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Abstract 

High-dimensional data with many features present a significant challenge to current 

clustering algorithms. Sparsity, noise, and correlation of features are common properties 

of high-dimensional data. Another essential aspect is that clusters in such data often exist 

in various subspaces. Ensemble clustering is emerging as a leading technique for 

improving robustness, stability, and accuracy of high-dimensional data clusterings. In 

this paper, we propose FastMap projection for generating subspace component data sets 

from high-dimensional data. By using component data sets, we create component 

clusterings and provides a new objective function that ensembles them by maximizing the 

average similarity between component clusterings and final clustering. Compared with 

the random sampling and random projection methods, the component clusterings by 

FastMap projection showed high average clustering accuracy without sacrificing 

clustering diversity in synthetic data analysis. We conducted a series of experiments on 

real-world data sets from microarray, text, and image domains employing three subspace 

component data generation methods, three consensus functions, and a proposed objective 

function for ensemble clustering. The experiment results consistently demonstrated that 

the FastMap projection method with the proposed objection function provided the best 

ensemble clustering results for all data sets. 
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1. Introduction 

The emergence of new application domains results in very high-dimensional 

big data that is a big challenge in cluster analysis [1-4]. Sparsity, noise, correlation 

and informativeness of features are basic properties of high-dimensional data in 

real applications. Another prominent aspect is that clusters in such data usually 

exist in various subspaces. To effectively cluster high-dimensional data, 

researchers have proposed different clustering methods, including subspace 

clustering methods [5-8]. However, most algorithms lack in good clustering 

performance [9]. The ensemble clustering methods are guaranteeing to solve this 

problem. 

Ensemble clustering is an emerging clustering procedure that combines 

multiple clusterings produced from samples of a given data set into a single 

clustering with a result which is usually much better than the results of individual 

clusterings on the data set [10-11]. Ensemble clustering is more useful in 
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clustering high-dimensional complex data than the clustering methods that provide 

single clustering results. However, the clustering ensemble created from a high-

dimensional data set is more stable and usually more accurate than any of the 

individual component clusterings. Due to this advantage, ensemble clustering 

becomes attractive in clustering high-dimensional data such as text, microarray, 

and image data [9, 12]. 

Given a data set, the process of ensemble clustering is performed in two stages, 

producing a set of individual component clusterings from the data set and 

combining the component clusterings into a clustering ensemble. The quality of 

the final clustering ensemble is determined by the methods to carry out these two 

steps. Different methods result in different ensemble clustering algorithms. 

When generating component clusterings, the efforts are mainly concentrated on 

increasing the diversity of the component clusterings [13]. This is generally 

achieved in three ways [14]. The first one involves using one clustering algorithm 

with varying parameter settings [15]. The second approach is to use various 

clustering algorithms to cluster the same data set to produce different clusterings 

[16]. Finally, the third approach suggests to sample the given data set to form 

different component data sets and use a clustering algorithm to cluster them and 

produce component clusterings [10]. The ensemble clustering is created by 

utilizing an ensemble function to combine multiple component clusterings into 

one final clustering. In this step, three consensus functions including the direct 

method, the feature-based method [17], the graph-based approach [10], and one 

objective function are used. However, these consensus functions are not suitable 

for noisy and large data. The main objective of integration is to produce a 

clustering ensemble with a higher accuracy than the accuracies of the individual 

component clusterings. 

Recently, two methods for generating low-dimensional component data have 

been used to resolve the problem of ensemble clustering of high-dimensional data. 

One is to randomly sample distinct subsets of features to generate subspace 

component data sets [10, 17]. The other is to project the given high-dimensional 

data into low-dimensional component data sets by randomly generated projection 

matrices [18]. The main benefit of these methods is that they can generate diverse 

component clusterings. A serious lapse is that low-dimensional component data 

sets firmly deviate from the original data set, which leads to a strong difference in 

the clustering structures between the component data sets and the original data. As 

an outcome, the quality of component clusterings is significantly reduced. 

This paper is a revised and expanded version of a paper entitled Ensemble 

Clustering of High Dimensional Data with FastMap Projection presented at 

Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD, 

2014, Taiwan [2]. In this paper, we present a new ensemble clustering technique 

to improve the results. We describe a new low-dimensional component data 

generation method by FastMap [1], an algorithm that is used to generate a low-

dimensional transformation of high-dimensional data. Given a distance matrix of 

N objects, FastMap uses the well known Cosine Law to compute the coordinates 

of the N objects that are projected to the line of two pivot objects selected from the 

data set. By removing the distance component from the newly generated 

dimension, a new set of coordinates is computed. This process repeats until the k-

dimensional representation of the N objects is obtained. The advantage of FastMap 

projection in comparison with random sampling and random projection is that it 
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can better preserve the clustering structure of the original data in its generated 

component data sets. We generate multiple component data sets and apply the 

well-known k-means algorithm to generate the component clusterings. We use a 

new objective function to ensemble the multiple component clusterings into a 

single clustering by maximizing the average similarity between component 

clusterings and the clustering ensemble. 

