
International Journal of Database Theory and Application

Vol.9, No.3 (2016), pp. 181-190

http://dx.doi.org/10.14257/ijdta.2016.9.3.18

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Top-k Algorithm for User Preferences based on Selection Strategy

Song Jin-ling
1
, Liu Guo-hua

2
, Liu Hai-bin

1
, Huang Li-ming

1
 andWu Yun-long

2

1
 Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
2
 College of Computer Science and Technology, Donghua University, Shanghai

201620, China

E-mail: Songjinling99@126.com

Abstract

In order to deal with multiple user preferences and improve query efficiency, selection

strategy is adopted for top-k query to depress the compare operations. Firstly, the kth

order statistics are selected randomly along with partitioning the data set basing on it,

and the top-k result set can be received after several recursive partitions. Secondly, to

select the kth order statistics accurately, the approximate kth order statistics is choose as

threshold according to the similarity of user preference and system preference, and the

top-k query result set can be accessed through simple comparison. Finally, the time

complexities of presented algorithms are analyzed and their correctness and

completeness are proved respectively. The experimental results show that our algorithms

improve the efficiency of top-k query greatly.

Keywords: top-k query, user preferences, random selection, approximate selection

1. Introduction

For an object table with scores or grades on each attribute and a defined function that

combines the individual grade to an overall score, the top-k query on the table retrieves

the only k objects with the highest scores about the function. Previous algorithms have

focused on top-k query [1-13], one optimal algorithm was TA [4] which can stop scanning

the object table quickly and differed from FA algorithm

[10]. Basing on TA algorithm,

many centralized or distributed top-k algorithms [5-9] were proposed. In addition, a

partitioned layer-based index

[11] was proposed for top-k algorithm, an interactive top-k

algorithm was presented for spatial keyword queries

[12], a top-k algorithm to select best

represent objects was proposed on graph databases

[13]. However, previous studies didn’t

focused on user preferences in top-k query, and they can only deal with single function

not suitable for arbitrary functions. The concept of top-k query for user preferences is

presented in Refs. [14-18], but what they are focusing is reverse top-k query not top-k

query. So it is significant to study the top-k query based on user preferences.

For the top-k query based on user preferences, the function to combine scores is a

linear function where weights are assigned to each scoring attribute indicating the

importance of each attribute to the user. Because each individual pay diverse

attention to each factor, namely different user have different preferences, so the top-

k query must be scored according to the current user’s preference. Consider a

database containing information about different houses as well as user preferences,

which is shown in Figure 1. For each house the rating and price are recorded and

maximum value on each attribute is preferable. For each user the preference is

denoted by different weights on each attribute, and different user may have different

preference to a potential house, for instance, Ada is prefer the houses with high

rating, but Brook is interested in houses with high price, Lisa equates between rating

and price of houses. On the right part of Figure 1, the top-2 result set is depicted for

Ada, Brook and Lisa respectively.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

182 Copyright ⓒ 2016 SERSC

DATABASE
TOP-2

RESULTS

House Ada

id rating price id score

p1 8 3 p5 9.3

p2 7 2 p3 8.6

p3 9 5

p4 7 5 Brook

p5 10 3 id score

p6 6 4 p3 5.4

 p4 5.2

User preferences

user w_rating w_price Lisa

Ada 0.9 0.1 id score

Brook 0.1 0.9 p3 7

Lisa 0.5 0.5 p5 6.5

Figure 1. An Instance of Top-k Query

For a table containing N objects (tuples), a naive top-k query algorithm based on user

preferences is as following. Calculate scores of the front k objects firstly and save as the

temporary top-k result set, then scan each of the rest N-k objects sequentially: if the object

with minimal score in temporary result set is lower than the current object, then replace it

with the current object. So the objects in the temporary result set are the top-k objects

until the scan is finished. However, the time complexity of the algorithm is O (k*N), and

it will be converted to O (N
2
) if k=O (N), so the efficiency of the naive algorithm is low

when N is considerably big. The low efficiency of naive algorithm is caused by a large

number of compare operations, so the top-k query can be improved by reducing

comparative times. In this paper we adopt selection strategy to operate top-k query.

Firstly, we select the kth order statistics randomly and propose a top-k query algorithm.

