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Abstract 

In order to deal with multiple user preferences and improve query efficiency, selection 

strategy is adopted for top-k query to depress the compare operations. Firstly, the kth 

order statistics are selected randomly along with partitioning the data set basing on it, 

and the top-k result set can be received after several recursive partitions. Secondly, to 

select the kth order statistics accurately, the approximate kth order statistics is choose as 

threshold according to the similarity of user preference and system preference, and the 

top-k query result set can be accessed through simple comparison. Finally, the time 

complexities of presented algorithms are analyzed and their correctness and 

completeness are proved respectively. The experimental results show that our algorithms 

improve the efficiency of top-k query greatly. 
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1. Introduction 

For an object table with scores or grades on each attribute and a defined function that 

combines the individual grade to an overall score, the top-k query on the table retrieves 

the only k objects with the highest scores about the function. Previous algorithms have 

focused on top-k query [1-13], one optimal algorithm was TA [4] which can stop scanning 

the object table quickly and differed from FA algorithm
 
[10]. Basing on TA algorithm, 

many centralized or distributed top-k algorithms [5-9] were proposed. In addition, a 

partitioned layer-based index
 
[11] was proposed for top-k algorithm, an interactive top-k 

algorithm was presented for spatial keyword queries
 
[12], a top-k algorithm to select best 

represent objects was proposed on graph databases
 
[13]. However, previous studies didn’t 

focused on user preferences in top-k query, and they can only deal with single function 

not suitable for arbitrary functions. The concept of top-k query for user preferences is 

presented in Refs. [14-18], but what they are focusing is reverse top-k query not top-k 

query. So it is significant to study the top-k query based on user preferences. 

For the top-k query based on user preferences, the function to combine scores is a 

linear function where weights are assigned to each scoring attribute indicating the 

importance of each attribute to the user. Because each individual pay diverse 

attention to each factor, namely different user have different preferences, so the top-

k query must be scored according to the current user’s preference. Consider a 

database containing information about different houses as well as user preferences, 

which is shown in Figure 1. For each house the rating and price are recorded and 

maximum value on each attribute is preferable. For each user the preference is 

denoted by different weights on each attribute, and different user may have different 

preference to a potential house, for instance, Ada is prefer the houses with high 

rating, but Brook is interested in houses with high price, Lisa equates between rating 

and price of houses. On the right part of Figure 1, the top-2 result set is depicted for 

Ada, Brook and Lisa respectively. 
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DATABASE  
TOP-2 

RESULTS 

House   Ada  

id rating price  id score 

p1 8 3  p5 9.3 

p2 7 2  p3 8.6 

p3 9 5    

p4 7 5  Brook 

p5 10 3  id score 

p6 6 4  p3 5.4 

    p4 5.2 

User preferences    

user w_rating w_price  Lisa 

Ada 0.9 0.1  id score 

Brook 0.1 0.9  p3 7 

Lisa 0.5 0.5  p5 6.5 
 

Figure 1. An Instance of Top-k Query 

For a table containing N objects (tuples), a naive top-k query algorithm based on user 

preferences is as following. Calculate scores of the front k objects firstly and save as the 

temporary top-k result set, then scan each of the rest N-k objects sequentially: if the object 

with minimal score in temporary result set is lower than the current object, then replace it 

with the current object. So the objects in the temporary result set are the top-k objects 

until the scan is finished. However, the time complexity of the algorithm is O (k*N), and 

it will be converted to O (N
2
) if k=O (N), so the efficiency of the naive algorithm is low 

when N is considerably big. The low efficiency of naive algorithm is caused by a large 

number of compare operations, so the top-k query can be improved by reducing 

comparative times. In this paper we adopt selection strategy to operate top-k query. 

Firstly, we select the kth order statistics randomly and propose a top-k query algorithm. 

Secondly, we choose the approximate kth order statistics according to the similarity of 

user preference and system preferences, then top-k result set is received through simple 

comparison. The time complexities of these algorithms are analyzed and their correctness 

and completeness are proved. Experimental results show that our algorithms excel the 

natural algorithm with higher efficiency. 

