
International Journal of Database Theory and Application

Vol.9, No.12 (2016), pp.9-22

http://dx.doi.org/10.14257/ijdta.2016.9.12.02

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Applying Z-Curve Technique to Compute Skyline Set in Multi

Criteria Decision Making System

T. Vijaya Saradhi
1
, Kodukula Subrahmanyam

1
, P. Venkateswara Rao

1

and Hye-jin Kim
2

1Department of Computer Science and Engineering,

K L University, Andhra Pradesh

{saradhi1440, smkodukula, pvrao}@kluniversity.in

2Sungshin Women's University,

2, Bomun-ro 34da-gil, Seongbuk-gu,

Seoul, Korea

hyejinaa@daum.net

(Corresponding Author)

Abstract

The skyline queries are the best tools to be used in distributed multi criteria decision

making of web based applications for user commendations. However, as the Data

dimensions are increasing size of dominance set and skyline set is also increasing.

Increasing dimensionality becomes the major problem with real word databases. In

skyline computation major cost depends on finding dominance tests between high

dimensional objects and the order in which they are accessing. Space filling Z-curve is

the best suitable way to address the challenges in skyline computation. In this proposed

work, we incorporated Z-curve with optimized skyline boundary detection algorithm to

effective access and early pruning. In this paper efficient hybrid index structure was

proposed which takes the advantage of sorting and partition approaches to improve the

storage and search efficiency. Experimental results show that our propose approach is

better than the previous static skyline computation techniques in terms of searching and

finding skyline set.

Keywords: Skyline computation, Z-curve, probabilistic skyline computation, boundary

detection algorithm

1. Introduction

Decision making is the key aspect in everywhere. Now a day’s Computational

applications are highly distributed and generating huge high dimensional uncertain data.

Users are interested in accuracy and posing queries on different dimensions. So there is

need of efficient strategies. Skyline analysis is an approach which gained high

significance attention as it is being used in the multiple criteria decision making

applications. Our computation method should be designed in such a way that it can be

extended from single dimensional to multiple dimensional subspaces. Given a set of T

dimensional data set of real estate ventures containing ventures p1, p2, p3…..pn; we

obtain a skyline set of T such a way that skyline venture objects are not overruled by any

of the venture object in the given pool of objects. If we want to consider one venture

point p1 dominates another venture point p2 if all dimensional values either equal or less

than the corresponding dimensions of comparing object but at least one dimension value

should be less than the corresponding dimension of other object.

Let us see Figure 1 which gives out skyline set for selecting best Real estate venture

among other venture. Top venture is decided by the user based on two dimensions, price

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

10 Copyright ⓒ 2016 SERSC

and distance to the beach. We can plot all venture objects in two dimensional space. X-

dimension indicates distance from venture to beach, and y-axis represents venture price.

Skyline retrieves venture objects with low Prices and short distances, i.e., the dots p3, p2,

p1, p5, p6 in Figure 1.

Figure 1. Skyline Example

In Real time applications user may interested in sub space skylines as well as full

space. In our venture selection, different users may have different interests. So we need to

compute the skylines in different subspaces such as (price; Space), (price; travel time to

airport) and (price; travel time facilities). Normally, a skyline sets are changing with the

change in the dimensions. To answer user queries efficiently, a skyline analysis system

needs to maintain skyline of each and every subspace. If objects are having n dimensions

then we need to find skyline sets in 2n-1 subspaces. The sky cube is a set of all skylines in

all non-empty subspaces. Finding of sky cube will be a difficult task if number of

dimensions is increasing. We observed that cost of skyline analysis impacted by 3 issues

(1) Dominance Tests count, (2) Access Order of the objects and (3) Grouping and

comparing techniques are important for the competence of dominance test.