Secondly, we choose the approximate kth order statistics according to the similarity of

user preference and system preferences, then top-k result set is received through simple

comparison. The time complexities of these algorithms are analyzed and their correctness

and completeness are proved. Experimental results show that our algorithms excel the

natural algorithm with higher efficiency.

2. Definition

Let
1 2

[] , { , , ..., }
n

S U U A A A be a relation schema, where
1

A is an integer column identifying

each tuple (i.e. primary key), (2 , 3, .. . ,)
i

A i n are real columns representing score. Relation

S denotes the data set on []S U . A tuple [1], ..., []p p p n  in S expresses a data object,

where [] [0,10](2, 3, ...,)p i i n  . Let
1 2

[] , { , , ..., }
n

W T T B B B be a relation schema about user

preferences, where
1

B is an integer column identifying each tuple (i.e. primary key),

(2 , 3, .. . ,)
i

B i n are real columns representing weights. Relation W denotes the data set

on []W T . A tuple [1], [2], ..., [1]w w w w n   in W expresses a user preference,

where [] [0,1](2, 3, ...,)w i i n  ,
2

[] 1

n

i

w i



 .

Definition 1(Scoring Function [12]) The scoring function about tuple p and w is

2

(,) ([] [])

n

i

f w p w i p i



  , where ,w W p S  .

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 183

Definition 2 (Top-k Query [12]) Given a integer k and a user preference w, TOPk(w) is

the result set of the top-k query if it satisfies: () , | () |
k k

T O P w S T O P w k  and for

, : ()
i j i k

p p p T O P w  , (())
j k

p S T O P w  ,there is (,) (,)
i j

f w p f w p .

When one or more objects have same score with the kth object, then any object of them

can be returned.

Definition 3 (Data Dimensions) To a relation schema
1 2

[] , { , , ..., }
n

S U U A A A , since the

attribute
1

A is only used as identifying attribute to support random access and improve

query efficiency,
1

A is not a data dimension, so the data dimensions of []S U is 1n  .

Definition 4 (User Preferences Similarity) to user preferences
1 2
,w w on relationW , the

similarity
1 2

(,)s im w w of
1 2
,w w is denoted as:

2 2 2

1 2 1 2 1 2

2 2 2

(,) (([] [])) / (([]) ([]))

n n n

i i i

s im w w w i w i w i w i

  

     .

The symbols used in following algorithms are:

in d ex= q
re su lt : A tuple which value is q on index attribute in tuple set result;

[2]
in d e x= q

re su lt : The second column value in tuple of
in d ex= q

re su lt .

3. Top-K Algorithm Based on Random

The basic idea of top-k algorithm RSTA based on random selection: Firstly, the

score on user preference of each object in data set S is counted to gain the

materialized view result. Then the RS-Partition algorithm is called to divide the

tuples in result repeatedly based on random selection strategy until the front

partition contains k tuples. Finally the front k tuples are top-k query result set. RSTA

algorithm is described as Algorithm 1.

Algorithm 1: RSTA (w, k, S)

Input: user preference w, constant k, data set S;

Output: The result set TK of top-k query on S;

Variable: temp is a temporary tuple.

index=0;

for each(p∈S) do

temp[1]←p[1];

temp[2]←f(w,p);

 temp[3]←index+1;

result←result∪temp;

endfor

n←|result|;

RS-Partition (result,k,0,n);

TK←TK∪{ the front k tuples in result };

return TK;

The main procedures of the RS-Partition algorithm: Firstly, choose the kth tuple r

in result as the kth score. Then partition the tuples in result according to the tuple r:

the tuples whose score greater than r are moved to in front of it, the tuples whose

score less than r are moved to the behind of it. If the tuples before r is more than k

then call RS-Partition algorithm recursively on the former tuple set of r. If the

tuples before r is less than k then call RS-Partition algorithm recursively on the

behind tuple set of r. RS-Partition algorithm is described as Algorithm 2.

Algorithm 2: RS-Partition (result, k, p, q)

Input: tuple set result, constant k, starting location p, end location q;

Output: The partition data set basing on random statistic .