We have conducted a series of experiments on both synthetic and real data to 

evaluate the FastMap projection in ensemble clustering from different perspectives. 

We compared the results of ensemble clusterings produced with random sampling, 

random projection, and FastMap projection. We used three consensus functions 

and the proposed objective function to generate clustering ensembles. The 

experimental results showed consistent improvement in accuracy of clustering 

ensembles produced from the FastMap projection with the objective function in 

comparison with the random sampling and random projection methods. 

The rest of this paper is organized as follows. In section 2, we provide related 

work. In Section 3, we explain the motivation of this work based on the analysis 

of synthetic data sets. In Section 5, we describe the FastMap projection method for 

generating subspace component data sets in ensemble clustering and ensemble 

clustering method. Section 4 illustrates the experimental results. Finally, we 

conclude this work and discuss future work in Section 6. 

 

2. Related Work 

Many different methods exist for ensemble clustering. According to [19] two 

main classes of ensemble clustering algorithms can be discovered: methods based 

on finding the median partition and approaches based on object co-occurrence. 

While the second class is rather heuristic, the first class builds on the formulation 

of the generalized median for clusterings. More specifically, the median clustering 

is the clustering which minimizes the sum of distances (SOD) to the clusterings in 

the ensemble. 

The first work was for ensemble clustering that used the median partition 

formulation was proposed by Strehl and Ghosh [10]. The authors aimed to 

maximize the sum of similarity values with the normalized mutual information 

(NMI) as the distance function. Since the optimization of this objective function is 

computationally intractable, three approximation heuristics were proposed. The 

main idea was to represent the ensemble as a graph and to use different graph-

based methods to obtain the median partition from this graph. Although the 

problem formulation was done by using the median partition, the proposed 

problem solution has to be classified as a co-occurrence based method [19]. 

Instead of using NMIT Opchy et al. [20] use the category utility function. In this 

case, a fast optimization scheme is introduced by making use of the observation 

that the problem can be transformed into another feature space and solved by k-

means. While the benefit of this approach is its low complexity, the knowledge of 

the true number of clusters is required by the method. 

The Mirkin-metric is used in [21-22] as a distance measure and several simple 

heuristics based on genetic algorithms like Simulated Annealing or Best One-

element Move are used to minimize the SOD criterion. Further methods, which 

aim to optimize the SOD criterion, include the kernel-based method [23] or the 

NMF-based method [24]. The evaluation presented in [10] reveals that the median 
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partition approach corresponds very well to recovering the true labels of data sets. 

This is further supported by an analysis of the median partition [25]. By 

presuming some simplifying conditions, the authors have proved that the 

consensus solution converges against the ground truth. In contrast to the median 

partition approach the co-occurrence based method uses a voting mechanism. 

More specifically, it attempts to count how many times two objects belong to the 

same cluster. This information can be collected into the co-association matrix, 

which is used as the similarity measure and a clustering algorithm is applied to 

find the consensus clustering [15]. A refined cluster-association matrix which also 

takes into account the relations between clusters is proposed in [14]. The columns 

of the matrix are then interpreted as feature vectors and clustered by an ordinary 

clustering algorithm. 

The ensemble methods discussed above are not suitable for noisy and large data 

sets. A well-known paper [10] aims at combining soft partitioning of data (e.g., 

produced by fuzzy k-means) without hardening the partitions before entering them 

into a consensus mechanism. The authors propose soft versions of CSPA, HGPA, 

and MCLA. Our work on ensemble clusterings differs from all the previous 

approaches that include objective functions, weighted ensemble clustering, and 

subspace ensemble clustering. Subspace ensemble clustering has become a useful 

strategy to find robust clusters from sparse and high-dimensional data. 

 

3. Motivation 

The diversity of the input clusterings in ensemble clustering plays a significant 

role to generate a final partition that is superior to the participating ones. In this 

section, we demonstrate the superiority of proposed component data sets 

generation method to produce diverse input clusterings. 

