
International Journal of Database Theory and Application

Vol.9, No.3 (2016), pp.151-160

http://dx.doi.org/10.14257/ijdta.2016.9.3.16

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

An Effective K-Nearest Neighbor Track Retrieval Algorithm

Chen Wen

School of Mathematics and Computer Science, Tongling College, Tongling, P. R.

China

Email:tlxychenwen@163.com

Abstract

Due to the mass track data accumulated day by day, new challenges are raised for

traditional information retrieval. This paper studies the issue of k-nearest neighbor track

retrieval facing moving object, and converts this issue into aggregate Top-k query issue of

information retrieval field. A parallel TA algorithm in random access database is

proposed, and it has effectively solved the issue of k-nearest neighbor track retrieval.

Performance of this algorithm is verified through a large number of experiments.

Keywords: Mobile object; k-nearest neighboring trajectories query; aggregate Top-k

query; parallel algorithm

1. Introduction

In numerous application fields covering intelligent transportation and location-based

service, mass track data are accumulated day by day. In these applications, people hope to

find some historical tracks that pass some certain locations from the historical tracks in

most cases. For instance, users of social network sites want to find routes that pass some

scenic spots as references for their travel plan from their friends’ tracks; traffic

management departments hope to find and analyze tracks that pass some important

intersections from the historical tracks of taxi; biologists might be interested in tracks that

run across some mountainous regions, lakes and forests in the migration tracks of

migratory birds. Generally speaking, all the above applications need to efficiently retrieve

tracks that pass some certain locations among the mass track data stored in the disk.

2. Relevant Work

Track-based query was proposed by Pfoser et al. [1] for the first time. It includes track

topological query and track navigation query. Track topological query involves motion

information of moving objects like “entrance”, “leaving” and “passing”, and its common

query form is “to search all tracks of the moving objects that enter, leave and pass the

query region within the query time interval”. The common form of track navigation query

is “to search all tracks of the moving objects that intersect with the query region within

the query time interval and that intersect with another query region within another query

time interval”. Pfoser et al. processed track-based query by adopting STR-tree and TB-

tree index structure. According to a large number of experimental results, track query

processing via TB-tree structure is obviously better than similar query processing via

STR-tree structure in efficiency and expandability. Zhu et al. [2] proposed the OP-tree

index structure and evaluated performance of track query based on this structure.

Similar track query aims to seek similar tracks of the moving objects. Due to its

importance of application in decision support and data mining fields, Scholars in the field

of database also starts to study this issue during recent years. At present, research work of

this aspect is mainly as follows. Vlachos et al. [3] compared the similarity among tracks

by extracting the longest common subsequence in tracks. This method has avoided the

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

152 Copyright ⓒ 2016 SERSC

continuity requirement of mapping and it is more flexible, but monotonic mapping

between two tracks is required. Yanagisawa et al. [4] proposed a similar track query

algorithm based on shape. This algorithm is based on Euclidean distance and only

applicable to tracks with the same length or same time interval. In addition, they also

proposed a distance measurement that allowed searching for similar tracks under

translation, scaling and rotation transformation. Lin et al. [5] studied the similar space

shape query issue of the moving object tracks. One-way distance (OWD) function is

introduced to compare the space shapes among tracks. However, they only considered

space information of the moving object tracks, but ignored time information. Chen et al.

[6] introduced a real sequence editing distance function and proposed several pruning

strategies to improve the similar query algorithm performance of moving objects.

However, mapping between tracks in these algorithms is still continuous and monotonous.

The above research work emphasizes space similarity among tracks but ignores the time

information. Besides, they suppose that the tracks have the same length and sampling rate.

In view of this, Frentzos et al. [7] studied the issue of the most similar track query based

on structures similar to R-tree. In recent years, research scholars have considered

uncertainty in studies on query processing for the moving object tracks. At present,

research work in this aspect is as follows. Cheng et al. [8] proposed uncertain track query

for the first time and designed effective probability time slice query, probability time slice

nearest neighbor query and probability clustering query algorithms. However, these

algorithms are only applicable to time slice query, and cannot be extended to time interval

query easily. Therefore, Mokhtar et al. [9] discussed the issue of uncertain track query

directing at time interval query.