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

184 Copyright ⓒ 2016 SERSC

r=resultindex=k ;

score←r[2];

Exchange the values on front two columns of r and resultindex=q;

score =resultindex=q[2];

i=p-1;

for j=p to q-1 /* Partition tuple set according to the score of r*/

if result index=j [2]>score then

 i=i+1;

 Exchange the values on front two columns of result index=i and result index=j;

 endif

endfor
Exchange the values on front two columns of result index=i+1 and result index=q;

d=i+1;

if(d>k) then /* If the tuples before r is more than k, then call RS-Partition

recursively on the former tuples*/

RS-Partition (result,k,0,d);

endif
if(d<k) then /*If the tuples before r is less than k, then call RS-Partition

recursively on the behind tuples*/

 RS-Partition (result,k-d,d+1,q);

endif
Return;

The “for” circulation in RS-Partition algorithm partitions tuples in result in place, so it

doesn’t tie extra system space. According to the analysis of partition algorithm in Ref.

[19], the average time complexity of RS-Partition algorithm is O (N) when there are N

tuples in S. If the tuple r is improving selected to make its score relatively intermediate,

such as dividing the tuples in result to |result|/5 groups and choose the tuple which sore is

the median of the median score in each group as r, then the worst case time complexity of

RS-Partition will become O (N).

4. Top-K Algorithm Based on Approximate Selection

The basic idea of top-k algorithm based on approximate selection: Firstly,

algorithm PA preprocesses and generates a number of system preferences according

to the data dimensions of data set S. Then the algorithm PVA preprocesses the tuples

in data set S to be sorted by score according to each system preferences in W'.

Finally, in the ASTA algorithm, we first search a system preference wj which is most

similar to the user preference w, after that we select the approximate kth order

statistics of user preference w in the materialized view corresponding to wj, and we

get top-k query result set of S through simple comparison.

PA algorithm generates specified number of system preferences according to the

data dimensions of data set S and saves them in set W'. PA algorithm is described as

Algorithm 3.

Algorithm 3: PA(n, cnt)

Input: data dimensions n, count of system preferences cnt;

Output: system preference set W';

Variable: w is a user preference, temp is a system weight.

W'←;

id←1;

while(id≤ cnt) do /* The circulation controls the number of system preferences */

w[1]←id;

w[2]←id/cnt; /*The system weight on second dimension*/

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 185

temp←(1-id/cnt)/(n-2); /* The system weights on other dimensions*/

for(i←3;i≤ n;i←i+1) do /* Fill in system weights on other dimensions*/

 w[i]←temp;

 endfor

 W'←W'∪{w};

 id←id+1;

endwhile
return W';

The main steps of the PVA algorithm: Calculate the score of each tuple in data set

S and join a temporary set result firstly. Then sort tuples in the result basing on

score and add index value. Finally insert set result into the materialized view Vi

which is united into the set H. PVA algorithm is described as Algorithm 4.

Algorithm 4: PVA(W', cnt, S, n)

Input: system preference set W'={w1,w2,…,wcnt},the tuple count cnt of W', data set S,

data dimensions n;

Output: materialized view set H;

Variable: temp is a temporary tuple, result is the temporary tuple set, Vi is a

materialized view.

H←;

for(i←1;icnt;i← i+1) do /* Generate a materialized view according to each

system preference in W'*/

result←;

for each(p∈S) do /*Calculate score to each tuple in S and save in the set

result*/

temp[1]←p[1];

temp[2]←f(W'id=i, p);

result←result∪ temp;

endfor

Descending sort the tuples in result basing on result[2];

index←1;

for each (p∈ result) do /*Adding index value to the sorted tuples */

p[3]←index;

index←index+1;

endfor

Vi←result;

H←H∪{Vi};

endfor

return H;

The main steps of the ASTA algorithm: Firstly, search the system preference wj

which is most similar to the user preference w. Then, calculate the sore of the tuple

corresponding to the kth tuple in the materialized view Vj in data set S and take it as

the approximate kth order statistics of the top-k query, i.e. the query threshold.

Finally, filter the tuples in data set S whose score are no less than the threshold and

join tempTK, if the cardinality of tempTK is less than k, then append the remaining

number of tuples with maximum score from S, if the cardinality of tempTK is

greater than k, then delete redundant tuples with minimum score from tempTK, so

the remaining tuples in tempTK are the result set of top-k query. ASTA algorithm is

described as Algorithm 5.