 

2. Definition 

Let 
1 2

[ ] , { , , ..., }
n

S U U A A A  be a relation schema, where 
1

A is an integer column identifying 

each tuple (i.e. primary key), ( 2 , 3, .. . , )
i

A i n  are real columns representing score. Relation 

S  denotes the data set on [ ]S U . A tuple [1], ..., [ ]p p p n   in S  expresses a data object, 

where [ ] [0,10]( 2, 3, ..., )p i i n  . Let 
1 2

[ ] , { , , ..., }
n

W T T B B B  be a relation schema about user 

preferences, where 
1

B  is an integer column identifying each tuple (i.e. primary key), 

( 2 , 3, .. . , )
i

B i n  are real columns representing weights. Relation W  denotes the data set 

on [ ]W T . A tuple [1], [2 ], ..., [ 1]w w w w n    in W expresses a user preference, 

where [ ] [0,1]( 2, 3, ..., )w i i n  , 
2

[ ] 1

n

i

w i



 . 

Definition 1(Scoring Function [12]) The scoring function about tuple p and w is 

2

( , ) ( [ ] [ ])

n

i

f w p w i p i



  , where ,w W p S  . 
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Definition 2 (Top-k Query [12]) Given a integer k and a user preference w, TOPk(w) is 

the result set of the top-k query if it satisfies: ( ) , | ( ) |
k k

T O P w S T O P w k   and for 

, : ( )
i j i k

p p p T O P w  , ( ( ))
j k

p S T O P w   ,there is ( , ) ( , )
i j

f w p f w p . 

When one or more objects have same score with the kth object, then any object of them 

can be returned. 

Definition 3 (Data Dimensions) To a relation schema
1 2

[ ] , { , , ..., }
n

S U U A A A , since the 

attribute 
1

A is only used as identifying attribute to support random access and improve 

query efficiency, 
1

A  is not a data dimension, so the data dimensions of [ ]S U  is 1n  . 

Definition 4 (User Preferences Similarity) to user preferences 
1 2
,w w  on relationW , the 

similarity 
1 2

( , )s im w w of
1 2
,w w is denoted as:  

2 2 2

1 2 1 2 1 2

2 2 2

( , ) ( ( [ ] [ ]) ) / ( ( [ ]) ( [ ]) )

n n n

i i i

s im w w w i w i w i w i

  

     . 

The symbols used in following algorithms are:  

in d ex= q
re su lt : A tuple which value is q on index attribute in tuple set result;  

[ 2 ]
in d e x= q

re su lt : The second column value in tuple of
in d ex= q

re su lt . 

 

3. Top-K Algorithm Based on Random 

The basic idea of top-k algorithm RSTA based on random selection: Firstly, the 

score on user preference of each object in data set S is counted to gain the 

materialized view result. Then the RS-Partition algorithm is called to divide the 

tuples in result repeatedly based on random selection strategy until the front 

partition contains k tuples. Finally the front k tuples are top-k query result set. RSTA 

algorithm is described as Algorithm 1. 

Algorithm 1: RSTA (w, k, S) 

Input: user preference w, constant k, data set S; 

Output: The result set TK of top-k query on S; 

Variable: temp is a temporary tuple. 

index=0; 

for each(p∈S) do 

temp[1]←p[1]; 

temp[2]←f(w,p); 

    temp[3]←index+1; 

result←result∪temp; 

endfor 

n←|result|; 

RS-Partition (result,k,0,n); 

TK←TK∪{ the front k tuples in result }; 

return TK; 

The main procedures of the RS-Partition algorithm: Firstly, choose the kth tuple r 

in result as the kth score. Then partition the tuples in result according to the tuple r: 

the tuples whose score greater than r are moved to in front of it, the tuples whose 

score less than r are moved to the behind of it. If the tuples before r is more than k 

then call RS-Partition algorithm recursively on the former tuple set of r. If the 

tuples before r is less than k then call RS-Partition algorithm recursively on the 

behind tuple set of r. RS-Partition algorithm is described as Algorithm 2. 