All in all, domestic and overseas research scholars have made a certain progress in

studies on track query, but these researches do not involve track query for some novel

historical moving objects that meets the practical application demand. Therefore, under

such research background, it is significant and necessary to study query processing

technology of historical moving object tracks.

3. Relevant Definition

Definition 1: Distance between track and query point. A track can represent a point

sequence , where is the point j of . As for the given

query point q, the matching pair between point j of the track and q is recorded as

< >. If for any , then is called projection of q

in , recorded as . The distance between track and query q is defined as

the distance between q and its projection in . The distance between these two points can

be calculated with Euclidean distance, great circle distance of earth surface or road

network distance (shortest path).

Definition 2: Distance between track and query point set. Track

 and query point set are given.

Suppose that the distance aggregate function is a m-dimensional

strictly monotone increasing function, thus the distance between track and query point

set Q is defined as:

In different applications, different distance aggregate functions might be used to

describe the similarity degree of track and query point set. The above issue is illustrated

with examples in literature [10]. Figure 1 presents two tracks and as well as the

query point set . The projections of in are

 respectively, and their projections in are

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 153

separately. In this example, Euclidean distance is used to calculate the

distance between two points and summation function is treated as distance aggregate

function, so as to obtain the distance between these projections and the query point as

well as the distance between tracks & and . According to the results, though and

 are closer to , the aggregate distance of is smaller than that of . Therefore, is

the track the closest to the query point set.

Figure 1. Distance Between Track and Query Point Set [10]

Definition 3: K-nearest neighbor track retrieval (kNNT). The track database D and

query point set Q are given. K-nearest neighbor track retrieval aims to find out k tracks

K={ } to make any meet .

The challenges of efficient kNNT retrieval for traditional KNN retrieval are mainly

reflected in the following aspects. (1) Sharp increase of data scale. Compared with

traditional KNN aimed at point retrieval, track data have increased time dimensions, so

the data size is far greater. (2) Distance calculation. The distance calculation of track and

query point set is different from that of traditional KNN retrieval, and the result should be

obtained via distance aggregate function. When different aggregate distance functions are

applied, the retrieval results will also be different and the traditional preprocessing

method is infeasible. In addition, if road network distance is adopted between track point

and query point, the calculation cost will be increased, so online distance calculation

becomes infeasible. (3) Non-uniform distribution. In many practical applications, data

distribution is non-uniform. For instance, the taxi track might be dense in cities but sparse

in the suburbs. Progressive increase retrieval method in traditional KNN does not perform

well in such data.

4. kNNT is Modeled Into Aggregate Top-k Query

Definition 4: Suppose that there are n objects among which any object has m

attributes; a m-dimensional monotone aggregate function is given and the attribute list

 includes m sequence lists. Among them, any list stores the value of

attribute j for all the n objects in 2-tuple form from large attribute value to small attribute

value. Aggregate Top-k query aims to find k objects with the biggest aggregate value

from the m lists.

According to definition 4, the issue of this study can be converted into the issue of

aggregate Top-k query. The n objects are corresponding to all n tracks in the database,

and each attribute list is corresponding to the reverse index by setting the index node

where the query point is located as root node in track index (based on R-tree or similar

structures). In practice, the attribute values can be normalized into the range of [0-1]. The

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

154 Copyright ⓒ 2016 SERSC

distance from track to the query point is corresponding to aggregate value in Top-k. In

this way, kNNT retrieval is actually a special example in Top-k query.

Efficient Top-k query plays a key role in multiple fields covering information retrieval

[11-12], multimedia database [13-14], data mining [15] and network service [16-18].

Therefore, Top-k query have become the hot issue concerned by many researchers in

recent years. For instance, in information retrieval field, users might enter multiple search

terms, but the results about relevancy sorting directing at each term should be integrated

before they are presented to users. In image retrieval, there will be a sorting result

according to information like color histogram, edge histogram and texture by directing at

images entered by users, and the final results need to be fed back to users through

aggregate query.