Algorithm 5: ASTA(w, k, S, W', H)

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

186 Copyright ⓒ 2016 SERSC

Input: user preference w, constant k, data set S, system preference set

W'={w1,w2,…,wcnt}, materialized view set H={V1,V2,…,Vcnt} mapped to each system

preference in W';

Output: The result set TK of top-k query;

Variable: tempTK stores the temporary result set.

maxsim←0;

j←0;

for(i←1;i≤ cnt;i← i+1) do /*Search the system preference wj which is most

similar to the user preference w */

if(sim(w,wi)>maxsim)

maxsim←sim(w,wi);

j←i;

endif

endfor

r←(Vj)index=k; /*Save the kth tuples in the materialized view Vj corresponding to wj

*/

score←f(w, S id=r[1]); /*Calculate the sore of the corresponding tuple in data set S

and look it as the approximate query threshold*/

count←0;

tempTK←;

for each(p∈S) do /*Calculate the score of each tuple in data set S and filter the

tuples whose score are no less than threshold */

temp[1]←p[1];

temp[2]←f(w, p);

if(temp[2]>=score)

tempTK←tempTK∪{temp};

count←count+1;

else

result←result∪temp;

endif

endfor

if (count>k) then /*Delete (count-k) tuples with minimum score from tempTK */

d←count-k;

while(d>0) do

r←The tuple with minimal score in tempTK;

tempTK←tempTK-{r};

d←d-1;

endwhile

endif

if (count<k) then /*Append (k-count) tuples with maximal score in result to

tempTK */

d←k-count;

while(d>0) do

r←The tuple with maximal score in result;

tempTK←tempTK∪{r};

result←result-{r};

d←d-1;

endwhile

endif

return TK;

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 187

The time complexity of the ASTA algorithm is determined by 4 circles, if there are N

tuples in the data set S, the time complexity for each circle is analyzed as following:

(1) The worst-case time complexity of the first circle is O(cnt);

(2) The worst-case time complexity of the second circle is O(N);

(3) The time complexity of third circle: Since the circle loops (count-k) times, the

statement " Select the tuple with minimal score in tempTK " executes (N-count) times at

most, then the time complexity of the circle is O ((count-k) (N-count)) which can turn to

O (C1N- C1count) if let C1= count-k, so the worst-case time complexity of it is O (N);

(4) The time complexity of fourth circle: Since the circle can loop (k-count) times, the

statement " Select the tuple with maximal score in result " executes (N-count) times at

most, then the time complexity of the circle is O ((k-count) (N-count)) which can turn to

O (C2N- C2count) if let C2= k-count, so the worst-case time complexity of it is O (N);

Overlying the time complexity of above 4 circles, the time complexity of ASTA is

O (N+cnt), because the cnt is very small relative to N, so the worst-case time

complexity of ASTA is O (N).

5. The Correctness and Completeness of Algorithms

Theorem 1 RSTA and ASTA algorithm can find the accurate top-k objects.

Proof: In RSTA algorithm a random selected tuple is used to partition data set S: tuples

which score are greater than it moved to the front, and other tuples moved to the back.

The partition will be repeated until there are k tuples in front of the selected tuple.

Because the front k tuples are all larger than behind tuples, so they are the right top-k

objects.

In ASTA algorithm sub query result tempTK is obtained based on the approximate

threshold. So tempTK is a top-n result on the data set S while n is not certain, i.e., tempTK

is the largest n tuples sorted by the current user preference. However the third and the

fourth loops in the algorithm can guarantee that n=k, so the final top-k objects is certainly

accurate.

Theorem 2 RSTA and ASTA algorithm can find all the accurate top-k objects.

Proof: In RSTA algorithm the tuples are divided directly on the original data set basing

on score, which can ensure the score of former k tuples are higher than other n-k tuples, so

RSTA algorithm can find all of the top-k objects. By Theorem 1, RSTA algorithm can find

the right top-k objects, so ASTA algorithm can find all the accurate top-k objects.

