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Abstract 

Due to the mass track data accumulated day by day, new challenges are raised for 

traditional information retrieval. This paper studies the issue of k-nearest neighbor track 

retrieval facing moving object, and converts this issue into aggregate Top-k query issue of 

information retrieval field. A parallel TA algorithm in random access database is 

proposed, and it has effectively solved the issue of k-nearest neighbor track retrieval. 

Performance of this algorithm is verified through a large number of experiments.  

 

Keywords: Mobile object; k-nearest neighboring trajectories query; aggregate Top-k 

query; parallel algorithm 

 

1. Introduction 

In numerous application fields covering intelligent transportation and location-based 

service, mass track data are accumulated day by day. In these applications, people hope to 

find some historical tracks that pass some certain locations from the historical tracks in 

most cases. For instance, users of social network sites want to find routes that pass some 

scenic spots as references for their travel plan from their friends’ tracks; traffic 

management departments hope to find and analyze tracks that pass some important 

intersections from the historical tracks of taxi; biologists might be interested in tracks that 

run across some mountainous regions, lakes and forests in the migration tracks of 

migratory birds. Generally speaking, all the above applications need to efficiently retrieve 

tracks that pass some certain locations among the mass track data stored in the disk.  

 

2. Relevant Work 

Track-based query was proposed by Pfoser et al. [1] for the first time. It includes track 

topological query and track navigation query. Track topological query involves motion 

information of moving objects like “entrance”, “leaving” and “passing”, and its common 

query form is “to search all tracks of the moving objects that enter, leave and pass the 

query region within the query time interval”. The common form of track navigation query 

is “to search all tracks of the moving objects that intersect with the query region within 

the query time interval and that intersect with another query region within another query 

time interval”. Pfoser et al. processed track-based query by adopting STR-tree and TB-

tree index structure. According to a large number of experimental results, track query 

processing via TB-tree structure is obviously better than similar query processing via 

STR-tree structure in efficiency and expandability. Zhu et al. [2] proposed the OP-tree 

index structure and evaluated performance of track query based on this structure.  

Similar track query aims to seek similar tracks of the moving objects. Due to its 

importance of application in decision support and data mining fields, Scholars in the field 

of database also starts to study this issue during recent years. At present, research work of 

this aspect is mainly as follows. Vlachos et al. [3] compared the similarity among tracks 

by extracting the longest common subsequence in tracks. This method has avoided the 
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continuity requirement of mapping and it is more flexible, but monotonic mapping 

between two tracks is required. Yanagisawa et al. [4] proposed a similar track query 

algorithm based on shape. This algorithm is based on Euclidean distance and only 

applicable to tracks with the same length or same time interval. In addition, they also 

proposed a distance measurement that allowed searching for similar tracks under 

translation, scaling and rotation transformation. Lin et al. [5] studied the similar space 

shape query issue of the moving object tracks. One-way distance (OWD) function is 

introduced to compare the space shapes among tracks. However, they only considered 

space information of the moving object tracks, but ignored time information. Chen et al. 

[6] introduced a real sequence editing distance function and proposed several pruning 

strategies to improve the similar query algorithm performance of moving objects. 

However, mapping between tracks in these algorithms is still continuous and monotonous. 

The above research work emphasizes space similarity among tracks but ignores the time 

information. Besides, they suppose that the tracks have the same length and sampling rate. 

In view of this, Frentzos et al. [7] studied the issue of the most similar track query based 

on structures similar to R-tree. In recent years, research scholars have considered 

uncertainty in studies on query processing for the moving object tracks. At present, 

research work in this aspect is as follows. Cheng et al. [8] proposed uncertain track query 

for the first time and designed effective probability time slice query, probability time slice 

nearest neighbor query and probability clustering query algorithms. However, these 

algorithms are only applicable to time slice query, and cannot be extended to time interval 

query easily. Therefore, Mokhtar et al. [9] discussed the issue of uncertain track query 

directing at time interval query.  

All in all, domestic and overseas research scholars have made a certain progress in 

studies on track query, but these researches do not involve track query for some novel 

historical moving objects that meets the practical application demand. Therefore, under 

such research background, it is significant and necessary to study query processing 

technology of historical moving object tracks.  

 

3. Relevant Definition 

Definition 1: Distance between track and query point. A track  can represent a point 

sequence , where  is the point j of . As for the given 

query point q, the matching pair between point j of the track  and q is recorded as 

< >. If  for any , then  is called projection of q 

in , recorded as . The distance between track  and query q is defined as 

the distance between q and its projection in . The distance between these two points can 

be calculated with Euclidean distance, great circle distance of earth surface or road 

network distance (shortest path).  