Many researches have been done for Top-k query allowing random access. The earliest

and most famous method is threshold algorithm (TA) [19]. Most TA-type algorithms

suppose that the data support random access and sequential access at the same time, and

the aggregate function is monotone function. Meanwhile, some works have studied query

under non-monotone function situation [20-21]. In literature [22], the author proposed a

unified framework of the current TA-type algorithms, and put forward a query algorithm

of supporting random access database.

Under the situation where only sequential access is allowed, Guntzer et al. [13]

proposed Stream-Combine algorithm. Meanwhile, Fagin [19] put forward no random

access (NRA) algorithm. Stream-Combine algorithm only considers the upper limit of all

objects and it can determine whether the object belongs to Top-k only under the situation

where all attributes of one object are visited. In this sense, NRA algorithm is better than

Stream-Combine algorithm. Theobald et al. [23] proposed a series of probability

algorithms based on NRA algorithm to solve approximate Top-k. Mamoulis et al. [24] put

forward a novel LARA algorithm based on “lattice” structure by studying algorithm

behaviors. From the aspect of operation time cost, the query speed of LARA algorithm is

obviously higher than that of NRA. However, it has no obvious advantages in visiting

cost when compared with NRA. Gursky [25] proposed a group of 3-Phase NRA

algorithms which improved the query time by utilizing heuristic optimization.

During aggregate Top-k query, some databases do not support random access or

random access should be avoided as far as possible due to the high cost [19]. For instance,

typical search engines cannot directly gain the score of relevancy between the search term

and a certain text through random access when users enter the term. For another example,

if the attribute list is the intermediate result gained via other operation or entered in data

flow form, random access is unpractical. Under some situations, the cost of random

access is greatly higher than that of sequential access. In literature [26], the author

discussed why the cost of random access was higher than the cost of sequential access in

many applications. By directing at kNNT, if random access is conducted for the distance

from a certain query point to a given track, then the point sequence of the track should be

searched in the database and the projection of this query point in the track must be

determined by frequently calculating the distance between two points. The visiting cost of

such operation in database based on R-tree index is too high. If the distance between two

points is calculated by adopting road network distance, the calculation cost will be

increased. Therefore, random access is almost impossible.

5. Parallel TA Algorithm

In order to solve the mass data of historical tracks in kNNT, this paper proposes a

parallel TA algorithm on the basis of TA algorithm by fully utilizing the parallelism of

data processing.

In previous studies on centralized multimedia database, researchers often transfer

middleware realization issue into top-k query issue and complete middleware system

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 155

design by studying top-k query algorithm. In such top-k query issue transferred from

middleware system, the system supports sequential access and random access at the same

time. A famous centralized multimedia database is Garlic system of IBM Company. Fagin

et al. designed a middleware module for Galic system on the basis of threshold algorithm

(TA), and verified the correctness and case optimality of TA algorithm.

In order to process top-k query of mass data by utilizing cluster system, the problem of

data partitioning should be solved at first. For a data space DB composed of m n-tuple

lists, there are two partitioning methods: list partitioning and ID partitioning.

1. List partitioning. The whole data space is partitioned by setting list as the unit. The

list space is partitioned into several subspaces that do not intersect with each other. Each

subspace contains a list subset.

2. ID partitioning. The whole data space is partitioned by setting tuple ID as the unit.

The object ID set is partitioned into several subsets that do not intersect with each other.

Each subspace contains all attributes of ID subset.

The above two partitioning methods have advantages and disadvantages in partitioning

cost and partitioning effect. In terms of list partitioning, attributes of the object are saved

according to list. Therefore, we just need to move all lists in the global space into the

subspace and the partitioning cost is low. On the other hand, number of lists processed by

top-k query is limited in practical application. The partitioning quantity is small, so the

degree of parallelism is low. Meanwhile, list partitioning will separate the connection

among different attributes of the object, and different attributes of the same object will be

inevitably in different subspaces after partitioning. When parallel algorithm maps the

subspace to the actual processor set, these attributes will be scattered in the storage space

of various processors. A large amount of cluster communication should be introduced

when the aggregate score of the object is calculated. As a result, the speed-up ratio of the

calculation process is low and the system efficiency is not high. Therefore, top-k query

research aimed at vertical partitioning is often based on coarse-grained task level

parallelization, and the existing distributed algorithms can be used as references.