In ASTA algorithm objects with higher score are joined tempTK based on the

approximate threshold. To ensure tempTK containing k objects with largest score,

redundancy objects with smaller score are deleted if the cardinality of tempTK is more

than k, objects with largest score in remainder tuples are appended if the cardinality of

tempTK is less than k, so ASTA algorithm can find all the top-k objects. By Theorem 1,

ASTA algorithm can find the accurate top-k objects. In conclusion ASTA algorithm can

find all the accurate top-k objects.

6. Experimental

Our experiments mainly compare and analyze the efficiency of RSTA, ASTA and the

natural algorithm (named Naive) to the variation of data dimensions, k value and tuples.

The experimental environment is: win7, processor of Intel (R) Core (TM) 2 Duo CPU

E8400 @ 3.00GHz (2CPUs), ~3.0GHz, DBMS of Microsoft SQL Server 2008 R2. Data

set is generated by the data synthesizer of IBM.

6.1 Experimental Preparation

In database HousesAndUsers, tuples in House table are generated by the IBM data

synthesizer firstly, then Systempreference table is created according to the data

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

188 Copyright ⓒ 2016 SERSC

dimensions of House table to represent system preferences. The views generated basing

on system preferences are stored in database UserViews. Tables tempTK and TK are

created to store intermediate result and the final result respectively, where tempTK will be

emptied before RSTA or ASTA algorithm are running to avoid the influence of the last

result.

6.2 Results and Discussion

We compare the running time on RSTA, ASTA and Naive algorithm firstly with fixed

tuples and k value but varying data dimensions. Without loss of generality, the tuples in

House table is 20000, k value is 30, the data dimensions are 2, 4, 6, 8, 10, top-k query

time of RSTA, ASTA and Naive algorithm are shown in Figure 2. As we can see from

Figure 2, the running time of RSTA, ASTA and Naive algorithm changes a little along with

the change of data dimensions, which indicates that RSTA, ASTA and Naive algorithm

spent unconcerned with the data dimensions.

Then, we compare the running time on RSTA, ASTA and Naive algorithm with fixed

tuples and data dimensions but varying k value. Without loss of generality, the tuples in

House table is 20000, data dimensions are 10, k varies from 3, 5, 10, 20, 30, 50

respectively, top-k query time of RSTA, ASTA and Naive algorithm are shown in Figure 3.

It is shown that the running time of RSTA, ASTA algorithm change slowly, but Naive

algorithm suffers large change when k varies, which suggests that RSTA and ASTA are

further insulated with k value, but the Naive algorithm is affected by k value obviously.

Finally, we compare the running time on RSTA, ASTA and Naive algorithm with fixed k

value and data dimensions but varying tuples. Without loss of generality, the data

dimensions are 10, k value is 30, and tuples in House table change from 5000 to 50000,

top-k query time of RSTA, ASTA and Naive algorithm are shown in Figure 4. We know

from Figure 4 that RSTA and ASTA algorithm are running faster than Naive algorithm, and

their spending varies smoothly than Naive algorithm with the increase of tuples, which

show that Naive algorithm is influenced by tuples greatly than RSTA and ASTA algorithm.

Figure 2. Comparison of Query Time with Varying Data Dimensions

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 189

Figure 3. Comparison of Query Time with Varying K Values

Figure 4. Comparison of Query Time with Varying Tuples

In summary, RSTA and ASTA algorithm are more efficient comparing to Naive

algorithm, so RSTA and ASTA algorithm improve the response of the top-k query well.

7. Conclusion

Top-k query based on user preferences can deal with query problem on multi-user

preferences and various k values. RSTA algorithm produces top-k result set by random

selected order statistics. ASTA algorithm generates top-k result set through approximate

threshold. Further study will focus on top-k query algorithms with lower time complexity

and suitable to dynamic data set.

Acknowledgement

This work is supported by The Natural Science youth Foundation of Hebei Province

(No. F2015407039), Hebei Province Department of science and technology Fund

(NO.13227427), Hebei Province Department of Education Fund (NO.sz132075,

sz141097, 2012-112), Doctoral Foundation of HeBei Normal University of Science &

Technology (2013YB007, 2013YB001).

