannon divergence is symmetric, nonnegative and obeys the Triangle 

inequality. To avoid the disadvantage like KL-divergence, an improvement of Jensen-

Shannon divergence is Jensen Shannon Distance. The Jensen-Shannon Distance is defined 

1 1

2 21
( ) ( ( ) ( )) 0 .5 * ( ln ( ) ln ( ))

2

n n

i i

js k l k l i i

i ii i i i

p q
D P Q d P M d Q M p q

p q p q 

   
 

 
   (5) 

When

2

2 ( ( ) ( ))
( ) ( 1) ( )

( )
f

a

P a Q a
f t t d P Q

Q a


    

, the case is Pearson-x
2
 divergence. 

The Pearson-x
2
 divergence requests two sets of complete finite discrete probability 

distributions P and Q which meet the conditions of 

1 1

0 , 1; 0 , 1

n n

i i i i

i i

p p q q

 

    
.Similarly, the Person-x

2
 has the non-negative property but 

is non-negative and does not obey the Triangle inequality. 
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When
( ) 1 ( ) 1 ( ) ( )

f

a

f t t D P Q P a Q a     
, the case is Hellinger Distance. The 

Hellinger Distance has the symmetric, non-negative properties and obeys the Triangle 

inequality.  

Table 4. Properties of Divergences 

divergence Non-negativity symmetry Triangle inequality 

KL-divergence T F F 

Jensen-Shannon 

Distance 

T T T 

Pearson-x
2
 

divergence 

T F F 

Hellinger Distance T T T 

 

Table 4 shows the conditions of 4 commonly used f- divergences introduced above. It’s 

easily to see that Jensen-Shannon Distance and Hellinger Distance satisfied more 

conditions than the others. That means the Jensen-Shannon Distance and Hellinger 

Distance are more qualified the algorithms based on distance. 

Table 5. Time Consumptions of Divergences 

Divergences KL JS Pearson Hellinger 

1
st
 0.066504 0.116691 0.029401 0.041866 

2
nd

 0.078746 0.106554 0.021279 0.034578 

3
rd

 0.07099 0.126986 0.022231 0.044812 

4
th
 0.063770 0.113847 0.026169 0.037332 

mean 0.0700025 0.1160195 0.02477 0.039647 

 

Because all the divergences have the same calculation steps, the difference of 

computational complexities in applications depend on f(t). Table 7 shows the time 

consumptions took by 4 divergences for a same random data set which formed by 100000 

rows and 2 columns for 4 times. The row of mean show the means of result of all 4 times 

experiments. Obviously the Pearson-x
2
 is the most efficient divergence, then the Hellinger 

Distance, KL-divergence and Jenson-Shannon Distance. Considering both the properties 

of metric and complexity comparison, the Hellinger Distance has the best performance. 

That is why we choose it for our proposed algorithm. 

 

3.2 Complexity of the Algorithm 

Each time we compute the Hellinger Distance between two distributions we need to 

read two columns, one column contains the variables by which we separate the dataset the 

other belongs to the rest of the attribute. Let the dataset has m attribute columns and n 

data objects, the maximum number of attribute values in a single attribute column is a. 

When we computing the Hellinger Distance with two attribute columns, computing the 

distributions will take m*n steps and computing f(t) for summation will take m*a*(a-1)/2 

steps at most. So the upper bound of complexity of the algorithm for the whole dataset 

will be O (m
2
n+m

2
a

2
). This shows that our algorithm is linear with respect to number of 

data objects in the dataset.  
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4. Experiments 

We perform several experiments on extensive UCI datasets in this section to find out 

the effectiveness and efficiency of our proposed similarity. The k-means algorithm is the 

most common partitioning clustering method and only fits the numerical datasets. The k-

modes algorithm [1] is the extension of the k-means algorithm which replace the means of 

clusters with modes and use the simple matching similarity to deal with categorical 

variables. The k-modes algorithm divides the dataset into k clusters by minimizing the 

cost function 1

( , )

i

k

c i

i x C

f d x C

 

  
, where Ci is the center of ith cluster. We apply our 

similarity into k-modes clustering algorithm, analyze quality of clusters and accuracy of 

clustering.  

There are 2 kinds of methods to evaluate the clustering algorithm: the intrinsic and 

extrinsic methods. The intrinsic methods can be used without the ground truth of the 

dataset. They evaluate a clustering by examining how well the clusters are separated and 

how compact the clusters are. But usually this kind of methods need to define a unified 

dispersion measure and cluster similarity measure, it is not meet the requirement of 

evaluating different similarities. The extrinsic methods compare the ground truth with a 

clustering to assess the clustering. We can commonly use the accuracy of a classification 

dataset to compare different clustering results.  
 