Definition 2: Distance between track and query point set. Track 

 and query point set  are given. 

Suppose that the distance aggregate function  is a m-dimensional 

strictly monotone increasing function, thus the distance between track  and query point 

set Q is defined as: 

 

 
In different applications, different distance aggregate functions might be used to 

describe the similarity degree of track and query point set. The above issue is illustrated 

with examples in literature [10]. Figure 1 presents two tracks  and  as well as the 

query point set . The projections of  in  are 

 respectively, and their projections in  are 
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separately. In this example, Euclidean distance is used to calculate the 

distance between two points and summation function is treated as distance aggregate 

function, so as to obtain the distance between these projections and the query point as 

well as the distance between tracks  &  and . According to the results, though  and 

 are closer to , the aggregate distance of  is smaller than that of . Therefore,  is 

the track the closest to the query point set.  

 

 

Figure 1. Distance Between Track and Query Point Set [10] 

Definition 3: K-nearest neighbor track retrieval (kNNT). The track database D and 

query point set Q are given. K-nearest neighbor track retrieval aims to find out k tracks 

K={ } to make any meet . 

The challenges of efficient kNNT retrieval for traditional KNN retrieval are mainly 

reflected in the following aspects. (1) Sharp increase of data scale. Compared with 

traditional KNN aimed at point retrieval, track data have increased time dimensions, so 

the data size is far greater. (2) Distance calculation. The distance calculation of track and 

query point set is different from that of traditional KNN retrieval, and the result should be 

obtained via distance aggregate function. When different aggregate distance functions are 

applied, the retrieval results will also be different and the traditional preprocessing 

method is infeasible. In addition, if road network distance is adopted between track point 

and query point, the calculation cost will be increased, so online distance calculation 

becomes infeasible. (3) Non-uniform distribution. In many practical applications, data 

distribution is non-uniform. For instance, the taxi track might be dense in cities but sparse 

in the suburbs. Progressive increase retrieval method in traditional KNN does not perform 

well in such data.  

 

4. kNNT is Modeled Into Aggregate Top-k Query 

Definition 4: Suppose that there are n objects among which any object  has m 

attributes; a m-dimensional monotone aggregate function is given and the attribute list 

 includes m sequence lists. Among them, any list stores the value of 

attribute j for all the n objects in 2-tuple form from large attribute value to small attribute 

value. Aggregate Top-k query aims to find k objects with the biggest aggregate value 

from the m lists.  

According to definition 4, the issue of this study can be converted into the issue of 

aggregate Top-k query. The n objects are corresponding to all n tracks in the database, 

and each attribute list is corresponding to the reverse index by setting the index node 

where the query point is located as root node in track index (based on R-tree or similar 

structures). In practice, the attribute values can be normalized into the range of [0-1]. The 
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distance from track to the query point is corresponding to aggregate value in Top-k. In 

this way, kNNT retrieval is actually a special example in Top-k query.  

Efficient Top-k query plays a key role in multiple fields covering information retrieval 

[11-12], multimedia database [13-14], data mining [15] and network service [16-18]. 

Therefore, Top-k query have become the hot issue concerned by many researchers in 

recent years. For instance, in information retrieval field, users might enter multiple search 

terms, but the results about relevancy sorting directing at each term should be integrated 

before they are presented to users. In image retrieval, there will be a sorting result 

according to information like color histogram, edge histogram and texture by directing at 

images entered by users, and the final results need to be fed back to users through 

aggregate query.  

Many researches have been done for Top-k query allowing random access. The earliest 

and most famous method is threshold algorithm (TA) [19]. Most TA-type algorithms 

suppose that the data support random access and sequential access at the same time, and 

the aggregate function is monotone function. Meanwhile, some works have studied query 

under non-monotone function situation [20-21]. In literature [22], the author proposed a 

unified framework of the current TA-type algorithms, and put forward a query algorithm 

of supporting random access database. 

Under the situation where only sequential access is allowed, Guntzer et al. [13] 

proposed Stream-Combine algorithm. Meanwhile, Fagin [19] put forward no random 

access (NRA) algorithm. Stream-Combine algorithm only considers the upper limit of all 

objects and it can determine whether the object belongs to Top-k only under the situation 

where all attributes of one object are visited. In this sense, NRA algorithm is better than 

Stream-Combine algorithm. Theobald et al. [23] proposed a series of probability 

algorithms based on NRA algorithm to solve approximate Top-k. Mamoulis et al. [24] put 

forward a novel LARA algorithm based on “lattice” structure by studying algorithm 

behaviors. From the aspect of operation time cost, the query speed of LARA algorithm is 

obviously higher than that of NRA. However, it has no obvious advantages in visiting 

cost when compared with NRA. Gursky [25] proposed a group of 3-Phase NRA 

algorithms which improved the query time by utilizing heuristic optimization.  

