
International Journal of Database Theory and Application

Vol.9, No.3 (2016), pp.123-136

http://dx.doi.org/10.14257/ijdta.2016.9.3.14

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

A System Performance Estimation Model for Cassandra

Database

Bo-Qian Wang
1
, Qi Yu

1
, Xin Liu

1
, Li Shen

1
 and Zhi-ying Wang

1
,

1
National University of Defense Technology, Changsha, Hunan

wangboqian_vip@163.com

Abstract

Cassandra database system is one of the universal databases. To achieve high

performance, we should allocate memory space rationally according to actual demands.

Otherwise, it will influence reading and writing performance. Actually, we always

allocate memory space according to experience and repeated attempts which usually

won’t give us the best answer. To solve this problem, firstly we analyze the reading and

writing processing of the Cassandra database and find out the corresponding memory

space which will influence system performance. Secondly, we build up a relationship

model between system performance and memory allocation and name it as The Memory

Model of Reading and Writing Performance. We have already applied the relationship

model to real database servers to guide memory allocation and performance evaluation.

Simulation results show that this memory model could well describe the quantization

relationship of memory space and system performance.

Keywords: Cassandra database, Performance, Model, Quantization

1. Introduction

Cassandra database system is a typically distribute NoSQL database system which

developed by the Facebook. It is based on Dynamo and column storage method of Google

BigTable, so that we can also call it Dynamo2.0. Nowadays it is one of the top projects of

Apache and listed in the Top10 of the most popular database system. Because of the

fascinating scalability, it is accepted by many famous Web2.0 websites such as Digg and

Twitter [5-6].

Cassandra database mainly use the key-value model for the data storage, the Memtable

data structure for the memory storage and the SStable data structure for the disk storage

[7]. In this article, we firstly find out the main factors and their corresponding parameters

configuration which directly affect the reading and writing performance of the database

system. Secondly, we initially establish a quantitative model of memory allocation and

reading and writing performance respectively. Finally we improve this model and build

up a more practically one according to the hardware condition and user demands. Test

results show that this model can accurately reflect the relationship between memory

configuration and system performance and help us to allocate the memory space more

reasonably.

2. Process Analysis of Cassandra Database

This part will describe the reading and writing process of Cassandra database system in

details. By this way, we can find out the factors and configuration parameters related to

the reading and writing performance in memory space.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

124 Copyright ⓒ 2016 SERSC

2.1. Analysis of Data Process

Cassandra database response to the users’ data requests by listening port 2160. After

receiving users’ data requests, the database system will create a new thread from the

thread pool to deal with this request. Then Cassandra will make sure of the server which

the data should be stored in and sent the data request to this server by port 7000. Finally

the reading and writing process will be executed in the server. This article will mainly

discuss the running mechanism in a single server. In the end we will build up a memory

allocation model to solve the problem of memory allocation in the practical application

process. The finally test indicates that this model can improve the whole performance of

servers.

2.2. Analysis of Writing Process

The response to the writing request of Cassandra database is shown in Figure 2.

Key_value

Memtable
Key(CF,CF,CF)

Key(CF,CF,CF)

...

disk

SStable
SStable

...

log
log
..

log

Wre

Figure 2. The Process of Writing Request

In the writing process, Firstly user’s operation will be recorded in the log file to make

sure that all the system record can be restored after unknown power off. Secondly, all the

data written in will be recorded as key-value structure and then writing in the Memtable

data structure in the JVM heap. The data that in the same column family will be stored in

the same Memtable data structure. After the Memtable reaches a certain limit which we

can set by modifying the configuration parameter, the management process will flush all

the data in this Memtable data structure into disk and stored it as SStable data structure.

Similarly, modifying requests and deleting requests is the same as the writing requests. By

adding the record that indicates a certain data is modified or removed in the Memtable

data structure, the real data will be changed or deleted when the SStable data structures

finally combined. The mechanism discussed above decreases the disk operation of

writing, modifying and deleting requests. So it promote the response throughput of user’s

requests.

We can come to the conclusion that the memory functional unit related to writing

request is JVM heap and the Memtable data structure in it.

2.3. Analysis of Reading Process

Compared to writing process, reading process is more complex. A record may be

stored respectively in Memtable or in different SStables which may keep the old or the

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 125

latest record. So as to a certain reading request, Cassandra database system must search

all the record whatever it is the old one or the latest one. All the records found before will

be emerged together to get the latest one according to the time label. The latest record will

send back to user in the final step. The process is shown in Figure 3.