For ID partitioning, ID set of the object should be decomposed at first and then all lists

should be scanned according to subsets after ID decomposition. Thus the cost is high.

However, after decomposition is completed, number of objects n is often higher than

number of lists by several orders of magnitudes. The higher the n value is, the finer the

partitioning of the global space will be. It is beneficial to follow-up data mapping and the

data after partitioning possess good parallelism. Meanwhile, ID partitioning will not

separate attributes of the object and all attributes of the same object are located in the

same subspace. When parallel algorithm maps the subspace to the actual processor set,

these attributes will be allocated to the same processor storage space (stored in different

lists). Only local calculation is required when the aggregate score of the object is

calculated. There is no need to introduce cluster communication and the algorithm

supports asynchronous processing, so the communication cost is low. Therefore, ID

partitioning mode of data is beneficial to parallel algorithm design based on message

passing model.

In view of the advantages and disadvantages of the above two partitioning methods,

data processing of list partitioning is applicable to coarse-grained parallel development

and data processing of ID partitioning is suitable for fine-grained parallel development.

There have already been relatively mature distributed algorithms aimed at list

partitioning, so our study is mainly conducted by directing at parallel processing of data

after ID partitioning.

ID partitioning method divides big data space into a series of data subspaces that do not

intersect with each other. The global data space is recorded as DB. If the cluster system

has p processors and the subspace composed of data allocated to the

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

156 Copyright ⓒ 2016 SERSC

processor Pi is recorded as , then DB = and ,

(i).

Ak is set as top-k set in the global data space DB and recorded as local top-k

set in the data subspace , thus and , (i).

In order to solve top-k set of the global space, division method can be used to

concurrently solve local top-k set in each subspace via each processor. Then the global

top-k set can be solved by integrating local top-k sets of subspaces.

We have designed a top-k parallel TA algorithm in distributed storage structure

according to the above steps. The execution flow of parallel TA algorithm is as follows.

For p processors, each processor carries out sequential access for m lists in the subspace

by way of round-robin. Once the new object o is read, all attribute sores pi(o) (1 ≤ i ≤ m)

of this tuple will be gained through m−1 random accesses, and the aggregate value F(o) =

F(p1(o),…,pm(o)) of object o should be calculated. Each processor maintains its own

candidate set , so as to record k objects with maximum aggregate value in the

subspace. The minimum aggregate value of candidate set in the subspace and

threshold value in the subspace are calculated. When the minimum aggregate value

 of candidate set in the subspace is greater than the threshold value of list in

the subspace, all processors will send local Top-k set in the subspace to P1

processor. P1 processor will output k objects with the maximum aggregate value among

p∗k objects collected according to aggregate value sorting as Top-k set of the whole

space.

Formal description of the algorithm is given in the following.

Input: DB composed of m sorted lists, and p processors

Output: Top-k set in DB

1. Allocate DB to the storage space of p processors via ID division method.

2. For (all Pi，where 1 i p)do

Conduct sequential access for each list in the subspace.

Calculate the aggregate value F(o) of each new object o.

Record the existing k objects with the maximum aggregate value in the subspace with

candidate set ; if number of objects in the candidate set is smaller than k, return to

step 1.

Calculate the minimum lower limit of candidate set , = min{F (t)

: t∈ }.

Calculate the threshold value in the list.

Compare the minimum lower limit and threshold value ; if <

, return to step 1.

3. Root processor collect and sort the p ∗ m objects, and output k objects with

maximum aggregate score.

6. Experimental Analysis

Experimental environment adopted by algorithm of this paper is IBM HPC calculation

platform including 2 IBM X3650M3 management nodes, 28 two-way 8-core IBM

BladeCenter HS22 blade servers, and 4 IBM X3550M3 rack servers that constitute 32

calculation nodes. All calculation nodes and management nodes are connected through a

set of 40GB QDR Infiniband network switch, to operate Red Hat Enterprise Linux 5.5

and Apache Hadoop-0.21.

The algorithm is realized through C++ and contrast experiment is made in real data set.