Algorithm 2: RS-Partition (result, k, p, q) 

Input: tuple set result, constant k, starting location p, end location q; 

Output: The partition data set basing on random statistic . 
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r=resultindex=k ; 

score←r[2]; 

Exchange the values on front two columns of r and resultindex=q; 

score =resultindex=q[2]; 

i=p-1; 

for j=p to q-1 /* Partition tuple set according to the score of r*/ 

if result index=j [2]>score then 

       i=i+1; 

       Exchange the values on front two columns of result index=i and result index=j; 

   endif 

endfor 
Exchange the values on front two columns of result index=i+1 and result index=q; 

d=i+1; 

if(d>k) then /* If the tuples before r is more than k, then call RS-Partition 

recursively on the former tuples*/ 

RS-Partition (result,k,0,d); 

endif 
if(d<k) then /*If the tuples before r is less than k, then call RS-Partition 

recursively on the behind tuples*/ 

  RS-Partition (result,k-d,d+1,q); 

endif 
Return; 

The “for” circulation in RS-Partition algorithm partitions tuples in result in place, so it 

doesn’t tie extra system space. According to the analysis of partition algorithm in Ref. 

[19], the average time complexity of RS-Partition algorithm is O (N) when there are N 

tuples in S. If the tuple r is improving selected to make its score relatively intermediate, 

such as dividing the tuples in result to |result|/5 groups and choose the tuple which sore is 

the median of the median score in each group as r, then the worst case time complexity of 

RS-Partition will become O (N). 

 

4. Top-K Algorithm Based on Approximate Selection  

The basic idea of top-k algorithm based on approximate selection: Firstly, 

algorithm PA preprocesses and generates a number of system preferences according 

to the data dimensions of data set S. Then the algorithm PVA preprocesses the tuples 

in data set S to be sorted by score according to each system preferences in W'. 

Finally, in the ASTA algorithm, we first search a system preference wj which is most 

similar to the user preference w, after that we select the approximate kth order 

statistics of user preference w in the materialized view corresponding to wj, and we 

get top-k query result set of S through simple comparison. 

PA algorithm generates specified number of system preferences according to the 

data dimensions of data set S and saves them in set W'. PA algorithm is described as 

Algorithm 3. 

Algorithm 3: PA(n, cnt) 

Input: data dimensions n, count of system preferences cnt; 

Output: system preference set W'; 

Variable: w is a user preference, temp is a system weight. 

W'←; 

id←1; 

while(id≤ cnt) do /* The circulation controls the number of system preferences */ 

w[1]←id; 

w[2]←id/cnt;  /*The system weight on second dimension*/ 
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temp←(1-id/cnt)/(n-2); /* The system weights on other dimensions*/ 

for(i←3;i≤ n;i←i+1) do /* Fill in system weights on other dimensions*/ 

      w[i]←temp; 

   endfor 

   W'←W'∪{w}; 

   id←id+1; 

endwhile 
return W'; 

The main steps of the PVA algorithm: Calculate the score of each tuple in data set 

S and join a temporary set result firstly. Then sort tuples in the result basing on 

score and add index value. Finally insert set result into the materialized view Vi 

which is united into the set H. PVA algorithm is described as Algorithm 4. 

Algorithm 4: PVA(W', cnt, S, n) 

Input: system preference set W'={w1,w2,…,wcnt},the tuple count cnt of W', data set S, 

data dimensions n; 

Output: materialized view set H; 

Variable: temp is a temporary tuple, result is the temporary tuple set, Vi is a 

materialized view. 

H←; 

for(i←1;icnt;i← i+1) do  /* Generate a materialized view according to each 

system preference in W'*/ 

result←; 

for each(p∈S) do  /*Calculate score to each tuple in S and save in the set 

result*/ 

temp[1]←p[1]; 

temp[2]←f(W'id=i, p); 

result←result∪ temp; 

endfor 

Descending sort the tuples in result basing on result[2]; 

index←1; 

for each (p∈ result) do  /*Adding index value to the sorted tuples */ 

p[3]←index; 

index←index+1; 

endfor 

Vi←result; 

H←H∪{Vi}; 

endfor 

return H; 

The main steps of the ASTA algorithm: Firstly, search the system preference wj 

which is most similar to the user preference w. Then, calculate the sore of the tuple 

corresponding to the kth tuple in the materialized view Vj in data set S and take it as 

the approximate kth order statistics of the top-k query, i.e. the query threshold. 

