
International Journal of Database Theory and Application

Vol.9, No.3 (2016), pp.107-112

http://dx.doi.org/10.14257/ijdta.2016.9.3.12

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Multi-Tenant Data Storage Model and Performance Evaluation

Dun Li
*
, Zhenfei Wang, Zhiyun Zheng

*
 and Jin Zhao

School of Information Engineering, Zhengzhou University, Zhengzhou, China

llidun@163.com

Abstract

Multi-tenant data storage model has multiple solutions and comparing the different

storage solutions can help users improve their work efficiency. This paper proposes a

query performance evaluation method based on the relational algebra. First of all, we

introduce three wide table models. Secondly, we unite the format of tenant query SQL

statement by analyzing structure of storage model, replace the unified format SQL with

the relational algebra and evaluate the I/O cost of SQL query using relational algebra.

Finally, through theoretical calculations and experimental simulations, we evaluate the

performance of multi-tenant storage model according to query performance. The results

show our evaluation method based on relational algebra provides new perspective for the

study of performance evaluation in multi-tenant data model.

Keywords: Performance Evaluation; wide table; Relational algebra; View Definition

1. Introduction

In order to evaluate the multi-tenant storage performance, there are several solutions to

match the tenants’ customized demands and get efficiency. Space utilization can be

compared through data intensity [1], and query efficiency can be compared by query costs

obtaining form experiments using data modeling [2]. The comparison results from

experiments are usually different because of the factors such as experimental design and

the hardware environment. How to exclude these factors and compare merits essentially

among different levels of storage solutions in query efficiency is the main emphasis in

this paper.

In this paper, a query performance evaluation method based on relational algebra is

presented through the study of three wide table storage models. Firstly, we establish

memory and buffer of the view definition generation to reduce the consumption of

additional data reorganization operations, then use query rewriting method based on the

view definition replacement to unify and standardize data query methods and convert the

SQL statements into syntax tree of relational algebra. After that, take advantage of

relational algebra evaluation algorithm in the I/O cost to estimate the performance of

multi-tenant query SQL statements. Finally, the results from qualitative analysis and

experimental comparisons of query performance in different storage models could

provide some reference value for multi-tenant data performance evaluation.

2. Multi-Tenant Wide Table Data Storage Model

Wide table storage model is one of the effective multi-tenant storage solutions because

of the good performances in reducing storing cost. It is the classic representation in

sharing-database-sharing-infrastructure storage. Based on the classic wide table model,

there are multi improvements, such as multi wide table and multi extension table.

http://dict.cn/representation
http://dict.cn/infrastructure

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

108 Copyright ⓒ 2016 SERSC

2.1 Wide Table

The wide table came from the relational research of common relation databases by

David Maier and Jeffrey Ullman [3]. The storage model of wide table is pure multi-

tenants data model, is also the classic representative of sharing database and sharing data

storage infrastructure. In the wide table, tenants’ data in different patterns are stored in a

big table where the type of every column is VARCHAR compatible with all kinds of data

type. Since different tenants have different data model, the big table has many columns

such as the 500-column table of Salesforce.com [4-5]. The number of the tables doesn’t

change with the tenants scale for saving database space.

The wide table model includes MetaData table and SparseDataTable. MetaData table

stores Meta data, which described the tenants’ data in the wide table. The Meta data

provides support for query rewriting of tenant data. SparseDataTable is a wide table

storing the tenants’ entity data. Except the necessary tenant’s identifier Tenantid and

database identifier TableName, other columns are used to store entity data.

2.2 Multi Wide Table

In the data storage of multi wide table, multi wide tables with different columns replace

the single wide table in wide table model to store the tenants’ business data, and build up

the Meta data to store the tenants’ customized information [6]. The multi wide table

model includes:

(1) SparseDataTable1 to SparseDataTableN has different columns.

(2) MetaSparseData stores the basic information of these wide tables including the

table name, the column number and so on.

(3) MetaData table append SparseTable for mapping the real storage position of tenants

data, that is, which wide table do the tenants’ data store.

2.3 Multi Extension Table

In the data storage model of multi extension table, multi extension tables with basic

table replace the single wide table in wide table model to store the tenants’ business data,

and build up the Meta data to store the tenants’ customized information [7]. The multi

extension table model includes:

(1) BasicTable has fixed columns, storing the basic customized information of the

tenants to match their customized demand in initial stage.

(2) ExtensionTable1 to ExtensionTableN has different columns

(3) MetaExtensionTable stores the Meta data of these extension tables, including the

table name and the column number.

(4) MetaData table append ExtensionTable for indicating the extension table storing

tenants’ customized information.

3. SQL to Relational Algebra

3.1 View Definition

View definition is SQL definition customized by tenants. Simpler than dynamic SQL,

it has better readability and further optimization. However, it will be same to the separate

table if every tenant creates views for every table. No defining a real view, view definition

stores the SQL statements into databases as the SQL string of tenants’ reforming data. It

avoids the fault of view definition and meets the demand of reforming logical data.