2. Related Work

Database researchers are attracted by the applicability of skyline computation in

various fields [4]. We have gone through the algorithm which works with different

dimensions and with total or partial ordering domains [5]. SUBSKY, a dimensionality

reduction algorithm it indexes the objects using B-Tree [5-6].The cost of the skyline

computation on static data depends on dominance test. All these methods propose

different heuristic ways to speed up the cost of dominance [9].

To efficiently answer the user queries sky cube is one solution. In this we need to find

subspace skyline for every subspace. Second, it reduces the dominance tests by finding

the skyline points by already derived skyline points [2, 10].Finding sky cube is very time

consuming task when object dimensionality is high. In traditional pair wise dominance

approach sky cube computation leads to dimensionality curse problem [7].

 So many algorithms were proposed in database environment for static as well as

probabilistic uncertain data [6] and data streams in centralized environment [9].These

algorithms can be categorized based on two approaches, sorting and partitioning [14].

1. Sorting-based Algorithms: In this type of algorithms effective selection of cutoff

points will be used for early pruning of non-skyline objects. So optimization of Pivot

selection will be crucial in Sorting-based skyline algorithms. In these algorithms main

focus is on optimizing of dominance. They didn’t consider incomparability and search

space pruning [3-4].

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

Copyright ⓒ 2016 SERSC 11

2. Partition based algorithms: partitioning based algorithm divides the space into

regions based on the commonality of data. So we can achieve high impact on cost of

dominance by performing region level comparisons and incomparability of regions.

Available partitioning based algorithms gets advantage by portioning but they dint

considers the access order.

Table 1. Different Types of Techniques Used in Skyline Computation

Technique Method

Block Nested Loop Pair wise comparison

Divide and Conquer
Chop up the dataset into smaller enough ones that can fit into memory

individually. Process each of them to get final results.

Index
Group tuples according to their minimum dimensions. Sort each

group and process top tuples of all groups.

Nearest Neighbor
Use nearest neighbor search to find skyline points which further

divide the space for recurring processes.

Streaming Skyline Compute skyline points in a streaming database.

2.1. Skyline Query Processing

Different available Skyline computation algorithms, are Block-Nested Loop (BNL) [3],

Divide-and-Conquer (D&C) [3], Bitmap [15], LESS [8], Index [15], Sort-Filter-Skyline

(SFS) [7], Nearest Neighbor (NN) [10], and Branch and Bound Search (BBS) [13], all

these can be categorized using the divide-and-conquer and/or sorting strategies. Below

depicts the summary. BNL and Bitmap are not following any strategy so they are

considered as brute force approach. Below is the categorization based on D&C and

sorting techniques?

Table 2. Classification of Skyline Query Algorithms

2.2. Divide and Conquer Algorithms

D&C partition a dataset into a few regions sufficiently little to be stacked into the

memory for handling [3]. Every region finds its partial skyline set .By applying merge

process on all the partial skylines it finds the final skyline set.

2.3. Sorting-based Algorithms

Sorting based algorithms needs presorted database. Data can be presorted based on any

scoring function. If data is sorted then any object, with value less than the current object

value, can’t dominate. So we can easily find partial skyline. SFS and LESS are sorting

based algorithms. Sorting based algorithms doesn’t have search space pruning ability.

2.4. Hybrid Algorithms

NN and BBs are hybrid skyline algorithms. BBS is the available new efficient

algorithm. This follows the traditional Iterative NN approach. Below Figure 2

demonstrates the BBS with 9 points in 2D space. In the whole space p1 is the nearest

neighbor (nn) from origin. So definitely it will be the skyline. Point’s falls under the

rectangular dominance region spanned p1 and maximal corner will be definitely overruled

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

12 Copyright ⓒ 2016 SERSC

by p1.Then repeatedly find next nn and prune any dominated points. In this next nn is

p3.Next nn is p5.By finding p5 p7 will be eliminated. By finding p2 and p6 in similar way

search will be terminated.

Figure 2. BBS Approach

3. Distributed Skyline Properties

Every efficient Distributed system has to satisfy three properties those are bandwidth

minimization, progressiveness and effective pruning.