Read

Memtable
Key(CF,CF,CF)

Key(CF,CF,CF)

...

Search Memory

disk

SStable
SStable

...

filter

Search Disk

filter
filter

Data Results

Results

Value

Return

Figure 3. The Process of Writing Request

In the reading process, Cassandra database system will search results in the Memtable

data structure according to the row_key value. After then, system will also search another

results in the SStable data structures. Finally, all the results will be combined in the

memory space and the latest record will be sent to the user. It has a lot of disk operation

during this process. The first disk operation finds out the certain SStable data structures

which include the key value user requests for. It has to search bloom filter file stored in

disk. The second one will read the SStable into memory according to the result gotten in

the first step [8-9]. To decrease disk operation, Cassandra database system adds

row_cache and key_cache mechanism of which the cache file will be stored in memory

space. The key_cache is a mechanism that stores the key value into memory space. So

that Cassandra database system will search the key_cache to locate the data user requests

in the first step. And if it hit in the key_cache, then the first disk operation will be

avoided. As a result, the reading process will be sped up. What is more, because that the

key value is very small, the key_cache mechanism will not take too much memory space.

Similarly, the row_cache is also a mechanism that store the final data which is often

requested into to the memory space before return it to user. If a user request hit the

row_cache, the system will immediately return the result without the two disk operations.

This mechanism will decrease the reading request to a large extent. However, because the

row_cache has to store the final results which is much larger than the key value, it will

take too much memory space.

Our test operation system is Ubuntu14.04. It has a memory optimization mechanism

named cached memory which will cache all the files that have been read from disk into

memory space or will be written into disk. By this mechanism, memory space can be

made best use of and disk access will also be decreased. Finally it will help to increase the

response throughput.

We can come to the conclusion that the memory functional unit related to reading

request is key_cache, row_cache and cached memory.

Therefore, the memory space can be divided into three part: JVM heap, Cache and the

space taken by the other system. JVM heap includes Memtable data structure and the

cache can be further divided into key_cache, row_cache and cached memory. The space

that taken by the other system is only related to the services provided by the operation

system. So we should set it as a constant in a Cassandra server. The detail information is

shown in Figure 4.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

126 Copyright ⓒ 2016 SERSC

Memtable Sys

Row_cache

Cached memory

Key_cache

Cache

Non
memtable

Java_heap

Figure 4. Memory Allocation of Cassandra Database Server

3. Method and Model

In this part will firstly discuss about the analysis of special case and make preliminary

conclusion about the relationship between different memory functional unit and system

performance. Secondly, we will respectively build up the quantitative relation model for

the reading and writing performance in the infinite memory space circumstance. In the

end, we will put forward a more practical and general model to guide the practical

application. The hardware and software circumstance is listed in Table 1.

Table 1. Hardware and Software Circumstance

 HARDWARE CIRCUMSTANCE:
1

1
CPU Intel(R) Core(TM) i7-2600 3.40GHz, four cores

2

2
L1 Cache 256KB*4,L2 Cache 1MB*4，LLC Cache 8MB*1

3

3
Memory DDR3 1600MHz

 SOFTWARE CIRCUMSTANCE:
1

1
Ubuntu Desktop 14.04, kernel version 3.13.0

2

2
Java version 1.8.0_20

3

3
Cassandra 2.1.0, YCSB 0.1.4, data access：zipfian

3.1. Preliminary Test and Analysis

At the beginning of the test, we firstly focus on the specific case to find out the basic

relationship between memory allocation and system performance. The test condition is

8GB memory, single disk and single column family. All the other parameters will keep

the default settings. The test result is shown as Figure 4.

Figure 5. Relationship between the JVM Heap and System Performance

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 127

From Figure 5 we can draw the conclusion that the size of JVM heap has a great deal

of influence on the reading and writing throughput. With the size of the JVM heap being

larger, the size of cache space will become smaller on the contrary. This makes a lower

reading throughput but a higher writing throughput. In this Figure we can clearly see that

the 1GB JVM heap size will produce the best system performance. If we set it larger, it

will make less contribution to the writing throughput but will speed up the decreasing

process of reading throughput. In contrast, it will make less contribution to the reading

throughput but will speed up the decreasing process of writing throughput.