We analyzed the results on synthetic data sets to demonstrate the problems of 

the random sampling and random projection methods in the generation of low-

dimensional data sets for component clusterings. We generated six synthetic data 

sets, each consisting of one hundred features and three clusters. Each cluster was 

composed of fifty data points in one hundred dimensions with a normal 

distribution. We set the means of the three clusters in the main dimensions as 1, 5, 

3, respectively and the same unit variance for all clusters. The three clusters were 

generated independently and merged into one data set. Then, some noisy features 

with a uniform distribution between 0 and 1 were added to the data set to replace 

the same number of features with cluster distributions. As shown in Figure 1, we 

generated six data sets by adding different percentages of noise features, i.e. 0.05, 

0.1, 0.2, 0.5, 0.6, and 0.7, respectively. The blue, yellow, and green colors in each 

circle (data set) represent the clusters with means 1, 5, and 3, respectively. The red 

color shows the percentage of noisy features. The presence of more noisy features 

in the data set determines the difficulty of clustering. 
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(a) Noise = 0.05%. 

 
(b) Noise = 0.1%. 

 
(c) Noise = 0.2%.. 

 

 

 
(d) Noise = 0.5%.. 

 
(e) Noise = 0.6%.. 

 
(f) Noise = 0.7%.. 

 

Figure 1. Six Synthetic Data Sets with Different Proportion of Noisy 
Features 

For component clusterings, we used both random sampling and random 

projection methods on each synthetic data set to generate two hundred low-

dimensional data sets, one hundred data sets with each method. The random 

sampling method randomly selected p features from each data set to produce a 

low-dimensional component data set. The random projection method projects the 

given data set into p dimensions by multiplying a random matrix d p
R

  to the given 

synthetic data set where d is the number of dimensions in the synthetic data set. In 

practice, 
p q d 

 where q is the sampling rate expressed in percents. The 

values of the random projection matrix R were randomly produced with a normal 

distribution. 

We used the well-known k-means algorithm to cluster each of the one hundred 

component data sets of each sampling method into three clusters and computed the 

accuracy of obtained component clustering. We divided the one hundred 

clustering results into six accuracy groups of ([0,0.5], [0.5,0.6], [0.6,0.7], [0.7,0.8], 

[0.8,0.9], [0.9,1]). Figure 2 shows the frequencies of the clustering results in the 

different accuracy groups on the six data sets with a sampling rate of s = 2%. The 

yellow bars show the results of the random sampling method and the blue bars 

represent the results of the random projection method. The red bars in the figure 

show the clustering results from the component data sets generated with the 

FastMap projection. The details of the FastMap projection will be discussed later. 

In Figure 2, we can see that many of the clusterings from random projection 

and random sampling fall into the low accuracy groups. The share of the 

clusterings falling into the higher accuracy groups is low. The probability of 

obtaining an accurate clustering ensemble using such clusterings is very low. The 

accuracy of the component clustering decreases as the number of noisy 

dimensions increase in the data set. The random projection method produced more 

consistent results than those of the random sampling method. 
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The diversity of component clusterings of each data set from Figure 2 is 

investigated by computing the normalized mutual information (NMI) between 

each pair of one hundred component clusterings. The computed NMI values are 

divided into six groups of ([0,0.5], [0.5,0.6], [0.6,0.7], [0.7,0.8], [0.8,0.9], [0.9,1]). 

Figure 3 shows the frequencies of NMI values in the six groups from the six data 

sets in Figure 2 with a sampling rate of 2%. The yellow and blue bars represent the 

results generated by the random sampling and random projection methods, 

respectively. A larger NMI value shows that two clustering results have a strong 

relation, and a lower NMI value represents that two clustering results are 

independent. A lower NMI value indicates more diverse component clusterings. 

We can see that when  noisy  dimensions  increase,  the  falling  of  NMI  values  

into  the  highest  group  significantly reduced.  This shows that the noisy dimensions 

increase the diversity of component clusterings. 

  

 
(a) Noise = 0.05% 

 
(b) Noise = 0.1% 

 
(c) Noise = 0.2% 

 
(d) Noise = 0.5% 

 
(e) Noise = 0.6% 

 
(f) Noise = 0.7% 

Figure 2. Clustering results in different accuracy groups (x-axis shows the 
accuracy intervals, and the y-axis indicates the frequency of results where 
the clustering accuracy falls into the corresponding interval). The yellow, 
blue, and red bars show the results of the random sampling (RS), random 

projection (RP), and FastMap (FM) projection, respectively 

Figure 3 shows that both random sampling and random projection methods 

generated diverse component clusterings. However, as shown in Figure 2, many of 

these diverse component clusterings are in lower accuracy groups because of the 

noisy features in the component data sets. To address this problem, we propose a 

FastMap projection method to produce component data sets. FastMap projection 

preserves the clustering structure of the original data in the component data sets. 