Finally, filter the tuples in data set S whose score are no less than the threshold and 

join tempTK, if the cardinality of tempTK is less than k, then append the remaining 

number of tuples with maximum score from S, if the cardinality of tempTK is 

greater than k, then delete redundant tuples with minimum score from tempTK, so 

the remaining tuples in tempTK are the result set of top-k query. ASTA algorithm is 

described as Algorithm 5. 

Algorithm 5: ASTA(w, k, S, W', H) 
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Input: user preference w, constant k, data set S, system preference set 

W'={w1,w2,…,wcnt}, materialized view set H={V1,V2,…,Vcnt} mapped to each system 

preference in W'; 

Output: The result set TK of top-k query; 

Variable: tempTK stores the temporary result set. 

maxsim←0; 

j←0; 

for(i←1;i≤ cnt;i← i+1) do  /*Search the system preference wj which is most 

similar to the user preference w */ 

if(sim(w,wi)>maxsim) 

maxsim←sim(w,wi); 

j←i; 

endif 

endfor 

r←(Vj)index=k; /*Save the kth tuples in the materialized view Vj corresponding to wj 

*/ 

score←f(w, S id=r[1]); /*Calculate the sore of the corresponding tuple in data set S 

and look it as the approximate query threshold*/ 

count←0; 

tempTK←; 

for each(p∈S) do /*Calculate the score of each tuple in data set S and filter the 

tuples whose score are no less than threshold */ 

temp[1]←p[1]; 

temp[2]←f(w, p); 

if(temp[2]>=score) 

tempTK←tempTK∪{temp}; 

count←count+1; 

else 

result←result∪temp; 

endif 

endfor 

if (count>k) then /*Delete (count-k) tuples with minimum score from tempTK */ 

d←count-k; 

while(d>0) do 

r←The tuple with minimal score in tempTK; 

tempTK←tempTK-{r}; 

d←d-1; 

endwhile 

endif 

if (count<k) then /*Append (k-count) tuples with maximal score in result to 

tempTK */ 

d←k-count; 

while(d>0) do 

r←The tuple with maximal score in result; 

tempTK←tempTK∪{r}; 

result←result-{r}; 

d←d-1; 

endwhile 

endif 

return TK; 
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The time complexity of the ASTA algorithm is determined by 4 circles, if there are N 

tuples in the data set S, the time complexity for each circle is analyzed as following: 

(1) The worst-case time complexity of the first circle is O(cnt); 

(2) The worst-case time complexity of the second circle is O(N); 

(3) The time complexity of third circle: Since the circle loops (count-k) times, the 

statement " Select the tuple with minimal score in tempTK " executes (N-count) times at 

most, then the time complexity of the circle is O ((count-k) (N-count)) which can turn to 

O ( C1N- C1count) if let C1= count-k, so the worst-case time complexity of it is O (N); 

(4) The time complexity of fourth circle: Since the circle can loop (k-count) times, the 

statement " Select the tuple with maximal score in result " executes (N-count) times at 

most, then the time complexity of the circle is O ((k-count) (N-count)) which can turn to 

O (C2N- C2count) if let C2= k-count, so the worst-case time complexity of it is O (N); 

Overlying the time complexity of above 4 circles, the time complexity of ASTA is 

O (N+cnt), because the cnt is very small relative to N, so the worst-case time 

complexity of ASTA is O (N). 

 

5. The Correctness and Completeness of Algorithms 

Theorem 1 RSTA and ASTA algorithm can find the accurate top-k objects. 

Proof: In RSTA algorithm a random selected tuple is used to partition data set S: tuples 

which score are greater than it moved to the front, and other tuples moved to the back. 

The partition will be repeated until there are k tuples in front of the selected tuple. 

Because the front k tuples are all larger than behind tuples, so they are the right top-k 

objects. 

In ASTA algorithm sub query result tempTK is obtained based on the approximate 

threshold. So tempTK is a top-n result on the data set S while n is not certain, i.e., tempTK 

is the largest n tuples sorted by the current user preference. However the third and the 

fourth loops in the algorithm can guarantee that n=k, so the final top-k objects is certainly 

accurate. 

Theorem 2 RSTA and ASTA algorithm can find all the accurate top-k objects. 