During aggregate Top-k query, some databases do not support random access or 

random access should be avoided as far as possible due to the high cost [19]. For instance, 

typical search engines cannot directly gain the score of relevancy between the search term 

and a certain text through random access when users enter the term. For another example, 

if the attribute list is the intermediate result gained via other operation or entered in data 

flow form, random access is unpractical. Under some situations, the cost of random 

access is greatly higher than that of sequential access. In literature [26], the author 

discussed why the cost of random access was higher than the cost of sequential access in 

many applications. By directing at kNNT, if random access is conducted for the distance 

from a certain query point to a given track, then the point sequence of the track should be 

searched in the database and the projection of this query point in the track must be 

determined by frequently calculating the distance between two points. The visiting cost of 

such operation in database based on R-tree index is too high. If the distance between two 

points is calculated by adopting road network distance, the calculation cost will be 

increased. Therefore, random access is almost impossible.  

 

5. Parallel TA Algorithm 

In order to solve the mass data of historical tracks in kNNT, this paper proposes a 

parallel TA algorithm on the basis of TA algorithm by fully utilizing the parallelism of 

data processing.  

In previous studies on centralized multimedia database, researchers often transfer 

middleware realization issue into top-k query issue and complete middleware system 
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design by studying top-k query algorithm. In such top-k query issue transferred from 

middleware system, the system supports sequential access and random access at the same 

time. A famous centralized multimedia database is Garlic system of IBM Company. Fagin 

et al. designed a middleware module for Galic system on the basis of threshold algorithm 

(TA), and verified the correctness and case optimality of TA algorithm.  

In order to process top-k query of mass data by utilizing cluster system, the problem of 

data partitioning should be solved at first. For a data space DB composed of m n-tuple 

lists, there are two partitioning methods: list partitioning and ID partitioning.  

1. List partitioning. The whole data space is partitioned by setting list as the unit. The 

list space is partitioned into several subspaces that do not intersect with each other. Each 

subspace contains a list subset.  

2. ID partitioning. The whole data space is partitioned by setting tuple ID as the unit. 

The object ID set is partitioned into several subsets that do not intersect with each other. 

Each subspace contains all attributes of ID subset.  

The above two partitioning methods have advantages and disadvantages in partitioning 

cost and partitioning effect. In terms of list partitioning, attributes of the object are saved 

according to list. Therefore, we just need to move all lists in the global space into the 

subspace and the partitioning cost is low. On the other hand, number of lists processed by 

top-k query is limited in practical application. The partitioning quantity is small, so the 

degree of parallelism is low. Meanwhile, list partitioning will separate the connection 

among different attributes of the object, and different attributes of the same object will be 

inevitably in different subspaces after partitioning. When parallel algorithm maps the 

subspace to the actual processor set, these attributes will be scattered in the storage space 

of various processors. A large amount of cluster communication should be introduced 

when the aggregate score of the object is calculated. As a result, the speed-up ratio of the 

calculation process is low and the system efficiency is not high. Therefore, top-k query 

research aimed at vertical partitioning is often based on coarse-grained task level 

parallelization, and the existing distributed algorithms can be used as references.  

For ID partitioning, ID set of the object should be decomposed at first and then all lists 

should be scanned according to subsets after ID decomposition. Thus the cost is high. 

However, after decomposition is completed, number of objects n is often higher than 

number of lists by several orders of magnitudes. The higher the n value is, the finer the 

partitioning of the global space will be. It is beneficial to follow-up data mapping and the 

data after partitioning possess good parallelism. Meanwhile, ID partitioning will not 

separate attributes of the object and all attributes of the same object are located in the 

same subspace. When parallel algorithm maps the subspace to the actual processor set, 

these attributes will be allocated to the same processor storage space (stored in different 

lists). Only local calculation is required when the aggregate score of the object is 

calculated. There is no need to introduce cluster communication and the algorithm 

supports asynchronous processing, so the communication cost is low. Therefore, ID 

partitioning mode of data is beneficial to parallel algorithm design based on message 

passing model. 

In view of the advantages and disadvantages of the above two partitioning methods, 

data processing of list partitioning is applicable to coarse-grained parallel development 

and data processing of ID partitioning is suitable for fine-grained parallel development. 

There have already been relatively mature distributed algorithms aimed at list 

partitioning, so our study is mainly conducted by directing at parallel processing of data 

after ID partitioning.  