Let the view SQL be

Select [columnList] from [tableList] where [condition]

Where columnList is the column of logical table, tableList is a link table for reforming

the logical table, condition is choosing condition, tenanted and tableid are the identifiers

http://dict.cn/infrastructure
http://dict.cn/pattern
http://dict.cn/compatible
http://dict.cn/initial%20stage

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 109

of tenant and logical table respectively. The spelling string algorithm of view SQL is

following:

Query the Meta data to get columnList as follows:

<t1.>column1 as realName1, …, <tN.> columnN as realNameN

columnN is the real column name，realNameN is the column name in logical table, N

is the column number in logical table. tN is the alias name of logical table, <> is optional

according to different models.

Determine the link table’s tableList as follows:

t<leftouterjoin t1 on t.tenantid=t1.tenantid and t.tableid=t1.tableid and t1.column='

realName1'…leftouterjoin tN on …>

Leftouterjoin times are different, range from 0 to N, and the link times is lower to 3 in

horizontal storage model.

Determine the tenants’ information as follows:

t.tenantid=' tenantid' and t.tableid='tableid'

3.2 The Basic SQL in Relational Algebra

In the relational model, relational algebra is the classic processing query language. The

basic SQL in relational algebra are following:

(1) Select: represented by σ.

(2) Project: represented by π.

(3) Join: a dual operation represented by ⋈. The join operation of R and S is marked as

R⋈S.

Creating the relational algebra syntax tree of view SQL is the first step in tenants’

query; the next step is to obtain the query data tenants needed from the view definition.

The corresponding relational algebra syntax trees are following in Figure 1 and 2.

Figure 1. Relational Algebra Syntax

sqlView

http://dict.cn/dual%20operation

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

110 Copyright ⓒ 2016 SERSC

Figure 2. Optimized Relational Algebra Syntax Tree

4. Relational Algebra Evaluation on Disk I/O Cost

Since the time cost on disk access is much more than on the data, in other words, the

time cost on data access from disk in much more than from memory, the block access

(disk I/O access) is the approximative value of time cost which algorithm needed. At the

same time, the cost of storing results relies on the results’ scale unrelated to the operation.

In most cases, the results print or display in the browsers and the output cost is close to 0

or relies on the application. In the paper, we suppose that all relation operations are on the

disk and the result operations are in the memory.

The disk I/O number, as the measure criteria for relational algebra operation, is the cost

of every operation and then we compare them on time cost. The parameters are: B(R) is

the block number of tuples in relation R; T(R) is the tuple number in R; V(R, a) is the

number of different values corresponding to attribute a in R. The disk I/O costs are:

(1) Project: the cost is executing table scanning or index scanning once if R is on the

disk. If R is agglomerative, the cost is B; otherwise is T.

(2) Select: select operation is intended to decrease the number of tuples. The simplest

select is T(R)/V(R, a), if an attribute is equal to a constant and we know or could estimate

the attribute value different values. If select is multiple equivalent AND, the result would

be concatenation connection of multiple connections that every connection inspect one

condition.

(3) Join: is complicated and we analyze it as follows:

Suppose the conventional join of two relations involved the two attributes, R(X, Y)

join to S(X,Y), where Y is a single attribute, X and Z are any attribute set. Thinking the

relation between R and Y in S:

(a) If two relations have disjoint Y-value set, join is a null set and T(R⋈S)=0.

(b) If Y is the primary key in S and the external key in R, every tuple in R join to one

tuple in S and T(R⋈S)=T(R).

(c) If almost all tuples in R and Shave same Y-value, T (R⋈S)=T(R)T(S).

Aim at the most common situation, we make two supposes:

Including the value set. If Y is one attribute in multi relations, every relation selects the

values from the fixed list y1, y2, … and obtain all values in front part. Therefore, every Y

t1 t2

http://dict.cn/approximative%20value
http://dict.cn/criteria%20for%20measuring%20objective%20achievement
http://dict.cn/agglomerative
http://dict.cn/estimate
http://dict.cn/equivalent
http://dict.cn/natural%20join

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

Copyright ⓒ 2016 SERSC 111

in R would be Y-value in S if two relations, R and S, have Y-attribute and V(R, Y) <V(S,

Y).

Preserving the value set. If R joins to another relation, A which is not the join attribute

could not lost value in its potential value set. If A is one attribute in R and not in S, V

(R⋈S, A) =V(R, A) would be true.

Suppose r is one tuple in R, s is one tuple in S and V(R, Y)>V(S, Y), Y-value in s

would be in R and the same Y-value probability in r and s is 1/V(R, Y). Otherwise, if

V(R, Y) <V(S, Y) Y-value in r would be in S and the same Y-value probability in r and s

is 1/V(S, Y). Therefore, T (R⋈S) =T(R) T(S)/max (V(R, Y), V (S，Y)).

