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Abstract 

The skyline queries are the best tools to be used in distributed multi criteria decision 

making of web based applications for user commendations. However, as the Data 

dimensions are increasing size of dominance set and skyline set is also increasing. 

Increasing dimensionality becomes the major problem with real word databases. In 

skyline computation major cost depends on finding dominance tests between high 

dimensional objects and the order in which they are accessing. Space filling Z-curve is 

the best suitable way to address the challenges in skyline computation. In this proposed 

work, we incorporated Z-curve with optimized skyline boundary detection algorithm to 

effective access and early pruning. In this paper efficient hybrid index structure was 

proposed which takes the advantage of sorting and partition approaches to improve the 

storage and search efficiency. Experimental results show that our propose approach is 

better than the previous static skyline   computation techniques in terms of searching and 

finding skyline set. 

 

Keywords: Skyline computation, Z-curve, probabilistic skyline computation, boundary 

detection algorithm 

 

1. Introduction 

Decision making is the key aspect in everywhere. Now a day’s Computational 

applications are highly distributed and generating huge high dimensional uncertain data. 

Users are interested in accuracy and posing queries on different dimensions. So there is 

need of efficient strategies. Skyline analysis is an approach which gained high 

significance attention as it is being used in the multiple criteria decision making 

applications. Our computation method should be designed in such a way that it can be 

extended from single dimensional to multiple dimensional subspaces. Given a set of T 

dimensional data set of real estate ventures containing ventures p1, p2, p3…..pn; we 

obtain a skyline set of T such a way that skyline venture objects are not overruled by any 

of the venture  object in the given pool of objects. If we want to consider one venture 

point p1 dominates another venture point p2 if all dimensional values either equal or less 

than the corresponding dimensions of comparing object but at least one dimension value 

should be less than the corresponding dimension of other object.  

Let us see Figure 1 which gives out skyline set for selecting best Real estate venture 

among other venture. Top venture is decided by the user based on two dimensions, price 
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and distance to the beach. We can plot all venture objects in two dimensional space. X-

dimension indicates distance from venture to beach, and y-axis represents venture price. 

Skyline retrieves venture objects with low Prices and short distances, i.e., the dots p3, p2, 

p1, p5, p6 in Figure 1. 

 

 

Figure 1. Skyline Example 

In Real time applications user may interested in sub space skylines as well as full 

space. In our venture selection, different users may have different interests. So we need to 

compute the skylines in different subspaces such as (price; Space), (price; travel time to 

airport) and (price; travel time facilities). Normally, a skyline sets are changing with the 

change in the dimensions. To answer user queries efficiently, a skyline analysis system 

needs to   maintain skyline of each and every subspace. If objects are having n dimensions 

then we need to find skyline sets in 2n-1 subspaces. The sky cube is a set of all skylines in 

all non-empty subspaces. Finding of sky cube will be a difficult task if number of 

dimensions is increasing. We observed that cost of skyline analysis impacted by 3 issues 

(1) Dominance Tests count, (2) Access Order of the objects and (3) Grouping and 

comparing techniques are important for the competence of dominance test. 

 

2. Related Work 

Database researchers are attracted by the applicability of skyline computation in 

various fields [4]. We have gone through the algorithm which works with different 

dimensions and with total or partial ordering domains [5]. SUBSKY, a dimensionality 

reduction algorithm it indexes the objects using B-Tree [5-6].The cost of the skyline 

computation on static data depends on dominance test. All these methods propose 

different heuristic ways to speed up the cost of dominance [9].  

To efficiently answer the user queries sky cube is one solution. In this we need to find 

subspace skyline for every subspace. Second, it reduces the dominance tests by finding 

the skyline points by already derived skyline points [2, 10].Finding sky cube is very time 

consuming task when object dimensionality is high. In traditional pair wise dominance 

approach sky cube computation leads to dimensionality curse problem [7]. 

 So many algorithms were proposed in database environment for static as well as 

probabilistic uncertain data [6] and data streams in centralized environment [9].These 

algorithms can be categorized based on two approaches, sorting and partitioning [14]. 

1. Sorting-based Algorithms: In this type of algorithms effective selection of cutoff 

points will be used for early pruning of non-skyline objects. So optimization of Pivot 

selection will be crucial in Sorting-based skyline algorithms. In these algorithms main 

focus is on optimizing of dominance. They didn’t consider incomparability and search 

space pruning [3-4].  
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2. Partition based algorithms: partitioning based algorithm divides the space into 

regions based on the commonality of data. So we can achieve high impact on cost of 

dominance by performing region level comparisons and incomparability of regions. 

Available partitioning based algorithms gets advantage by portioning but they dint 

considers the access order. 