3.1. Minimization of Bandwidth Consumption

In distributed systems are constrained with high bandwidth consumption. Here

bandwidth measured in terms of transmitted objects. In realistic scenario more bandwidth

is required for message synchronization and for message routing information. But this

will not considered when calculating bandwidth.

3.2. Progressiveness

Because of the complexity of skyline processing it may take more time than the range

queries and top-k queries. The total query processing time may be increased drastically if

we consider network delay in distributed skyline query processing. To overcome this it

would be better if skyline algorithm follows progressiveness property. A progressive

algorithm informs the resultant objects as soon as it founds. Later it produces left over

results before query execution [10].This is the difficult objective to accomplish.

3.3. Effective Pruning

In distributed skyline computation dominance is costly effort. This can be eliminated

by effective pruning. By effective pruning we can even eliminate distributed site, which

can’t contribute to the final result, without participating into skyline process. Early

pruning minimizes the computation cost drastically.

4. Architecture

Here, in Figure3 we are representing how the high dimensional data is handled. In this

4 stages are there. 1) Data access. 2) Dominance test and candidate confirmation. 3)

Candidate Reexamination. 4) Update stage.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

Copyright ⓒ 2016 SERSC 13

Figure 3. Distributed Site Skyline Architecture

In Distributed multi criteria decision making system query will be answered in all

distributed sites. They will be arranged based on its local skyline probability and highest

probability object will be sent to the central server. Thus server collects all local sites high

probable objects (D0) and again finds the skyline set of D0.Highest probable skyline object

will be sent to the every local site to prune their local skyline objects, which may not

contribute to the final solution. It find the global skyline probability of the object to

determine its eligibility to become member of final skyline object. To finds the local

skyline point’s skyline processor uses Z-order curve properties [19] and VS-Tree index

structure to convert and organize skyline points. Below Figure4 shows the details of

distributed skyline Framework.

5. Z-Order Curve

The ability of skyline preparation relies on conducting dominance test and the order of

processing data points. Block based dominance instead of pair wise dominance reduces

the cost. Order of accessing is essential because early identification of skyline object will

be helpful to avoid many candidate examinations and reconsideration. The properties of

Z-curve have well matched with the skyline processing strategies. Figure6 illustrate with

9 2D points example. Entire space is divided as 4 equivalent regions namely R1, R2, R3,

and R4. Information points in RI are not overwhelmed by information focuses in the other

three regions. Unexpectedly, all information focuses in R4 are ruled out by any point in

R1. That is until R1 is nonempty every point located inside R4 can be disposed from

examination. R2 and R3 are opposite to one another, and their data points don't dominate

one another.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

14 Copyright ⓒ 2016 SERSC

Figure 4. Distributed Skyline Framework Architecture

Dominance tests between them can be kept away from. But some of the data points of

R2 and R3 may be dominated by R1 .These perceptions will be used to speed up the

dominance tests in region level

These facts help to follow the access order which will be exactly fit for skyline process.

According to this we access Region I Region II Region III and finally Region IV. Same

logic will be applicable to sub regions also. This access order exactly looks like rotated Z.

This Z-order space filling curve can start access from origin.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

Copyright ⓒ 2016 SERSC 15

Figure 5. Example Z-order Curve

Z-curve is proposed to map the data from high dimensional to single dimensional. Each

point will be represented by one number. That number is called Z-number. It is a

sequence of bits. This bit sequence is formed by picking the bits in all dimensions

alternatively. Take a k-dimensional object space with coordinate domain range ([0,2
n

-

1]).We can covert that point as single dimensional “kn” bits. This can be viewed as n k

bit groups. The jth bit of any Z-number is formed by the (j/k)th bit of the (j%k)th

dimension. To compute the Z-number first convert the coordinate values into binary

format. Then by interleaving the bits of all dimensions we can form the Z-number. In

above example P7 Z-number is 101101 and p4 Z-number is 011111. In our example first

k bits partitions the space into 4 subspaces. 2
nd

 k-bit group divides the subspace into 4

subspaces. Points with similar bits will share the same subspace. Example p2 and p4 share

same subspace because they have same first bit group (i.e., 01).