As a consequence, the performance of ensemble clustering improves significantly. 

The red bars in Figure 2 demonstrate the results produced with the FastMap 

projection method. The clustering results generated by this method mostly fall into 

the higher accuracy groups. However, the diversity of component clusterings 
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remains almost unchanged, as shown in Figure 3. In the next section, we present 

the FastMap method in details. 

 

 
(a) Noise = 0.05% 

 
(b) Noise = 0.1% 

 
(c) Noise = 0.2% 

 
(d) Noise = 0.5% 

 
(e) Noise = 0.6% 

 
(f) Noise = 0.7% 

 
Figure 3. Distributions of the NMI Values between Pairs of One Hundred 

Component Clusterings Shown in Figure 2 on the Six Synthetic Data Sets 
 

4. Proposed Scheme 

Ensemble clustering of a data set X is a process to integrate multiple clustering 

results produced by one or more clustering algorithms from component data sets 

sampled from X into a single clustering of X with a result that is usually much 

better than the results of individual clusterings on X [20]. The subspace ensemble 

clustering framework consists of the following steps. 
 

 Step1 : Generate K different component data sets  1 2
, ,...,

K
C C C  from X 

using a component generation method. 

 

 Step2 : Cluster the K component data sets to produce K component clusterings 

 1 2, ,..., K  
independently using one or more clustering algorithms. 

 

 Step3 : Ensemble K component clusterings into a single clustering λ using an 

ensemble method called a consensus function. 
 

Figure 4 shows a generic framework of ensemble clustering. 
 

4.1  FastMap Projection for Component Data Generation 

FastMap is introduced as an alternative to Multidimensional Scaling (MDS) [26] 

and a generalization of Principal Component Analysis (PCA) [27]. FastMap is an 

efficient algorithm to generate k-dimensional coordinates of N objects from a 

distance matrix of N objects. Given a high-dimensional data set X of m dimensions 

and N objects, a distance function is used to compute the distance matrix SN×N. 
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The only distance matrix input we have for data projection is S and it should 

satisfy the following properties of the triangle inequality: 

 

•  
( , ) 0

N N a b
S O O




, 

• 
( , ) ( , )

N N a b N N b a
S O O S O O

 


, 

•  
( , ) ( , ) ( , )

N N i b N N i a N N b a
S O O S O O S O O

  
 

 

 

where Oi , Oa and Ob are the objects of X. The well-know Euclidean distance 

function or cosine similarity [28] between data objects is used to build a distance 

matrix S. 

 

 2 2

( , )
.

a b

a b

a b

O O
Similarity O O

O O


   (1) 

 

where  is the inner product of two vectors and 2
*

 represents the Euclidean 

norm of the vector. The similarity of two vectors a
O

and b
O

 is measured by 

considering an angle 
)cos(

. The cosine similarity is used to project all the 

vectors on the unit hyper-sphere and measures the cosine angle of the projections. 

In order to be used for FastMap, a distance function is defined that decreases with 

increasing of similarity. 
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


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      (2) 

 

 

Figure 4. Generic Framework of Ensemble Clustering 

In our experiments, we used equation 2 to generate the distance matrix SN×N. A 

core step of FastMap projection is to carefully select a line for data projection. To 

do that, two pivot objects Oa and Ob are selected, and a line is considered that 

passes through them in a given space. The pivot objects Oa and Ob are chosen 
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which are far apart from each other in a given data set. The coordinates of data 

objects on the selected line are computed by using cosine law. The first dimension 

of an object Oi is computed by using the following cosine equation. 

 

baibaiaib
DmDDD

,

2

,

2

,

2

,
2

   (3) 

 

By using Pythagoras theorem, equation 3 is used to compute the first coordinate mi 

of an object Oi as 

 

ba

ibbaia

i
D

DDD
m

.

2

,

2

,

2

,

2




     (4) 

 

where Da,i is a distance between pivot objects Oa and Oi, for i = 1,2,....,N. The 

coordinates of all N objects are computed, according to Lemma 1 in [1], a reduced 

distance matrix S' of N objects is computed as 

 
22 )(),(),('

jijiji
mmOODOOD 

   (5) 

 

where D' is the reduced distance in S'N×N, D is the distance in SN×N, mi and mj are 

computed coordinates of the previous dimension for all I = 1,2,...., N. Given S'N×N, 

a new pair of pivot objects is chosen and equation 4 is used to compute the 

coordinates of the second dimension.    We repeat this process k times to generate 

k-dimensional component data sets using X. 