Table 1. Different Types of Techniques Used in Skyline Computation 

Technique Method 

Block Nested Loop Pair wise comparison 

Divide and Conquer 
Chop up the dataset into smaller enough ones that can fit into memory 

individually. Process each of them to get final results. 

Index 
Group tuples according to their minimum dimensions. Sort each 

group and process top tuples of all groups. 

Nearest Neighbor 
Use nearest neighbor search to find skyline points which further 

divide the space for recurring processes. 

Streaming Skyline Compute skyline points in a streaming database. 

 

2.1. Skyline Query Processing 

Different available Skyline computation algorithms, are Block-Nested Loop (BNL) [3], 

Divide-and-Conquer (D&C) [3], Bitmap [15], LESS [8], Index [15], Sort-Filter-Skyline 

(SFS) [7], Nearest Neighbor (NN) [10], and Branch and Bound Search (BBS) [13], all 

these can be categorized using the divide-and-conquer and/or sorting strategies. Below 

depicts the summary. BNL and Bitmap are not following any strategy so they are 

considered as brute force approach. Below is the categorization based on D&C and 

sorting techniques? 

Table 2. Classification of Skyline Query Algorithms 

 
 

2.2. Divide and Conquer Algorithms 

D&C partition a dataset into a few regions sufficiently little to be stacked into the 

memory for handling [3]. Every region finds its partial skyline set .By applying merge 

process on all the partial skylines it finds the final skyline set. 

 

2.3. Sorting-based Algorithms 

Sorting based algorithms needs presorted database. Data can be presorted based on any 

scoring function. If data is sorted then any object, with value less than the current object 

value, can’t dominate. So we can easily find partial skyline. SFS and LESS are sorting 

based algorithms. Sorting based algorithms doesn’t have search space pruning ability. 

 

2.4. Hybrid Algorithms 

NN and BBs are hybrid skyline algorithms. BBS is the available new efficient 

algorithm. This follows the traditional Iterative NN approach. Below Figure 2 

demonstrates the BBS with 9 points in 2D space. In the whole space p1 is the nearest 

neighbor (nn) from origin. So definitely it will be the skyline. Point’s falls under the 

rectangular dominance region spanned p1 and maximal corner will be definitely overruled 
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by p1.Then repeatedly find next nn and prune any dominated points. In this next nn is 

p3.Next nn is p5.By finding p5 p7 will be eliminated. By finding p2 and p6 in similar way 

search will be terminated. 

 

 

Figure 2. BBS Approach 

 

3. Distributed Skyline Properties  

Every efficient Distributed system has to satisfy three properties those are bandwidth 

minimization, progressiveness and effective pruning. 

 

3.1. Minimization of Bandwidth Consumption 

In distributed systems are constrained with high bandwidth consumption. Here 

bandwidth measured in terms of transmitted objects. In realistic scenario more bandwidth 

is required for message synchronization and for message routing information. But this 

will not considered when calculating bandwidth. 

 

3.2. Progressiveness 

Because of the complexity of skyline processing it may take more time than the range 

queries and top-k queries. The total query processing time may be increased drastically if 

we consider network delay in distributed skyline query processing. To overcome this it 

would be better if skyline algorithm follows progressiveness property. A progressive 

algorithm informs the resultant objects as soon as it founds. Later it produces left over 

results before query execution [10].This is the difficult objective to accomplish. 

 

3.3. Effective Pruning 

In distributed skyline computation dominance is costly effort. This can be eliminated 

by effective pruning. By effective pruning we can even eliminate distributed site, which 

can’t contribute to the final result, without participating into skyline process. Early 

pruning minimizes the computation cost drastically. 

 

4. Architecture 

Here, in Figure3 we are representing how the high dimensional data is handled. In this 

4 stages are there. 1) Data access. 2) Dominance test and candidate confirmation. 3) 

Candidate Reexamination. 4) Update stage.  
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Figure 3. Distributed Site Skyline Architecture 

In Distributed multi criteria decision making system query will be answered in all 

distributed sites. They will be arranged based on its local skyline probability and highest 

probability object will be sent to the central server. Thus server collects all local sites high 

probable objects (D0) and again finds the skyline set of D0.Highest probable skyline object 

will be sent to the every local site to prune their local skyline objects, which may not 

contribute to the final solution. It find the global skyline probability of the object to 

determine its eligibility to become member of final skyline object. To finds the local 

skyline point’s skyline processor uses Z-order curve properties [19] and VS-Tree index 

structure to convert and organize skyline points. Below Figure4 shows the details of 

distributed skyline Framework. 