5.1. Monotonic Ordering

Non decreasing arrangement of Z-number follows the property that “dominating point

placed before dominated points”. So that we can reduce computation cost.In Figure 5,

according to Z-order curve, p1 is accessed first before p8 and p9. Before p4, point’s p2,

p3 will be accessed and p5 is accessed before p7. Reexamination will be avoided by this

access order.

5.2. Clustering

Non decreasing Z-numbers follow clustering property. Because of this, data points of

the same region will have similar address. For example, p2, p3 and p4 are available in the

same region and they share common prefix 01. Similarly, p5, p6, and p7 are sharing same

subspace because of similar bit group. This kind of making Grouping data can give

chance to block-based dominance tests. We can eliminate dominance tests when two

groups are incomparable. In addition to this as soon as finding data point in dominating

region we can avoid the dominance test between points in the dominating region and

dominated region. For example, p8 and p9 are in region IV. So can be safely discarding

them once if p1 is identified in dominating region.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

16 Copyright ⓒ 2016 SERSC

Figure 6. 2D Data Space

6. VS Tree Index Structure

Z-order curve supports two key properties in skyline set calculation i.e, monotonic

ordering and clustering. To make our process efficient we need to design one efficient

index structure which incorporates these key properties. We need to convert high

dimensional data points onto one dimensional address. For all these we will create a new

index approach with Z-order curve and B+ tree. Existing Index structures like R-Tree,

UB-tree are having their own limitation so our goals is to i) processing data in Z-order

fashion and ii) Maintain data points in blocks to support efficient pruning. Thus, this work

proposes VS Tree, a new variant of B+-tree. VS tree divide a Z-curve into disjoint

segments. Each segment is a region. So that clustering property is attained. In VS tree,

data will be maintained in leaf nodes and non-leaf nodes represents objects range in the

form of Intervals [a, b].The space segment enclosed by a Z-order curve segment is called

Z-region. For example, the curve starting at point p8 and ending at point 9 is Z-

region..There is no restriction on Z-region size and form as shown in fig-4. We bound a

Z-region with a ZR-region. A ZR region is defined as below.

ZR-reign: A ZR-region is a small square spanning a ZR region covered by interval

[A,B] A and B are minimum and maximum z-numbers.

Figure 6. VS-tree

The above tree index structure takes more memory than required but it increases the

search efficiency. In this tree structure leaf nodes used to hold the data and non-leaf nodes

were used to represent the range or interval of descendent leaf nodes of that node. This

process will be recursively continued in bottom up fashion to construct tree.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

Copyright ⓒ 2016 SERSC 17

6.1. Algorithm for Dominance Test

Boolean Test_Dominate (T, Min, Max)

 Begin

 Queue Q, NODE N;

 If (T==NULL)

 {

 printf (“Tree Null”);

 Return (false);

 }

 Enqueue (Q, T);

 While (! empty (Q))

 Begin

 N=Dequeue (Q)

 If N not a leaf node then

 Begin

 For all children nodes K of N do

 If K’s RZ-region’s Max Dominates

 Min then return (True)

 Else

 K’s RZ-region’s Min Dominates

 Max then Enqueue (Q, K);

 End

 Else

 Begin

 For all children nodes K of N do

 If K dominates Min then Return (True);

 End

 End

 Return (false);

End

6.2. Algorithm for Search

VSTree Search (VSTree T)

Begin

 VSTree SL, Stack S, NODE N;

 If (T== NULL)

{

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

18 Copyright ⓒ 2016 SERSC

 Printf (“No data source data”);

 Return;

}

Push(S, T);

 While (! Empty(S))

 Begin

 Xyz: N=pop(S);

 if (Test_dominate (SL,Min (N),Max(N)) then

 Goto xyz;

 if N is a non-leaf node then

 For all children nodes K of N do

 Push(S, K);

else

For all children nodes K of N do

if (! Test_Dominate (SL, Min (K), Max (K)) then

 Insert (SL, K);

End

Return (SL);

End.