Using FastMap, we can use a random process to select different pairs of pivot 

objects to produce different projections of data as component data sets. We 

employ the well-known k-means algorithm on each component data set to generate 

component clusterings. In the next section, we propose an ensemble method to 

combine the generated component clusterings into one clustering solution. 

 

4.2  Ensemble Clustering 

Given a set of component data sets, we apply the k-means algorithm on each 

data set to produce component clusterings. Let λ
1
 , λ

2
, ..., λ

e 
 be e component 

clusterings. They can be represented into a matrix E as 
1 2

11 12 1

21 22 2

1 2

. .

. .1

. .2

. . . . ..

. . . . ..

. .

e

e

e

N N Ne

l l l

l l l
E

l l lN

  

 
 
 
 
 
 
      (6) 
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where each row is an object and each column is the set of cluster labels of N 

objects in a clustering. Each cluster in the e clusterings has a unique label. The set 

of unique cluster labels is listed as 

 

 
ke

llllllL ,...,,,,,
1332122111


    (7) 

 

Taking two columns λ
x
 and λ

y
, we now define the Normalized Mutual Information 

(NMI) [20] between clusterings λ
x
 and λ

y
 as 

 

( , )
( , )

( ) ( )

x y

x y

x y

I
NMI

H H

 
 

 


    (8) 

 

where I(λ
x
, λ

y
) is the mutual information between clusterings λ

x
 and λ

y
, and H(λ

i
) 

is the entropy of the clustering. The mutual information is defined as 

     

 

2
( , ) log

x x y y
c c

x y x y

c c c cx y

x y
X X c c

X X N X X
I

N X X 

 
 

  
   

 
 

 
 (9) 

where 

i

j
X

 is the set of data points in component data set that are in the same 

cluster j in clustering λ
i
, N is the total number of data points, and |.| and   are the 

cardinality and intersection operators, respectively. Next, we define the entropy 

H(λ
i
) of a clustering, λ

i
, as 

 

2
( ) log

i i
c

i i

c ci

X

X X
H

N N




 
    

 


    (10) 

 

The MNIs of all pairs of clusterings are represented in matrix R as 

            
1 2

1

11 12 1

2

21 21 2

1 2

. .

. .

. . . . ..

. . . . ..

. .

e

e

e

e

e e ee

NMI NMI NMI

NMI NMI NMI
R

NMI NMI NMI
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





 
 
 
 
 
 
  

. .

    (11) 

 

From R, we select a clustering as the reference clustering λ
r
 by computing the 

average of each row. The largest average value of the row r gives a reference 

clustering λ
r
. 
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Given the column vector of the reference clustering λ
r
 and the set of cluster 

labels L, we replace the cluster label of the first object in the reference clustering 

λ
r
 with the first label in L to generate a changed reference clustering λ

r
'. Then, we 

compute the average of the normalized mutual information between λ
r
' and all 

other clusterings as 
( 1)

' '

1

1
( ) ( , )

( 1)

e
r r i

a
i

NMI NMI
e

  







,
   (12)  

            

where ∆ is the set of clusterings excluding the reference clustering. If 

NMIa(∆,λ
r
') > NMIa(∆,λ

r
), we replace λ

r
 with λ

r
' and NMIa(∆, λ

r
) with NMIa(∆, 

λ
r
' ). Otherwise, we keep both λ

r
 and NMIa(∆,λ

r
) unchanged. We continue this 

process until all labels in L are tested. After this iterative loop, the first object in 

the reference clustering is assigned a cluster label that maximizes NMIa(∆,λ
r
). The 

same iterative process is repeated until the last object is complete. Then, the 

process restarts from the first object of λ
r
. In each loop on N objects, the number 

of changes of object labels is recorded. The iterative process stops when no object 

changes its cluster label after a loop on N objects. The reference clustering λr is 

the final clustering ensemble. 

 

5. Experimental Results and Analysis 

In this section, we present a series of experiments on real-world data to 

demonstrate the performance of ensemble clusterings with the FastMap projection 

method in generating component data sets. We show comparisons of random 

sampling, random projection, and FastMap projection in combination with three 

consensus functions and an objective function based ensemble clustering method. 
 