4.1 Intrinsic Method 

Some researcher [6] consider that the parameter like DB index can be used to evaluate 

different similarity in cluster algorithm after the similarities are normalized, but we do not 

think so. First we introduce a validity index of intrinsic methods. The Davies-Bouldin 

(DB) index [15] is a validity index introduced by David L. Davies and Donald W. 

Bouldin for evaluating clustering algorithms. This is an internal evaluation metric of how 

well the clustering has been done. The DB index is defined as 1

1
k

D B i

i

V R
k 

 
, where k is the 

number of clusters and Ri is defined as
m ax

i ij
j i

R R




. 

i j

i j

i j

S S
R

D




,
( , )

i j i j
D d v v

, where vi, vj 

are the centroids of clusters Ci and Cj. The dispersion measure S of a cluster C is defined 

as 

1
( , )

i

i i

x Ci

S d x c
C 

 
, |Ci| is the number of data points in cluster Ci, ci is the center or 

representative data point of cluster Ci and d(x, ci) is the distance between x and ci. 

It’s easily to find out that S presents how compact the clusters are and D presents how 

well the clusters are separated. The normalized distance between two data objects is 

defined m ax
/

n o
D d d , where Dn is the normalized distance, do is the distance computed by 

a certain similarity and dmax is the maximum distance computed by the certain similarity. 

Normalization bring the distance computed by different similarity between 0 and 1 and 

make them can be compared on same scale. The range of Hellinger Distance and simple 

matching similarity are both [0, 1], so when we compare these two similarity, they can be 

treat as normalized already.  

However, we still cannot use these two parameters in our compare of different 

similarity. Because the simple matching similarity based on the principle that the distance 

is 0 with the identical values and is otherwise 1, the other normalized similarity take the 

distance 0 with identical values but the distance otherwise is maybe in the range of (0,1). 

So though the ranges of similarities are same, the distances between the same pair of data 

objects computed by simple matching similarity is not less than the distance computed by 

other similarities. The experiment result given by [6] can support our opinion.  
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4.2. The Extrinsic Method 

We evaluate the performances of simple matching similarity, the Ahmad and Dey’s 

similarity and our proposed Hellinger Distance similarity in term of k-modes clustering 

by comparing the resulting clustering structures to the prespecified structure which is 

reflects the inherent structure of a classification dataset.  

We evaluate our experiments on Vote dataset, Soybean-small dataset, Zoo dataset, 

Wisconsin Breast Cancer dataset and adult datset. Vote dataset consists of 435 data 

objects and 16 categorical valued attributes. It has two clusters of Republication and 

Democrat. Soybean-small dataset consists of 47 data objects and 35 attributes. It has 4 

clusters which are labeled as D1, D2, D3 and D4. Zoo dataset consists of 101 data objects 

an 16 attributes. It has 7 clusters. Wisconsin breast cancer dataset consists of 699 data 

objects and 9 attributes. It has two clusters of Benign and Malignant. Adult dataset 

consists of 48842 data objects and 14 attributes. We contain 7 of categorical attributes in 

experiment. It has 2 clusters. 

 

 

Figure 3. Clustering Comparisons with Acc 

Figure 3 reports the results on 6 datasets with different similarity. The evaluations are 

conducted with SMS, ADD and our proposed similarity. For each dataset the average 

performance is computed 100 times for every similarity. On Adult dataset which we give 

an example with in Section 2, ADD’s accuracy is lower than the others. It shows the 

disadvantage of ADD on the datasets which have attributes of unbalance distribution. 

Vote dataset is actually a binary dataset, all attributes including class label have only 2 

values, we think that is why the 3 similarities have nearly the same accuracy on this 

dataset. Compare with SMS, HDS improve ACC rate range from 0.07% (Vote dataset) to 

17.85% (breast cancer), the average ACC improvement is 9.64%. Compare with ADD, 

HDS improve ACC rate range from -1% (Vote dataset) to 33% (Adult dataset), the 

average ACC improvement is 10.63%. So we can say that the HDS is better than the 

ADD and SMS on clustering accuracy.  
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Table 8. Variance of Clustering Accuracy (10
-4

) 

Dataset 

 

similarity 

Adult 
Breast 

cancer 
CMC Heart Soybean-small Vote 

HDS 11 71 2.19 70 277 0.0013 

SMS 63 351 8.87 70 243 0.5206 

ADD 140 92 18 164 323 0.0133 

 

The second index we use to compare these 3 similarities is variance. In probability 

theory and statistics, variance measures how far a set of values is spread out. A small 

variance indicates that the data points tend to be very close to the expected value. In our 

experiences a small variance means the similarity has a stable clustering result.  