7. Results

Here we evaluate our framework in terms of bandwidth consumption, computation

time and resource utilization. In these experiments we have taken default values for some

attributes of distributed system. Those are total database cardinality N as 2000K objects,

object dimensionality d varying from 3 to 10, probabilistic threshold q varying from 0.3 to

0.9. and total number of distributed sites m equal to 50.These experiments were

conducted on both uniform and anti-correlated data distribution on an average of 20

queries. It is evident that efficiency of proposed framework is superior to DUSD. All the

below results were taken under the same parameter settings with an average of 20 queries.

7.1. Data Transmissions Vs. Dimensionality

We conducted experiment to evaluate the impact of distributed skyline query execution

performance with dimensionality varying. These results were observed on two

distributions, namely uniform and anti-correlated distributions with the default values

such as local distributed data base cardinality N/m, number of local distributed sites(m)

equals to 20,object dimensionality varying from 4 to 10. And threshold probability

0.4.With these default setting we observe that if dimensionality is increasing then

domination gets decreasing so size of the local skyline is increasing thus the

communication bandwidth expense will also increasing in both the distributions. Our

proposed framework takes less bandwidth. Improved global probability threshold and

early pruning makes our framework outstanding.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

Copyright ⓒ 2016 SERSC 19

Table 4. Object Transmission vs. Dimensionality

Object

Dimensionality(d)

Total Number of

Objects Transmitted in

SKYPLAN Approach

 Total Number of

Objects

Transmitted in

DUSD

Total Number of

Objects Transmitted in

Proposed VS-

Framework

3 166 55 36

4 194 80 66

5 228 113 86

6 252 130 104

7 282 158 125

8 340 210 160

9 386 250 190

10 434 296 240

Figure 7. Dimensionality vs. Bandwidth

Table 5. Local Sites vs. Data Transmission

Total Number of

Local Sites in

Distributed

System(m)

Total Number of

Objects

Transmitted in

Skyplan Approach

Total Number of

Objects

Transmitted in

DUSD.

Total Number of Objects

Transmitted using Proposed

VS-Framework.

4 225 124 80

5 248 140 98

6 264 166 138

7 292 188 168

8 326 227 187

9 382 242 209

10 434 296 240

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

20 Copyright ⓒ 2016 SERSC

Figure 8. Local Site vs. Data Transmission

8. Conclusion

In this work, we proposed a novel method for organizing and retrieving of high

dimensional data to enable skyline computation using Z-order curve. This will be useful

in finding skyline in many applications handling high dimensional objects. Previous

methods are having dimensionality curse. Their performance degrades with

dimensionality increase. Here we study the skyline problems and identified the

organization and grouping property of skyline process will be improved when we follow

Z-order curve properties. With the help of B+tree and Z-order we propose to use new

Index tree, VS-Tree, as a primary organizational mechanism to address efficient skyline

processing issues like dominance and search. The Developed Search algorithm is best

with respect to both dimensionality and cardinality, and firmly overcomes DUSD and

BBS, the best search algorithms. We examined our approach with existing best algorithms

with respect to different variants like k-dominance skyline queries. The result shows that

our method is best.

References

[1] B. W. Tilo, U. Güntzer and J. X. Zheng, “Efficient distributed skylining for web information systems”,

Advances in Database Technology-EDBT 2004, Springer Berlin Heidelberg, (2004), pp. 256-273.

[2] B. Kevin, J. Goldstein, R. Ramakrishnan and U. Shaft, “When is “nearest neighbor” meaningful”,

Database Theory-ICDT’99, Springer Berlin Heidelberg, (1999), pp. 217-235.