ID partitioning method divides big data space into a series of data subspaces that do not 

intersect with each other. The global data space is recorded as DB. If the cluster system 

has p processors  and the subspace composed of data allocated to the 
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processor Pi is recorded as , then DB =  and , 

(i ). 

Ak is set as top-k set in the global data space DB and  recorded as local top-k 

set in the data subspace , thus  and , (i ). 

In order to solve top-k set of the global space, division method can be used to 

concurrently solve local top-k set in each subspace via each processor. Then the global 

top-k set can be solved by integrating local top-k sets of subspaces.  

We have designed a top-k parallel TA algorithm in distributed storage structure 

according to the above steps. The execution flow of parallel TA algorithm is as follows. 

For p processors, each processor carries out sequential access for m lists in the subspace 

by way of round-robin. Once the new object o is read, all attribute sores pi(o) (1 ≤ i ≤ m) 

of this tuple will be gained through m−1 random accesses, and the aggregate value F(o) = 

F(p1(o),…,pm(o)) of object o should be calculated. Each processor maintains its own 

candidate set , so as to record k objects with maximum aggregate value in the 

subspace. The minimum aggregate value  of candidate set in the subspace and 

threshold value  in the subspace are calculated. When the minimum aggregate value 

 of candidate set in the subspace is greater than the threshold value  of list in 

the subspace, all processors will send local Top-k set  in the subspace to P1 

processor. P1 processor will output k objects with the maximum aggregate value among 

p∗k objects collected according to aggregate value sorting as Top-k set of the whole 

space.  

Formal description of the algorithm is given in the following.  

Input: DB composed of m sorted lists, and p processors 

Output: Top-k set in DB 

1. Allocate DB to the storage space of p processors via ID division method.  

2. For (all Pi，where 1 i p)do 

Conduct sequential access for each list in the subspace.  

Calculate the aggregate value F(o) of each new object o. 

Record the existing k objects with the maximum aggregate value in the subspace with 

candidate set ; if number of objects in the candidate set is smaller than k, return to 

step 1.  

Calculate the minimum lower limit  of candidate set , = min{F (t) 

: t∈ }.  

Calculate the threshold value  in the list. 

Compare the minimum lower limit  and threshold value ; if < 

, return to step 1. 

3. Root processor collect and sort the p ∗ m objects, and output k objects with 

maximum aggregate score.  

 

6. Experimental Analysis 

Experimental environment adopted by algorithm of this paper is IBM HPC calculation 

platform including 2 IBM X3650M3 management nodes, 28 two-way 8-core IBM 

BladeCenter HS22 blade servers, and 4 IBM X3550M3 rack servers that constitute 32 

calculation nodes. All calculation nodes and management nodes are connected through a 

set of 40GB QDR Infiniband network switch, to operate Red Hat Enterprise Linux 5.5 

and Apache Hadoop-0.21.  

The algorithm is realized through C++ and contrast experiment is made in real data set. 

The data set comes from data of restaurants on Dianping.com (captured from 

Dianping.com). Dianping.com is the largest consumption guidance and comment website 

in China at present. Data set used in this experiment includes evaluation data related to 

the restaurants. Such data include 80,000 restaurants and cover 50 Chinese cities. Each 
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restaurant has the following 6 attributes: star level (based on users’ comments), price, 

number of users’ comments, taste, environment and service. The data formula 

 is normalized.  

(1) Multiple common aggregate functions are tested in the experiment: average number 

(ave), weighted average (wav), sum of squares (squ), and exponential sum (exp). Figure 

2(a) tests the visiting cost of the four aggregate functions in test data set. When k value 

increases gradually, visiting cost of the algorithm rises. Generally speaking, algorithm of 

this paper has relatively small visiting cost for all aggregate functions.  

(2) Figure 2(b) tests the influences of the four different aggregate functions on the 

operation time under different k values. Parallel algorithm and random access proposed in 

this paper have very obvious advantages, and the consumption of cpu time can meet the 

requirements of practical application.  
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Figure 2. The Influence of Different Aggregate Functions on Access Cost and 

Running Time 

 

7. Conclusion  

In recent years, with the wide application of positioning devices in mobile terminals 

and extensive development of location-based service and mobile social networks, mass 

track data are accumulated day by day. Thus a great challenge is raised for management 

and utilization of mass track data. On the premise of organizing the current situations 

about track query studies, by combining with the existing literature thoughts, this paper 

converts the issue of nearest neighbor track retrieval into the issue of aggregate Top-k 

query. An efficient algorithm of parallel TA aggregate Top-k query is proposed, and high 

efficiency and validity of this algorithm are verified in real data set.  
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