Based on the test and analysis above, we can come to the basic conclusion that:

1. The writing throughput will increase with the size of JVM heap being larger. But

this tendency will be less obvious.

2. The reading throughput will increase with tie size of cache space being larger. But

this tendency will also be less obvious.

This simple test shows that different memory allocation strategy will influence the

system performance. So it is more important to formulate the memory allocation strategy

according to the certain request. Then, we will respectively build up the quantitative

relation model for the reading and writing performance in the infinite memory space

circumstance.

3.2. Reading and Writing Model In Infinite Memory Space

To find out the influence of cache space and JVM heap on the system performance, we

assume that the memory space of server is infinite. Under this hypothesis, we can

consider their influence separately and avoid their restricting relationship caused by the

limited memory space. We will final build up models for the reading request and writing

request respectively.

3.2.1 The Influence of Cache on the Reading Performance

In this part, we will further discuss the quantitative relationship between the size of

cache and reading throughput and build up related model.

Firstly, we try to find out the influence of key_cache and row_cache on the reading

performance. The test environment is 10GB data without redundancy. And we can

calculate the size of key_cache is about 880MB. Making sure that the size of the total

cache space is unchanged, we gradually increase the key_cache space. The result is shown

in Figure 6.

Figure 6. The Influence of Key_Cache Size on the Reading Performance

As shown in Figure 6, the increase of key_cache size will finally decrease the reading

throughput under the circumstance that the total space of cache is unchanged. The

key_cache mechanism provided by the Cassandra database will decrease the first disk

access which will locate the data user request. But at the same time, the Linux has the

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

128 Copyright ⓒ 2016 SERSC

similar function called cached memory. This conflict will result in data redundancy and

will also waste a lot of cache space which will decreases the valid data, increase the

memory miss rate and the amount of disk access and finally decrease the reading

throughput. So the key_cache mechanism should be avoided and set the corresponding

parameter as 0MB.

Similarly, row_cache mechanism caches the finally results which often accessed by

users. Although this mechanism can avoid two disk access, it is also the same as cached

memory. Compared to the key_cache mechanism, it results in much more data

redundancy which will seriously decrease the reading throughput. So the row_cache

mechanism should also be avoided.

Therefore, only cached memory should be included in the cache space. So we will test

on the cached memory below. The total amount of data is 10GB, the amount of reading is

10
5
. The test result is listed in the Table 2.

Table 2. The Relationship between Cached Memory Space and Reading

Performance

cached_mem

（GB）

Running

time（s）

Discrepancy of time

（s）

performance promotion

（s/GB）

6.5 332

5.8 371 39 56

4.8 448 77 77

4.1 491 43 61

3.1 577 86 86

Theoretically, the total running time includes two parts. One is the time that spent on

the memory data access and the other is on the disk data access. For a single data

operation, the disk process is much longer than the memory process. But the data access

matches the rule of Zipfian which is expressed as fR C (f is the frequency of data

access, R is the rank of data and C is a constant). Referring to this formula, the majority of

the data access operations happen in the memory. That is, in another word, the amount of

operations happened in the memory is much more than those in the disk. So compared to

the disk access time, the memory access time can’t be ignored, either. So the total time for

a reading request can be expressed as formula 1.

1 2
* * * *tim e o p s m em T im e f o p s d iskT im e f  (1)

2 1
1f f  and

1
f ，

2
f stand for the probability of memory access and disk access.

Ops stands for the amount of data operation. MemTime and diskTime respectively stand

for the time of a single memory access and disk access.

The number data that can be stored in the cached memory amounts to n which

equals *
m e m

n u m
d a ta

. Mem stands for the size of memory space. Data stands for the size of

data and num stands for the number of data. So
d a ta

n u m
stands for the size of a single data

and we make
d a ta

a v e
n u m

 . According to the rule of zipfian and the approximate formula,

we can get formula 2

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 129

1

2 3

ln
2 3

C C C
f C

n

C C C
C n c

n

       

        

 (2)

We also know that 0 .5 7 7 2 1 6c  in the approximating formula. What’s more, we can

make ave a constant by simplifying test environment. So the formula 1 and the reading

throughput can be finally simplified as formula 3.