 

5. Z-Order Curve 

The ability of skyline preparation relies on conducting dominance test and the order of 

processing data points. Block based dominance instead of pair wise dominance reduces 

the cost. Order of accessing is essential because early identification of skyline object will 

be helpful to avoid many candidate examinations and reconsideration. The properties of 

Z-curve have well matched with the skyline processing strategies. Figure6 illustrate with 

9 2D points example. Entire space is divided as 4 equivalent regions namely R1, R2, R3, 

and R4. Information points in RI are not overwhelmed by information focuses in the other 

three regions. Unexpectedly, all information focuses in R4 are ruled out by any point in 

R1. That is until R1 is nonempty every point located inside R4 can be disposed from 

examination. R2 and R3 are opposite to one another, and their data points don't dominate 

one another. 
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Figure 4. Distributed Skyline Framework Architecture 

Dominance tests between them can be kept away from. But some of the data points of 

R2 and R3 may be dominated by R1 .These perceptions will be used to speed up the 

dominance tests in region level 

These facts help to follow the access order which will be exactly fit for skyline process. 

According to this we access Region I Region II Region III and finally Region IV. Same 

logic will be applicable to sub regions also. This access order exactly looks like rotated Z. 

This Z-order space filling curve can start access from origin.  
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Figure 5. Example Z-order Curve 

Z-curve is proposed to map the data from high dimensional to single dimensional. Each 

point will be represented by one number. That number is called Z-number. It is a 

sequence of bits. This bit sequence is formed by picking the bits in all dimensions 

alternatively. Take a k-dimensional object space with coordinate domain range ([0,2
n 

-

1]).We can covert that point as single dimensional “kn” bits. This can be viewed as   n k 

bit groups. The jth bit of any Z-number is formed by the (j/k)th bit of the (j%k)th 

dimension. To compute the Z-number first convert the coordinate values into binary 

format. Then by interleaving the bits of all dimensions we can form the Z-number. In 

above example P7   Z-number is 101101 and p4 Z-number is 011111. In our example first 

k bits partitions the space into 4 subspaces. 2
nd

 k-bit group divides the subspace into 4 

subspaces. Points with similar bits will share the same subspace. Example p2 and p4 share 

same subspace because they have same first bit group (i.e., 01). 

 

5.1. Monotonic Ordering 

Non decreasing arrangement of Z-number follows the property that “dominating point 

placed before dominated points”. So that we can reduce computation cost.In Figure 5, 

according to Z-order curve, p1 is accessed first before p8 and p9. Before p4, point’s p2, 

p3 will be accessed and p5 is accessed before p7. Reexamination will be avoided by this 

access order. 

 

5.2. Clustering 

Non decreasing Z-numbers follow clustering property. Because of this, data points of 

the same region will have similar address. For example, p2, p3 and p4 are available in the 

same region and they share common prefix 01. Similarly, p5, p6, and p7 are sharing same 

subspace because of similar bit group. This kind of making Grouping data can give 

chance to block-based dominance tests. We can eliminate dominance tests when two 

groups are incomparable. In addition to this as soon as finding data point in dominating 

region we can avoid the dominance test between points in the dominating region and 

dominated region. For example, p8 and p9 are in region IV. So can be safely discarding 

them once if p1 is identified in dominating region. 
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Figure 6. 2D Data Space 

 

6. VS Tree Index Structure 

Z-order curve supports two key properties in skyline set calculation i.e, monotonic 

ordering and clustering. To make our process efficient we need to design one efficient 

index structure which incorporates these key properties. We need to convert   high 

dimensional data points onto one dimensional address. For all these we will create a new 

index approach with Z-order curve and B+ tree. Existing Index structures like R-Tree, 

UB-tree  are having  their own limitation so our goals is to i) processing data in Z-order 

fashion and ii) Maintain data points in blocks to support efficient pruning. Thus, this work 

proposes VS Tree, a new variant of B+-tree. VS tree divide a Z-curve into disjoint 

segments. Each segment is a region. So that clustering property is attained. In VS tree, 

data will be maintained in leaf nodes and non-leaf nodes represents objects range in the 

form of Intervals [a, b].The space segment enclosed by a Z-order curve segment is called 

Z-region. For example, the curve starting at point p8 and ending at point 9 is Z-

region..There is no restriction on Z-region size and form as shown in fig-4. We bound a 

Z-region with a ZR-region. A ZR region is defined as below. 

ZR-reign: A ZR-region is a small square spanning a ZR region covered by interval 

[A,B] A and B are  minimum and maximum  z-numbers. 