Table shows the variance of clustering accuracy. It is easy to find out that variance 

keep pace with accuracy, most clustering which gets higher accuracy almost takes lower 

variance. So we can say HDS is also better than ADD and SMS on clustering stability. 

 

5. Conclusion 

We propose a new similarity measure based on Hellinger Distance to measure the 

distance between two categorical variables of an attribute in unsupervised learning. 

Theoretical analysis and substantial experiments show HDS has better performance with 

k-modes algorithms not only on accuracy but also on stability. In future, we would like to 

extend this work to build an unite framework for polymorphic data type and apply on 

machine learning tasks with mixed dataset. 

 

References 

[1] J. Han, M. Kamber and J. Pei, “Data mining: concepts and techniques: concepts and techniques”, 

Elsevier, (2011). 

[2] C. Stanfill and D. Waltz, “Toward memory-based reasoning”, Communications of the ACM, vol. 29, no. 

12, (1986), pp. 1213-1228. 

[3] S. Cost and S. Salzberg, “A weighted nearest neighbor algorithm for learning with symbolic features”, 

Machine learning, vol. 10, no. 1, (1993), pp. 57-78. 

[4] S. Boriah, V. Chandola and V. Kumar, “Similarity measures for categorical data: A comparative 

evaluation”, red, vol. 30, no. 2, (2008). 

[5] G. Gan, C. Ma and J. Wu, “Data clustering: theory, algorithms, and applications”, Siam, (2007). 

[6] A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed numeric and categorical data”, Data & 

Knowledge Engineering, vol. 63, no. 2, (2007), pp. 503-527. 

[7] V. Ganti, J. Gehrke and R. Ramakrishnan, “CACTUS—clustering categorical data using summaries”, In 

Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data 

mining, (1999), pp. 73-83. 

[8] Hellinger, E. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. 

Journal für die reine und angewandte Mathematik, vol. 136, (1909), pp. 210-271. 

[9] D. A. Cieslak and N. V. Chawla, “Learning decision trees for unbalanced data”, In Machine learning 

and knowledge discovery in databases. Springer Berlin Heidelberg, (2008), pp. 241-256. 

[10] C. R. Rao, “A review of canonical coordinates and an alternative to correspondence analysis using 

Hellinger distance”, Questiió: Quaderns d'Estadística, Sistemes, Informatica i Investigació Operativa, 

vol. 19, no. 1, (1995), pp. 23-63.  

[11] I. Csiszár and P. C. Shields, “Information theory and statistics: A tutorial”, Now Publishers Inc., (2004). 



International Journal of Database Theory and Application 

Vol.9, No.3 (2016) 

 

 

Copyright ⓒ 2016 SERSC      201 

[12] I. Csisz, “Information-type measures of difference of probability distributions and indirect 

observations”, Studia Sci. Math. Hunga., vol. 2, (1967), pp. 299-318. 

[13] T. Morimoto, “Markov processes and the H-theorem”, Journal of the Physical Society of Japan, vol. 18, 

no. 3, (1963), pp. 328-331.  

[14] S. M. Ali, and S. D. Silvey, “A general class of coefficients of divergence of one distribution from 

another”, Journal of the Royal Statistical Society. Series B (Methodological), (1966), pp. 131-142. 

[15] D. L. Davies and D. W. Bouldin, “A cluster separation measure”, Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, no. 2, (1979), pp. 224-227. 

 

Authors 

 

Zhao Liang, He received the BS and MS degrees in Computer 

Science from Liaoning Technical University, China, in 2002 and 

2009. He is currently working towards the PhD degree in Liaoning 

Technical University. His research interests include data mining and 

machine learning. 

 

 

 

Liu Jianhui, He received the BS in Electrical Automation from 

Fuxin Mining Institute, China, in 1982. He is currently a professor in 

the Liaoning Technical University. His research interests include 

computer network and artificial intelligence. 

 

  



International Journal of Database Theory and Application 

Vol.9, No.3 (2016) 

 

 

202   Copyright ⓒ 2016 SERSC 

 