Proof: In RSTA algorithm the tuples are divided directly on the original data set basing 

on score, which can ensure the score of former k tuples are higher than other n-k tuples, so 

RSTA algorithm can find all of the top-k objects. By Theorem 1, RSTA algorithm can find 

the right top-k objects, so ASTA algorithm can find all the accurate top-k objects. 

In ASTA algorithm objects with higher score are joined tempTK based on the 

approximate threshold. To ensure tempTK containing k objects with largest score, 

redundancy objects with smaller score are deleted if the cardinality of tempTK is more 

than k, objects with largest score in remainder tuples are appended if the cardinality of 

tempTK is less than k, so ASTA algorithm can find all the top-k objects. By Theorem 1, 

ASTA algorithm can find the accurate top-k objects. In conclusion ASTA algorithm can 

find all the accurate top-k objects. 

 

6. Experimental 

Our experiments mainly compare and analyze the efficiency of RSTA, ASTA and the 

natural algorithm (named Naive) to the variation of data dimensions, k value and tuples. 

The experimental environment is: win7, processor of Intel (R) Core (TM) 2 Duo CPU 

E8400 @ 3.00GHz (2CPUs), ~3.0GHz, DBMS of Microsoft SQL Server 2008 R2. Data 

set is generated by the data synthesizer of IBM. 

 

6.1 Experimental Preparation 

In database HousesAndUsers, tuples in House table are generated by the IBM data 

synthesizer firstly, then Systempreference table is created according to the data 
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dimensions of House table to represent system preferences. The views generated basing 

on system preferences are stored in database UserViews. Tables tempTK and TK are 

created to store intermediate result and the final result respectively, where tempTK will be 

emptied before RSTA or ASTA algorithm are running to avoid the influence of the last 

result.  

 

6.2 Results and Discussion 

We compare the running time on RSTA, ASTA and Naive algorithm firstly with fixed 

tuples and k value but varying data dimensions. Without loss of generality, the tuples in 

House table is 20000, k value is 30, the data dimensions are 2, 4, 6, 8, 10, top-k query 

time of RSTA, ASTA and Naive algorithm are shown in Figure 2. As we can see from 

Figure 2, the running time of RSTA, ASTA and Naive algorithm changes a little along with 

the change of data dimensions, which indicates that RSTA, ASTA and Naive algorithm 

spent unconcerned with the data dimensions. 

Then, we compare the running time on RSTA, ASTA and Naive algorithm with fixed 

tuples and data dimensions but varying k value. Without loss of generality, the tuples in 

House table is 20000, data dimensions are 10, k varies from 3, 5, 10, 20, 30, 50 

respectively, top-k query time of RSTA, ASTA and Naive algorithm are shown in Figure 3. 

It is shown that the running time of RSTA, ASTA algorithm change slowly, but Naive 

algorithm suffers large change when k varies, which suggests that RSTA and ASTA are 

further insulated with k value, but the Naive algorithm is affected by k value obviously. 

Finally, we compare the running time on RSTA, ASTA and Naive algorithm with fixed k 

value and data dimensions but varying tuples. Without loss of generality, the data 

dimensions are 10, k value is 30, and tuples in House table change from 5000 to 50000, 

top-k query time of RSTA, ASTA and Naive algorithm are shown in Figure 4. We know 

from Figure 4 that RSTA and ASTA algorithm are running faster than Naive algorithm, and 

their spending varies smoothly than Naive algorithm with the increase of tuples, which 

show that Naive algorithm is influenced by tuples greatly than RSTA and ASTA algorithm. 

 

 

Figure 2. Comparison of Query Time with Varying Data Dimensions 
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Figure 3. Comparison of Query Time with Varying K Values  

 

Figure 4. Comparison of Query Time with Varying Tuples  

In summary, RSTA and ASTA algorithm are more efficient comparing to Naive 

algorithm, so RSTA and ASTA algorithm improve the response of the top-k query well. 

 

7. Conclusion 

Top-k query based on user preferences can deal with query problem on multi-user 

preferences and various k values. RSTA algorithm produces top-k result set by random 

selected order statistics. ASTA algorithm generates top-k result set through approximate 

threshold. Further study will focus on top-k query algorithms with lower time complexity 

and suitable to dynamic data set. 
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