The data set comes from data of restaurants on Dianping.com (captured from

Dianping.com). Dianping.com is the largest consumption guidance and comment website

in China at present. Data set used in this experiment includes evaluation data related to

the restaurants. Such data include 80,000 restaurants and cover 50 Chinese cities. Each

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 157

restaurant has the following 6 attributes: star level (based on users’ comments), price,

number of users’ comments, taste, environment and service. The data formula

 is normalized.

(1) Multiple common aggregate functions are tested in the experiment: average number

(ave), weighted average (wav), sum of squares (squ), and exponential sum (exp). Figure

2(a) tests the visiting cost of the four aggregate functions in test data set. When k value

increases gradually, visiting cost of the algorithm rises. Generally speaking, algorithm of

this paper has relatively small visiting cost for all aggregate functions.

(2) Figure 2(b) tests the influences of the four different aggregate functions on the

operation time under different k values. Parallel algorithm and random access proposed in

this paper have very obvious advantages, and the consumption of cpu time can meet the

requirements of practical application.

0

1

2

3

4

5

6

7

50 100 500 1000 2000

(a)Values of different k

a
c
c
e
s
s

c
o
s
t
*
1
0
0
0
0
0 ave wav squ exp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 100 500 1000 2000

(b)Values of different k

r
u
n
t
i
m
e
*
1
0
0
0
0
(
m
s
) ave wav squ exp

Figure 2. The Influence of Different Aggregate Functions on Access Cost and

Running Time

7. Conclusion

In recent years, with the wide application of positioning devices in mobile terminals

and extensive development of location-based service and mobile social networks, mass

track data are accumulated day by day. Thus a great challenge is raised for management

and utilization of mass track data. On the premise of organizing the current situations

about track query studies, by combining with the existing literature thoughts, this paper

converts the issue of nearest neighbor track retrieval into the issue of aggregate Top-k

query. An efficient algorithm of parallel TA aggregate Top-k query is proposed, and high

efficiency and validity of this algorithm are verified in real data set.

Acknowledgement

This work was supported by funds from Universities Key Fund of Anhui Province for

Young Talents of China under Grant 2013SQRL082ZD, Natural Science Research

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

158 Copyright ⓒ 2016 SERSC

Universities Key Project of Anhui Province of China under Grant KJ2014A256 and 2016

Anhui province colleges and universities outstanding young talent support program key

projects of China under Grant gxyqZD2016319.

References

[1] D. Pfoser, C. S. Jensen and Y. Theodoridis, “Novel approaches in query processing for moving object

trajectories”, In Proceeding the 26th International Conference on Very Large Data Bases, Cairo, Egypt,

(2000), pp. 395-406.

[2] H. Zhu, J. Su and O. H. Ibarra, “Trajectory queries and octagons in moving object databases”,

Proceedings of the eleventh international conference on Information and knowledge management. ACM,

(2002), pp. 413-421.

[3] M. Vlachos, G. Kollios and D. Gunopulos, “Discovering similar multidimensional trajectories”, Data

Engineering, 2002. Proceedings. 18th International Conference on. IEEE, (2002), pp. 673-684.

[4] Y. Yanagisawa, J. Akahani and T. Satoh, “T. Shape-based similarity query for trajectory of mobile

objects”, Mobile data management. Springer Berlin Heidelberg, (2003), pp. 63-77.

[5] B. Lin and J. Su, “Shapes based trajectory queries for moving objects”, Proceedings of the 13th annual

ACM international workshop on Geographic information systems. ACM, (2005), pp. 21-30.

[6] L. Chen, M. T. Özsu and V. Oria, “Robust and fast similarity search for moving object trajectories”,

Proceedings of the 2005 ACM SIGMOD international conference on Management of data. ACM,

(2005), pp. 491-502.

[7] E. Frentzos, K. Gratsias and Y. Theodoridis, “Index-based most similar trajectory search”, Data

Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on. IEEE, (2007), pp. 816-825.

[8] R. Cheng, D. V. Kalashnikov and S. Prabhakar, “Querying imprecise data in moving object

environments”, Knowledge and Data Engineering, IEEE Transactions on, vol. 16, no. 9, (2004), pp.

1112-1127.