 

 

Figure 6. VS-tree 

The above tree index structure takes more memory than required but it increases the 

search efficiency. In this tree structure leaf nodes used to hold the data and non-leaf nodes 

were used to represent the range or interval of descendent leaf nodes of that node. This 

process will be recursively continued in bottom up fashion to construct tree. 
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6.1. Algorithm for Dominance Test 

Boolean Test_Dominate (T, Min, Max) 

          Begin 

                     Queue Q, NODE N; 

                 If (T==NULL) 

                  { 

                     printf (“Tree Null”); 

                     Return (false); 

                  } 

                     Enqueue (Q, T); 

        While (! empty (Q)) 

         Begin 

                    N=Dequeue (Q) 

            If N not a leaf node then  

            Begin 

             For all children nodes K of N do 

            If K’s RZ-region’s Max Dominates  

               Min then return (True) 

             Else 

                    K’s RZ-region’s Min Dominates  

                    Max then   Enqueue (Q, K); 

           End 

        Else 

      Begin 

       For all children nodes K of N do 

         If K dominates Min then Return (True); 

       End      

    End 

      Return (false); 

End 

 

6.2. Algorithm for Search 

VSTree Search (VSTree T)   

Begin 

         VSTree SL, Stack S, NODE N; 

  If (T== NULL) 

{   
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  Printf (“No data source data”); 

 Return; 

} 

Push(S, T); 

 While (! Empty(S)) 

  Begin 

           Xyz:    N=pop(S); 

      if (Test_dominate (SL,Min (N),Max(N)) then 

          Goto   xyz; 

     if N is a non-leaf node then 

       For all children nodes K of N do 

      Push(S, K); 

else 

For all children nodes K of N do 

if (! Test_Dominate (SL, Min (K), Max (K)) then 

 Insert (SL, K); 

End 

Return (SL); 

End. 

 

7. Results 

Here we evaluate our framework in terms of bandwidth consumption, computation 

time and resource utilization. In these experiments we have taken default values for some 

attributes of distributed system. Those are total database cardinality N as 2000K objects, 

object dimensionality d varying from 3 to 10, probabilistic threshold q varying from 0.3 to 

0.9. and total number of  distributed sites m  equal to 50.These experiments were 

conducted on both uniform and  anti-correlated data distribution  on an average of 20 

queries. It is evident that efficiency of proposed framework is superior to DUSD. All the 

below results were taken under the same parameter settings with an average of 20 queries. 

 

7.1. Data Transmissions Vs. Dimensionality 

We conducted experiment to evaluate the impact of distributed skyline query execution 

performance with dimensionality varying. These results were  observed  on two 

distributions, namely uniform and anti-correlated  distributions with  the default values  

such as  local distributed data base cardinality  N/m,  number of local distributed sites(m) 

equals to 20,object dimensionality varying from 4 to 10. And threshold probability 

0.4.With these default setting we observe that if dimensionality is increasing then 

domination gets decreasing so size of the local skyline is increasing thus  the 

communication  bandwidth expense  will  also increasing in both the distributions. Our 

proposed framework takes less bandwidth. Improved global probability threshold and 

early pruning makes our framework outstanding. 
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Table 4. Object Transmission vs. Dimensionality 

Object 

Dimensionality(d) 

Total Number of 

Objects Transmitted in 

SKYPLAN Approach 

 Total Number of 

Objects  

Transmitted in 

DUSD 

Total Number of 

Objects  Transmitted in 

Proposed VS-

Framework  

3 166 55 36 

4 194 80 66 

5 228 113 86 

6 252 130 104 

7 282 158 125 

8 340 210 160 

9 386 250 190 

10 434 296 240 

 

 

Figure 7. Dimensionality vs. Bandwidth 

Table 5. Local Sites vs. Data Transmission 

Total Number of 

Local Sites in 

Distributed 

System(m) 

Total Number of 

Objects 

Transmitted in 

Skyplan Approach 

Total Number of 

Objects 

Transmitted in 

DUSD. 

Total Number of Objects 

Transmitted using Proposed              

VS-Framework. 

4 225 124 80 

5 248 140 98 

6 264 166 138 

7 292 188 168 

8 326 227 187 

9 382 242 209 

10 434 296 240 
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Figure 8. Local Site vs. Data Transmission 

 

8. Conclusion 

In this work, we proposed a novel method for organizing and retrieving of high 

dimensional data to enable skyline computation using Z-order curve. This will be useful 

in finding skyline in many applications handling high dimensional objects. Previous 

methods are having dimensionality curse. Their performance degrades with 

dimensionality increase. Here we study the skyline problems and identified the 

organization and grouping property of skyline process will be improved when we follow 

Z-order curve properties. With the help of B+tree and Z-order we propose to use new 

Index tree, VS-Tree, as a primary organizational mechanism to address efficient skyline 

processing issues like dominance and search. The Developed Search algorithm is best 

with respect to both dimensionality and cardinality, and firmly overcomes DUSD and 

BBS, the best search algorithms. We examined our approach with existing best algorithms 

with respect to different variants like k-dominance skyline queries. The result shows that 

our method is best. 
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