* lnt im e a b m e m

o p s
th r o u g h p u t

t im e

 


 (3)

A and b stand for all the constant which include ops, memTime, ave and so on. In the

final step, we should determine the parameters a and b according to the test value shown

in Table 2. In our test environment, we make ops equal 105. We use SPSS as the data

simulation tool. The simulation result of parameter a and b is listed in the Table 3.

Table 3. SPSS Simulation Result

Not standard factor Standard factor

B Standard deviation Beta

ln(mem) -331.783 13.225 -.998

constant 957.443 20.763

From Table 3 we can get the conclusion that 9 5 7 .4 4 3a  and 3 3 1 .7 8 3b   . So the

relationship between the size of cached memory and reading throughput is expressed as

formula 4.

9 5 7 .4 4 3 3 3 1 .7 8 3 ln

1 0 0 0 0 0

9 5 7 .4 4 3 3 3 1 .7 8 3 ln

t im e m e m

th r o u g h p u t
m e m

 




 (4)

This formula can explain that the increase of cached memory space can result in the

increase of reading throughput. But the tendency of increase is less obvious. The data

access meet the zipfian distribution law which defines that the product of probability and

rank is a constant. So than more and more data will be stored in the cached memory

space. But the probability of accessing those data is getting smaller and smaller which

will influence the increase of reading throughput. If the memory space is infinite, we can

set the size of cached memory as big as possible. But in the practical environment, the

memory space is limited. So if it is set too large, it will not promote reading performance

obviously any more. And on the contrary taking too much memory space will seriously

influence writing performance.

The SPSS software can also calculate the deviation between the formula and the test

result. Deviation image is shown in Figure 7.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

130 Copyright ⓒ 2016 SERSC

Figure 7. Simulation and Test Results

In Figure 7, the curve stands for the simulation result and circles stand for test results.

From this image we can say that the simulation formula can match the test result very

well. The detail deviation data is listed in Table 4.

Table 4. Deviation Result of SPSS Simulation

R R variance Adjusted R variance
standard deviation

of estimation

.998 .995 .994 7.730

3.2.2 The Influence of JVM Heap on the Writing Performance

From the former test we can reach the conclusion that on the one hand the reading

performance of Cassandra database system will increase as the size of JVM heap being

larger. But on the other hand the tendency of the increase will slow down. We will build

up a more detailed relationship between JVM heap and the writing performance by further

tests.

Logically, the JVM heap can be divided into Memtable space and other space which

we name as Non-Memtable space. We will test those functional units separately below.

We set the size of JVM heap 2GB, the amount of data 10
7
 and the size of each data

1KB. We will finally write 10GB data and at the same time increase the size of Memtable

step by step under the premise that the total amount of JVM heap is the same. The test

result is shown in Figure 8.

Figure 8. Influence of the Size of Memtable on the Reading and Compaction

Performance

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 131

From Figure 8 it can be conclude that the reading throughput and compaction speed

increase with the size of Memtable being larger. Next, to test the influence of Non-

Memtable space we have to fix the size of a single Memtable structure to 53MB and at the

same time gradually increase the size of Non-Memtable space. The result is shown in

Figure 9.

Figure 9. Influence of the Size of Non-Memtable on the Loading, Inserting and

Compaction Performance

It is clearly shown in the Figure 9 that the Non-Memtable space have little influence on

the loading, inserting, compacting performance. So we do not need to spare too much

space to the Non-Memtable space. The size of the Non-Memtable space should be a

constant which determined by the practical test. So we should just build up the

quantitative model between the Memtable space and writing throughput.

Table 5 lists the relationship between the size of Memtable space and the time to

complete 10
6
 writing operations.

Table 5. The Relationship between Memtable Size and Time to Writing in

Memtable

size (MB)

Memtable

number
Time (s)

Deviation of

Memtable

number

Deviation of

time (s)

8.5 118 178

17 59 148 59 30

35 29 134 30 14

70 14 127 14 7

140 7 122 7 5

280 4 119 4 3

The increase of Memtable size will result in the decrease of Memtable number to

writing in the disk and finally decrease the time to write data in the disk. As we multiply

the Memtable size, the deviation of time is getting smaller. That is, in another word, the

same as we describe before that the tendency of the increase will slow down. From the

Table 5 we can also find out the proportional relationship between the deviation of

Memtable number and the deviation of time. So we can suppose that the Memtable

number and the total time is linearly related. Therefore, we assume that relationship can

be expressed as formula 5.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

132 Copyright ⓒ 2016 SERSC

*
d a ta

tim e a b
m e m

  (5)

We firstly make *a a d a ta  . In the next, we should determine the parameter 'a and

b according to the test value shown in Table 5. We use SPSS as the data simulation tool.