References

[1] R. Akbarinia, E. Pacitti and P. Valduriez, “Best position algorithms for top-k queries”, Proceedings of the

33rd international conference on Very large data bases, Vienna, Austria, (2007).

[2] Y. C. Chang, L. D. Bergman and V. Castelli, “The onion technique: indexing for linear optimization

queries”, Proceedings of SIGMOD 2000, Dallas, USA, (2000).

[3] G. Das, D. Gunopulos and N. Koudas, “Answering top-k queries using views”, Proceedings of the 32nd

international conference on Very large data bases, Seoul, Korea, (2006).

[4] R. Fagin, A. Lotem and M. Naor, “Optimal aggregation algorithms for middleware”, Journal of

Computer and System Sciences, vol. 4, no. 66, (2003), pp. 614-656.

[5] S. Ge, N. Mamoulis and D. Cheung, “Efficient All Top-k Computation - A Unified Solution for All Top-

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

190 Copyright ⓒ 2016 SERSC

k, Reverse Top-k and Top-m Influential Queries”, IEEE Transactions, vol. 5, no. 25, (2013), pp. 1015-

1027.

[6] I. F. Ilyas, W. G. Aref and A. K. Elmagarmid, “Supporting top-k join queries in relational databases”,

The VLDB Journal, vol. 3, no. 13, (2004), pp. 207-221.

[7] I. F. Ilyas, G. Beskales and M. A. Soliman, “A survey of top-k query processing techniques in relational

database systems”, ACM Computing Surveys, vol. 4, no. 40, (2008), pp. 11.

[8] S. W. Hwang and K. C. C. Chang, “Optimizing top-k queries for middleware access: A unified cost-

based approach”, ACM Transactions on Database Systems, vol. 1, no. 32, (2007), pp. 5.

[9] D. Xin, C. Chen and J. Han, “Towards robust indexing for ranked queries”, Proceedings of the 32nd

International conference on Very large data bases, Seoul, Korea, (2006).

[10] R. Fagin, “Combining fuzzy information from multiple systems”, Proceedings of the fifteenth ACM

SIGACT-SIGMOD-SIGART symposium on Principles of database systems, Montreal, Canada, (1996).

[11] S. Y. Ihma, K. E. Leeb, A. Nasridinovd, J. S. Heoc and Y. H. Park, “Approximate Convex Skyline: A

Partitioned Layer-based Index for Efficient Processing Top-k Queries”, Knowledge-Based Systems, vol.

5, no. 61, (2014), pp. 13-28.

[12] K. Zheng, H. Su, B. Zheng, J. Xu, J. Liu and X. Zhou, “Interactive Top-k Spatial Keyword Queries”,

Proceedings of ICDE 2015, Seoul, Korea, (2015).

[13] S. Ranu, M. M. Hoang and A. Singh, “Answering Top-k Representative Queries on Graph Databases”,

Proceedings of SIGMOD 2014, Snowbird, USA, (2014).

[14] A. Arvanitis, A. Deligiannakis and Y. Vassiliou, “Efficient influence-based processing of market research

queries”, Proceedings of the 21st ACM international conference on Information and knowledge

management, Maui, USA, (2012).

[15] A. Vlachou, C. Doulkeridis and Y. Kotidis, “Reverse top-k queries”, Proceedings of 26th International

Conference on Data Engineering, Long Beach, USA, (2010).

[16] A. Vlachou, C. Doulkeridis, K. Nørvåg, “Identifying the most influential data objects with reverse top-k

queries”, Proceedings of the VLDB Endowment, Singapore, (2010).

[17] A. Vlachou, C. Doulkeridis and Y. Kotidis, “Monochromatic and bichromatic reverse top-k queries”,

IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 23, (2011), pp. 1215-1229.

[18] A. Vlachou, C. Doulkeridis and K. Nørvåg, “Branch-and-Bound Algorithm for Reverse Top-k Queries”,

Proceedings of the SIGMOD 2013, New York, USA, (2013).

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, P. Jingui, G. Tiecheng, L. Chengfa and Y. Mao,

“Introduction to Algorithms”, China Mechine Press, Beijing, (2006).

http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/article/pii/S0950705114000392##
http://www.sciencedirect.com/science/journal/09507051