[3] S. Borzsony, D. Kossmann and K. Stocker, “The skyline operator”, Proceedings of 17th IEEE

International Conference on Data Engineering, (2001), pp. 421-430.

[4] B. Christian, “On the average number of maxima in a set of vectors”, Information Processing Letters,

vol. 33, no. 2, (1989), pp. 63-65.

[5] C. C. Yong, H. V. Jagadish, K. L. Tan, A. K. H. Tung and Z. Zhang, “Finding k-dominant skylines in

high dimensional space”, Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, ACM, (2006), pp. 503-514.

[6] S. Kaushik, S. Chaudhuri and N. N. Dalvi, “Robust cardinality and cost estimation for skyline operator”,

U.S. Patent 7,707,207, (2010).

[7] J. Chomicki, “P. Godfrey. J. Gryz and D. Liang. Skyline with presorting”, Proceedings of 19th Int., vol. 1,

(2003), pp. 717-719.

[8] G. Parke, R. Shipley and J. Gryz, “Maximal vector computation in large data sets”, In Proceedings of the

31st international conference on Very large data bases, VLDB Endowment, (2005), pp. 229-240.

[9] H. Zhiyong, C. S. Jensen, H. Lu and B. C. Ooi, “Skyline queries against mobile lightweight devices in

MANETs”, Proceedings of the 22nd International Conference on Data Engineering, 2006. ICDE'06,

IEEE, (2006), pp. 66-66.

[10] K. Donald, F. Ramsak and S. Rost, “Shooting stars in the sky: An online algorithm for skyline queries”,

In Proceedings of the 28th international conference on Very Large Data Bases, VLDB Endowment,

(2002), pp. 275-286.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

Copyright ⓒ 2016 SERSC 21

[11] L. Xuemin, Y. Yuan, W. Wang and H. Lu, “Stabbing the sky: Efficient skyline computation over sliding

windows”, In Proceedings of 21st International Conference on Data Engineering, 2005. ICDE, (2005),

pp. 502-513.

[12] A. O. Jack and T. H. Merrett, “A class of data structures for associative searching”, In Proceedings of

the 3rd ACM SIGACT-SIGMOD symposium on Principles of database systems, ACM, (1984), pp. 181-

190.

[13] P. Dimitris, Y. Tao, G. Fu and B. Seeger, “Progressive skyline computation in database systems”, ACM

Transactions on Database Systems (TODS), vol. 30, no. 1, (2005), pp. 41-82.

[14] R. Frank, V. Markl, R. Fenk, M. Zirkel, K. Elhardt and R. Bayer, “Integrating the UB-Tree into a

Database System Kernel”, In VLDB, vol. 2000, pp. 263-272.

[15] T. K. Lee, P. K. Eng and B. C. Ooi, “Efficient progressive skyline computation”, In VLDB, vol. 1,

(2001), pp. 301-310.

[16] Y. Tao and D. Papadias, “Maintaining sliding window skylines on data streams”, IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 3, (2006), pp. 377-391.

[17] W. Ping, D. Agrawal, O. Egecioglu and A. E. Abbadi, “Deltasky: Optimal maintenance of skyline

deletions without exclusive dominance region generation”, In IEEE 23rd International Conference on

Data Engineering, 2007. ICDE, (2007), pp. 486-495.

[18] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal and A. E. Abbadi, “Parallelizing skyline queries for

scalable distribution”, In Advances in Database Technology-EDBT 2006, Springer Berlin Heidelberg,

(2006), pp. 112-130.

[19] C. K. L. Ken, W. C. Lee, B. Zheng, H. Li and Y. Tian, “Z-SKY: an efficient skyline query processing

framework based on Z-order”, The VLDB Journal, vol. 19, no. 3, (2010), pp. 333-362.

International Journal of Database Theory and Application

Vol.9, No.12 (2016)

22 Copyright ⓒ 2016 SERSC