The simulation result of parameter 'a and b is listed in Table 6.

Table 6. SPSS Simulation Result

Not standard factor
Standard

factor

B
Standard

deviation
Beta

1 / mem 506.051 10.769 .999

（constant） 118.598 .596

From Table 6 we know that 5 0 6 .0 5 1a   , 1 1 8 .5 9 8b  .So the quantitative model of

the size of Memtable space and writing throughput can be expressed as formula 6.

5 0 6 . 0 5 1
1 1 8 . 5 9 8

1 0 0 0 0 0 0 *

5 0 6 . 0 5 1 1 1 8 . 5 9 8 *

t i m e
m e m

m e m
t h r o u g h p u t

m e m

 




 (6)

Deviation between the formula and the test result is shown in Figure 10.

Figure 10. Simulation and Test Result

In Figure 10, the curve stands for the simulation result and circles stand for test results.

From this image we can say that the simulation formula can match the test result very

well. The detail deviation data is listed in Table 7.

Table 7. Deviation Result of SPSS Simulation

R R variance
Adjusted R

variance

standard deviation

of estimation

.999 .998 .998 1.053

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 133

For the finally simulation formula we can reach the conclusion that the writing

throughput will increase with the increase of Memtable but the tendency will be less

obvious. This characteristic is the same as the result test before.

However, if the size of Memtable is too large, it will obstruct the promotion of system

performance. In another word, the size of Memtable has its own limitation to promote

system performance. The test result is listed in Table 8. We set 10
6
 writing operation,

16GB memory space and 8GB JVM heap space.

In contrast, the setting of 400MB Memtable will achieve the best performance. Firstly,

the deviation of the number of disk writing will decrease with the increase of Memtable

size. This will make the decrease of the time less obviously. Secondly, we can guess from

the characteristic listed in the Table 8 that maybe flush too much of the data into disk a

time will cause the obstruction of writing queue.

Table 8. Performance Characteristic of Different Memtable Size

Size of

Memtable

time（

s）

throughput

（ops/s）

Average

throughput(ops/s)
Characteristic

200MB

350 2857

2792

Every 20 second,

the throughput will

decrease to several

hundred or one

thousand from ten

thousand, and it

will last about 10

seconds

366 2732

359 2786

400MB

336 2976

2911

Every 40 second,

the throughput will

decrease to several

hundred or one

thousand from ten

thousand, and it

will last about 20

seconds

344 2907

351 2849

800MB

357 2801

2847

Every 70 second,

the throughput will

decrease to zero,

and it will last

about 20 seconds.

348 2874

349 2865

In this situation, it will decrease the throughput and at the same time will make users

wait for a long time.

So we test on the writing speed of the disk. The result is shown in Figure 11.

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

134 Copyright ⓒ 2016 SERSC

Figure 11. The Relationship between the Size of Data and the Writing Throughput

At first the writing speed slightly increases when the size of data become larger. But

when the size of data is between 400MB and 800MB, the writing speed sharply decreases.

Finally the speed stabilizes at a low value. This result could well explain the characteristic

listed in the table 8. We could conclude that the obstruction of writing queue finally

results in the decrease of writing throughput and writing obstruction. When the amount of

data flushed into disk a time reaches the limitation, it will seriously influence the writing

performance and make the next writing operation more clogged.

So as to the formula 6, the parameter of mem should have its own limitation which is

related to the disk writing performance. When the limitation is exceeded, the formula

could not be applied anymore and will also make the writing throughput fluctuate and

decrease.

4. Memory Allocation Model in Practical Condition
A column family corresponds to a sole Memtable structure. So the number of column

family equals to the number of Memtable structure. When the Memtable structure reaches

the limitation, it will be put into the disk flush queue and finally flushed into the disk

synchronously or asynchronously. The maximum number of the threads that operate the

disk writing process could be set as the number of disks.

Just as we discuss before, we could set the limitation of the number of data that will not

occur the decrease of disk performance as maxwrite. In each server the average number of

column family is set as ncf. According to the characteristic of server and application, we

can set the Non-Memtable space a constant namely memnon_memtable. The former formulas

and the memory allocation can be summed up as formula 7.