5.1  Data Sets 

Six high-dimensional data sets were used in these experiments. All data sets are 

diverse in the number of records, the number of features and the number of 

clusters. Detailed information of the data sets is shown in Table 1. The data sets 

BASEHOCK, GLI85, and PIX10P were chosen from the available websites 

dedicated to data mining at Arizona state university. The SRBCT and Internet Ad 

were chosen from the web site of UCI machine learning repository. The data set 

La1s was used as a text document classification benchmark [29]. Data with 

heterogeneous characteristics is important for exploring the strength and weakness 

of algorithms in different applications. 
 

5.2  Experiment Settings 

The performance of FastMap (FM) projection is investigated by comparing 

with Random Sampling (RS) and Random Projection (RP). We produced 

component data set using each component data generation method for the given 

data set, and applied the k-means algorithm on each component data set to 

generate component clusterings. The component clusterings from each method are 

aggregated into one clustering ensemble by using three consensus functions and 

one objective function. Combining three component data set generation methods 

with three consensus functions and one objective function, we investigated twelve 

ensemble clustering techniques. We compared the ensemble clustering results with 
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true class labels in the data sets and used three evaluation measures to evaluate the 

performance of the twelve ensemble clustering techniques. 

For random projection, Boutsidis et al. [30] recommended to set the dimensions 

of projected data sets as d = k/
2  where (0,0.34)  and k is the number of true 

labels in the original data set.  was determined through some initial tests. In the 

experiments, ten values for   were tested and the best results were recorded. 

The well-known three consensus functions are similarity-based consensus 

function (CSPA), hypergraphbased consensus function (HGPA), and meta cluster-

based consensus function (MCLA) [10]. The ensemble method we propose here is 

called Objective Function based Ensemble Clustering (OFEC). 

The combinations of three component data generation methods with three 

consensus functions and one objective function result in 12 ensemble clustering 

techniques denoted as RS-CSPA, RP-CSPA, FM-CSPA, RS-HGPA, RP-HGPA, 

FM-HGPA, RS-MCLA, RP-MCLA, FM-MCLA, RS-OFEC, RP-OFEC, and 

FMOFEC, respectively. We used the baseline clustering algorithm k-means on 

each original data set ten times. The average result of obtained clusterings from 

each data set are presented. We denoted this method as KM-Avg. 

In experiments, we tested three different numbers of component clusterings to 

generate clustering ensembles. The results showed no significant variation. The 

results given below were taken from the clustering ensembles with ten component 

clusterings. We also tested different sampling rates and set 15% which is more 

suitable for all data sets in the following results. The number of clusters k was set 

to be the actual number of classes in the real-world data sets. 

Table 1. Real-world Data Sets 

Data Sets #Instances #Features Source #Classes 

PIX10P 100 10,000 Image 10 

BASEHOCK 1993 4862 Text 02 

GLI85 c85 22,283 Microarray 02 

La1s 887 13,195 Text 06 

SRBCT 83 2308 Microarray 04 

Internet Ad 1000 1558 Multivariate 02 

 
5.3  Evaluation Methods 

Clustering evaluation is a critical and often ill-posed task. In fact, many kinds 

of objective clustering functions were defined [29]. We used three methods to 

evaluate the results of ensemble clustering with the twelve ensemble clustering 

methods, one unsupervised method and two supervised methods. The 

unsupervised method is Compactness (CP) which is computed as 

 

   
1

( , )1

( 1 / 2)

i j x

k
i jo o C

x
x

x x

d o o
CP n

n n n





 
    




   
 (13) 

 

where d(oi, oj) is the distance between the objects oi and oj in a cluster Cx, nx is the 

number of objects in a cluster Cx. The smaller the value of CP, the better the 
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clustering result. The two supervised evaluation methods are Adjusted Rand Index 

(ARI) and Clustering Accuracy (CA), calculated as follows 
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where nx,y is the total number of objects in cluster x and class y, n is the total 

number of objects in the given data set 1 21
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 and S3 = 2 

S1S2/n(n-1). The larger the values of these measures, the better the clustering result. 

 

5.4  Experimental Results 

Table 2 shows the evaluations of clustering results of six real-world data sets 

produced with twelve ensemble clustering techniques and one baseline clustering 

method. The evaluation on each data set is performed into five groups, the first 

four groups are the evaluations of the ensemble clustering results, and the last 

group is the baseline evaluation. Each group in the ensemble clustering techniques 

lists the evaluations of one ensemble clustering function in combination with three 

component data generation methods. The best results of the three evaluation 

measures are marked in bold font. The best result of each method for the same 

data set and evaluation measure is underlined. 