If Y includes more than one attribute in join R(X, Y) ⋈S(Y, Z), R⋈S equals to

multiple T(R) to T(S). For the public attribute y in every R and S, it is come from dividing

the larger value in V(R, y) and V(S, y).

5. Evaluation and Experiment Analysis

In order to verify the justification and rationality of three wide table models in the

paper, we do the qualitative analysis and compare the experiment results to evaluate query

performance.

5.1 Qualitative Analysis

In order to evaluate for different view model, we set some parameters: R is the relation

in wide table, S is the relation in multi wide table, U is the relation in multi extended

table, W is the relation of extended tables in multi extended table, T(R) is the tuple

number in R, V(R,a) is the number of different values to attribute a in R. P’’ is the view

query performance in wide table model, P’ is in multi wide table model, P is in multi

extended table model. We define three query performances as follows:

) (1)

 (2)

 (3)

T(R) is the sum of all tuples in S, tenantid and tablename are the sum of all tenants and

tables in S respectively, and it is obtained that P’>P”.

Tenants in multi extended table model is less than in extended table model,

corresponding private tables is less that tenants in extended table model, rowed is the

maximal identifier of tuple in relations that is the corresponding tuple number to the

largest-record table in relation. Suppose record number in W in multi extended table

model is same to in S in multi wide table model, which is larger in P and P’ depend on the

formula (4):

 (4)

If I>1 then P’>P, it is shown that the query performance of multi wide table model is

better than that of multi extended table model.

If I<1 then P>P’, it is shown that the query performance of multi extended table model

is better than that of multi wide table model.

If I=1 then P=P’, it is shown that they are same.

5.2 Quantitative Evaluation

We generated business data according to TPC-W standard of simulation data

generation, experiment data with 100 columns and 30000 records are stored in three

different storage data models respectively. We do some experiments to analysis the query

performance of their view definition and compare their evaluation values and real query

cost. Figure 3 is the performance evaluation of three multi-tenant data storage model. It is

shown that the query performance of wide table model is worst and evaluation value is

highest, the query performance of multi wide table model is best and evaluation value is

International Journal of Database Theory and Application

Vol.9, No.3 (2016)

112 Copyright ⓒ 2016 SERSC

lowest, the query performance and evaluation value of multi extended table model are

both middle.

Figure 3. The Value of Performance Evaluation vs Real Value

Through the experiments, it is obvious that evaluation values are higher than real

values because the database chooses the lowest-cost plan from multi execution plans

while evaluation values in the experiments aren’t optimized. However, the query of

evaluation values and real values are synchronous, it is shown that the evaluation values

can’t evaluate the query performance of one tenant exactly but has some reference value

for performance comparison and analysis of multi-tenant data model.

6. Summary

Multi-tenant data storage model has many solutions and the comparison of different

solutions could help users increase of their efficiency. The paper proposed a new method

of query performance evaluation based on relational algebra. Firstly, we introduced three

wide table data storage models. Secondly, we analyzed the structure of storage model,

replaced the unified SQL with relational algebra to evaluate the I/O cost of SQL query

statements. At last, we did theoretical calculation and experiment simulation, and the

results showed that the evaluation based on relational algebra provided a new way for

performance evaluation of multi-tenant data storage model.

References

[1] S. Berchtold, D. A. Keim and H. P. Kriegel, “The X-tree: An index structure for high-dimensional data”,

Readings in multimedia computing and networking, vol. 451, (2001).

[2] S. Wouw, J. Viña and A. Iosup, “An Empirical Performance Evaluation of Distributed SQL Query

Engines”, Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering.

ACM, Austin, USA, (2015).

[3] D. Maier and J. D. Ullman, “Maximal objects and the semantics of universal relation databases”, ACM

Transactions on Database Systems, ACM, vol. 1, (1983).

[4] C. D. Weissman and S. Bobrowski, “The design of the force.com multitenant internet application

development platform”, SIGMOD Conference, Rhode Island, USA, (2009).

[5] E. Chu, J. Beckmann and J. Naughton, “The case for a wide-table approach to manage sparse relational

data sets”, Proceedings of the 2007 ACM SIGMOD international conference on Management of data,

Beijing, China, (2007).

[6] W. L. Chen, S. D. Zhang and L. N. Kong, “A multiple sparse tables approach for multi-tenant data

storage in SaaS”, The International Conference on Industrial and Information Systems, Karnataka, India,

(2010).

[7] H. Koziolek, “The SPOSAD architectural style for multi-tenant software applications”, 2011 9th

Working IEEE/IFIP Conference on Software Architecture. (2011) June 20–24; Boulder, USA.