1 1

2 2

_

*

*

* ln

w r ite m e m ta b le

w r ite

m e m ta b le

re a d

re a d

c a c h e d

to ta l m e m ta b le n o n m e m ta b le c a c h e sy s

o p s m e m
th r o u g h p u t

a m e m b

o p s
th r o u g h p u t

a b m e m

m e m m e m m e m m e m m e m







   

 (7)

The opswrite and opsread separately stand for the number of reading and writing

operation. The a1、b1、a2、b2 are the parameters that can be determined by the SPSS

simulation. The memcached stands for the space of cached memory space and memmemtable

stands for the space of Memtable space. The memsys is a constant which is related to the

system and the other applications running on it.

If the Memory space is infinite, to reach the best writing performance, we must

set * m a x
m e m ta b le c f w r ite

m e m n and memnon_memtable、memsys to be constant. The other

space could be used as memcached to realize a better reading performance. But in practical

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 135

condition, the memory space is limited. If we allocate the memory space according to the

method above, the Memtable structure will take too much space that will in turn influence

the reading performance. Besides the memnon_memtable and memsys which could be set to be

constant, the remaining memory space could be expressed as
to ta l

m em  and

to ta l m em ta b le ca ch e
m em m em m em   . So the formula 7 could be expressed as formula 8.

And the size of memmemtable has the limitation of * m a x
c f w r ite

n .

1 1

2 2

*

*

* ln

w rite m e m ta b le

w r ite

m e m ta b le

re a d

re a d

c a c h e d

to ta l m e m ta b le c a c h e

o p s m e m
th r o u g h p u t

a m e m b

o p s
th r o u g h p u t

a b m e m

m e m m e m m e m







  

 (8)

Assume that we have to meet the need of reading and writing performance which we

set as readmax and writemax as far as possible. Then we need to trade off the allocation of

memory space. Firstly we need to assign a weight to the importance of reading and

writing performance which we can express as rateread and ratewrite. The final quantitative

performance could be expressed as formula 9.

m a x m a x

* *
re a d w r ite

re a d w ir te

th ro u g h p u t th ro u g h p u t
P e r f ra te ra te

re a d w r ite
  (9)

Secondly, we could reach the best performance in the range of valid data according to

formula 8 and formula 9.

5. Conclusions

In this article, firstly we find out the certain functional units of memory space that will

influence the system reading and writing performance according to the analysis of

Cassandra database operation process. Secondly, build up the quantitative model of the

relationship between the size of memory space and the reading and writing throughput in

the condition that the memory space is infinite. We can conclude from the Figure and data

result of deviation that this model could simulate the system performance very well.

Finally we improve the model by applying it in the practical condition. This quantitative

relationship model could help us to find out a best solution according to the actual

demand.

References

[1] M. Ferdman, A. Adileh and O. Kocberber, “Clearing the clouds: a study of emerging scale-out

workloads on modern hardware”, ACM SIGARCH Computer Architecture News, vol. 40, no. 1, (2012),

pp. 37-48.

[2] P. L. Kamran, B. Grot and M. Ferdman, “Scale-out processors”, ACM SIGARCH Computer

Architecture News. IEEE Computer Society, vol. 40, no. 3, (2012), pp. 500-511.

[3] First the tick, now the tock: Next generation Intel microarchitecture (Nehalem). White Paper, (2008).

[4] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. G. Villamor, V. M. Mulero and S. Mankowskii, “Solving Big

Data Challenges for Enterprise Application Performance Management,” PVLDB, (2012).

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,” in SOSP, (2007).

[6] R. Cartell, “Scalable SQL and NoSQL data stores,” SIGMOD Record, (2010).

[7] T. Nguyen and M. H. Nguyen, “Zing Database: high-performance key-value store for large-scale storage

service”, Vietnam Journal of Computer Science, (2014).

[8] “The Apache Cassandra Project”, http://cassandra.apache.org/.

[9] C. Chen and M. Hsiao, “Bigtable: A distributed storage system for structured data”, Proceedings of

Osdi’, vol. 26, no. 2, (2006), pp. 205-218.

http://cassandra.apache.org/

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

136 Copyright ⓒ 2016 SERSC

Author

Boqian Wang, born in 1990, graduated student, major in

computer science and technology. Main research area is computer

architecture and big data application, especially in Cassandra

database.