 
Table 2. Comparison of Clustering Results on Real-world Data Sets 

 
Methods PIX10P BASEHOCK GLI85 

CP ARI CA CP ARI CA CP ARI CA 

RS-CSPA 1123 0.61 0.68 22.9 0.46 0.54 561530 0.51 0.79 

RP-CSPA 1025 0.82 0.88 21.1 0.53 0.59 542330 0.57 0.78 

FM-CSPA 1021 0.89 0.96 20.0 0.57 0.67 529280 0.61 0.84 

RS-HGPA 1152 0.77 0.85 20.8 0.46 0.50 581760 0.45 0.78 

RP-HGPA 1096 0.69 0.79 20.2 0.49 0.54 568010 0.49 0.80 

FM-HGPA 1009 0.87 0.89 21.5 0.52 0.55 525600 0.54 0.82 

RS-MLCA 998 0.71 0.82 24.9 0.52 0.57 570990 0.47 0.74 

RP-MLCA 988 0.76 0.84 24.4 0.57 0.60 547150 0.55 0.76 

FM-MLCA 977 0.78 0.92 21.1 0.55 0.65 522340 0.61 0.75 

RS-OFEC 942 0.79 0.85 23.1 0.53 0.59 552314 0.58 0.80 

RP-OFEC 898 0.83 0.90 20.2 0.58 0.62 538140 0.63 0.83 

FM-OFEC 878 0.89 0.94 19.3 0.57 0.69 521367 0.64 0.84 

KM-Avg 964 0.74 0.84 21.8 0.41 0.46 558310 0.38 0.68 

Methods SRBCT La1s Internet Ad 

CP ARI CA CP ARI CA CP ARI CA 

RS-CSPA 7.76 0.09 0.49 36.8 0.57 0.49 171 0.54 0.65 
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RP-CSPA 7.53 0.16 0.50 36.0 0.67 0.54 164 0.59 0.65 

FM-CSPA 7.23 0.13 0.51 34.9 0.72 0.64 145 0.57 0.75 

RS-HGPA 8.31 0.03 0.45 36.9 0.61 0.40 241 0.51 0.52 

RP-HGPA 7.64 0.08 0.49 36.9 0.69 0.48 216 0.53 0.53 

FM-HGPA 7.13 0.12 0.51 36.7 0.72 0.54 202 0.56 0.54 

RS-MLCA 7.43 0.04 0.48 37.0 0.66 0.49 170 0.48 0.55 

RP-MLCA 7.49 0.09 0.51 35.7 0.68 0.60 153 0.55 0.64 

FM-MLCA 7.41 0.08 0.54 34.8 0.73 0.62 141 0.64 0.74 

RS-OFEC 7.33 0.09 0.50 36.2 0.69 0.52 168 0.57 0.64 

RP-OFEC 7.10 0.13 0.53 20.3 0.72 0.61 149 0.65 0.69 

FM-OFEC 7.19 0.15 0.53 34.2 0.75 0.67 139 0.63 0.72 

KM-Avg 7.38 0.09 0.20 34.7 0.67 0.51 179 0.47 0.49 

 
In Table 2, we can see that in the six data sets all best results evaluated by the 

three supervised measures were obtained using the ensemble clustering techniques, 

not from the baseline clustering technique. This indicates that the ensemble 

clustering techniques are more suitable to these six high-dimensional data sets 

than the baseline clustering method. Among the three component data generation 

methods, the FastMap projection method consistently produced the best result. 

The consistent results demonstrated the superiority of the FastMap method over 

the random sampling and random projection methods in ensemble clustering. 

Comparing the different ensemble clustering functions, the Objective Function for 

Ensemble Clustering (OFEC) performed the best. 

The unsupervised measure CP shows that the well-separated clusters are 

achieved by FM-OFEC ensemble method for all data sets except the SRBCT data 

set. The higher CP was achieved on GLI85 data set while the lower CP achieved 

on SRBCT data set. The majority of the best results of evaluation measures ARI 

and CA were achieved by the FM-OFEC among the ensemble methods. The 

comparative analysis between ensemble methods and baseline clustering method 

shows that the performance of ensemble methods is the best. In all scenarios, FM-

OFEC outperformed all other state-of-the-art methods. 

 

 
(a) CSPA. 

 
(b) HGPA. 
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(c) MCLA. 

 
(d) OFEC. 