[9] H. M. O. Mokhtar and J. Su, “Universal trajectory queries for moving object databases”, Mobile Data

Management, 2004. Proceedings. 2004 IEEE International Conference on. IEEE, (2004), pp. 133-144.

[10] J. Yuan., “Querying, mining with applications on large-scale trajectory data”, Hefei, University of

science and technology of China, (2012).

[11] G. Salton, “Automatic text processing: The transformation, analysis, and retrieval”, Reading: Addison-

Wesley, (1989).

[12] X. Long and T. Suel, “Three-level caching for efficient query processing in large web search engines”,

World Wide Web, vol. 9, no. 4, (2006), pp. 369-395.

[13] U. Güntzer, W. T. Balke and W. Kießling, “Towards efficient multi-feature queries in heterogeneous

environments”, Information Technology: Coding and Computing, 2001. Proceedings. International

Conference on. IEEE, (2001), pp. 622-628.

[14] S. Nepal and M. V. Ramakrishna, “Query processing issues in image (multimedia) databases”, Data

Engineering, 1999. Proceedings, 15th International Conference on. IEEE, (1999), pp. 22-29.

[15] L. Getoor and C. P. Diehl, “Link mining: a survey”, ACM SIGKDD Explorations Newsletter, vol. 7, no.

2, (2005), pp. 3-12.

[16] M. Zhu, S. Shi and M. Li, “Effective Top-k computation in retrieving structured documents with term-

proximity support”, Proceedings of the sixteenth ACM conference on Conference on information and

knowledge management. ACM, (2007), pp. 771-780.

[17] M. S. Scheuer, C. Li and Y. Mass, “Best-effort Top-k query processing under budgetary constraints”,

Data Engineering, 2009. ICDE'09. IEEE 25th International Conference on. IEEE, (2009), pp. 928-939.

[18] W. T. Balke, U. Güntzer and W. Kießling, “On real-time top k querying for mobile services”, On the

Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg,

(2002), pp. 125-143.

[19] R. Fagin, A. Lotem and M. Naor, “Optimal aggregation algorithms for middleware”, Journal of

Computer and System Sciences, vol. 66, no. 4, (2003), pp. 614-656.

[20] D. Xin, J. Han and K. C. Chang, “Progressive and selective merge: computing top-k with ad-hoc ranking

functions”, Proceedings of the 2007 ACM SIGMOD international conference on Management of data.

ACM, (2007), pp. 103-114.

[21] Y. Luo, X. Lin and W. Wang, “Spark: top-k keyword query in relational databases”, Proceedings of the

2007 ACM SIGMOD international conference on Management of data. ACM, (2007), pp. 115-126.

[22] S. Hwang and K. C. Chang, “Optimizing top-k queries for middleware access: A unified cost-based

approach”, ACM Transactions on Database Systems (TODS), vol. 32, no. 1, (2007), pp. 5.

[23] M. Theobald, G. Weikum and R. Schenkel, “Top-k query evaluation with probabilistic guarantees”,

Proceedings of the Thirtieth international conference on Very large data bases. VLDB Endowment, vol.

30, (2004), pp. 648-659.

[24] N. Mamoulis, K. H. Cheng and M. L. Yiu, “Efficient aggregation of ranked inputs”, Data Engineering,

2006. ICDE'06. Proceedings of the 22nd International Conference on. IEEE, (2006), pp. 72-72.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 159

[25] P. Gurský and P. Vojtáš, “Speeding up the nra algorithm”, Scalable Uncertainty Management. Springer

Berlin Heidelberg, (2008), pp. 243-255.

[26] E. L. Wimmers, L. M. Haas and M. T. Roth, “Using Fagin's algorithm for merging ranked results in

multimedia middleware”, Cooperative Information Systems, 1999. CoopIS'99. Proceedings. 1999 IFCIS

International Conference on. IEEE, (1999), pp. 267-278.

Author

Chen Wen, He is an Associate Professor in the School of

Mathematics and Computer Science, Tongling College, Tongling, P.

R. China. He holds a master degree in Computer Science and

Technology from the Anhui University, Anhui, P. R. China. His

previous research areas include privacy preserving.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

160 Copyright ⓒ 2016 SERSC