Figure 5. Distributions of Min, Max and Mean of Accuracies of Thirty 
Clustering Ensembles from PIX10P Data by Three Component Data 

Generation Methods with Each Ensemble Function 

     The detailed analysis of the statistical performance of ensemble clustering 

methods can be evaluated by generating multiple clusterings ensemble from the 

given data set. We generated thirty clustering ensembles by each ensemble 

clustering method from a data set, and computed the minimum, maximum, and 

mean of accuracies of the thirty clusterings. Each clustering ensemble was 

generated from ten component clusterings which were generated with k-means. 

Figure 5 shows the distributions of Min, Max, and Mean of accuracies of thirty 

clustering ensembles from PIX10P data set by three component data generation 

methods in the combination of four ensemble functions. As it can be seen from the 

figure where we compare the Min, Max, and Mean of three component data 

generation methods with each ensemble function, the FastMap method produced 

the largest Min, Max, and Mean values in all ensemble functions. The results in OFEC 

are more significant. Similar trends were also observed from other five data sets. 

 

5.5  Analysis of Sampling Rates and Future Strata 

The impact of sampling rate of features in component data sets and the number 

of feature groups or strata on the performance of clustering ensembles was also 

investigated in the experiments. The optimal sampling rate allows to properly 

represent the original data (structure), while if it is too small it could lead to 

overfitting errors. To evaluate the influence of the sampling rate, we used a 

distance-based measure called relative measure, computed for different sampling 

rates of the component data sets. The relative distance error is computed by 

selecting the one hundred instances randomly from the original data set, and also 

the one hundred instances from the component data set, measuring a 100 × 100 

distance matrix using each set of one hundred instances. Then, the relative error 

can be defined as 
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where Oi is the distance matrix of one hundred instances from the original data set, 

Ci is the distance matrix of one hundred instances from the component data set, 

and f is a scaling factor. The smaller the value, the better component data set. The 

scaling factor is used to minimize the cost function. It is defined as 
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(a) GLI85 

 
(b) Internet Ad 

 
(c) BASEHOCK 

 
(d) La1s 

 
(e) SRBCT 

 
(f) PIX10P 

Figure 6. Performance of Component Data Generation Methods Against 
Different Sampling Rates 

Figure 6 shows the average relative distance error of the component data sets 

for various sampling rates of each data set. We generated component data sets by 

three different component data generation methods. In ensemble clustering, the 

component data sets with different dimension sizes may allow for recovering the 

original clustering structure of data, but our experiments were performed with the 

same sampling rate for majority of the data sets when the sample rate increased 

with 15%, the performance started to drop. This is because the diversity of 

component clusterings decreases as sampling rate increases to a certain level, 

which starts to affect the performance of clustering ensembles. We can see from 

the figure that the suitable sampling rate is approx 15%. We can also find that the 

overall performance of FastMap projection for different sampling rates is better 

than the performance of the random sampling and random projection. The random 

sampling and random projection methods cannot preserve well the clustering 

structure of the original data in their generated low-dimensional component data 

sets, which leads to increasing of the discrepancy of clustering structures in 

component data sets, thus affecting the performance of ensemble clustering for 

high-dimensional data. 

 



International Journal of Database Theory and Application 

Vol.9, No.12 (2016) 
 

 

Copyright ⓒ 2016 SERSC      327 

 

Figure 7. Performances of Clustering Ensembles of BASEHOCK and La1s 
Data Sets by FMOFEC Technique Against Different Numbers of Feature 

Strata 

Figure 7 illustrates the performances of clustering ensembles of two data sets 

BASEHOCK and La1s by the FMOFEC technique against different numbers of 

feature strata. From the results of the three data sets, we can see that there is no 

significant difference of evaluation measures against the different number of 

feature strata. Based on CA and ARI evaluation measure the number of feature 

strata for both data sets should be more than twelve. The same results were also 

observed from other data sets and consensus functions. 
 

6. Conclusion 

In this paper, we have presented the FastMap projection method for generating 

subspace component data sets in ensemble clustering. This method can better 

preserve the clustering structure of the original data in its generated component 

data sets. As a result, the component clusterings created from these data sets have 

high accuracies in comparison with the results from the methods of random 

sampling and random projection while at the meantime, the diversity of the 

component clusterings is not sacrificed much. We have defined a new objective 

function to ensemble component clusterings by maximizing the average similarity 

between the component clusterings and the final clustering ensemble. Experiment 

results on six real-world data sets have demonstrated a consistent performance of 

the FastMap projection method with the proposed objective function in ensemble 

clustering. Our future goal is to investigate parallel and distributed algorithms for 

ensemble clustering with FastMap projection to resolve big data clustering 

problem. 
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