
`International Journal of Database Theory and Application

Vol.9, No.11 (2016), pp.83-94

http://dx.doi.org/10.14257/ijdta.2016.9.11.08

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

An Improved Model of General Data Publish/Subscribe Based on

Data Distribution Service

Shufen Liu, Xuejun Ma* and Xinyong Wang

College of Computer Science and Technology, Jilin University, Changchun

130012, China

jlmxj08@163.com

Abstract

Most existing data publish/subscribe systems applied in a particular field, the lack of

generality. In order to satisfy the general support for interdisciplinary model, proposed

an improved model of general data publish/subscribe. The model supports the

configuration and modification of the underlying data types. In order to avoid the impact

on the application layer while changing the underlying DDS product, proposed an

encapsulation on DDS based on the abstract factory pattern. Finally, through simulation

experiments to verify the feasibility of the proposed model, the simulation results show

that the improved model can be well applied to various types of data publish/subscribe

occasions, with high performance.

Keywords: DDS, Data type, Interface encapsulation, RTI

1. Introduction

Data Distribution Service (DDS) has been used for many years in military command

information systems in foreign countries, the proposed thought of the data-centric

coincides with the thought of the information-centric used by command information

systems and new type of combat guiding ideology. Some characteristics of DDS itself can

solve the problems that the business function of command information systems is difficult

to realize. At the same time, DDS has the advantages of real-time and various QoS can be

selected [1], the use of DDS in command information systems has significant

significance.

However, current research related to this article is mostly concentrated in data

distribution service with a particular area [2], the lack of universal. In this paper, the

design of the improved model of general data publish/subscribe based on Data

Distribution Service (IMGDPS) is the universal publish/subscribe model of DDS

communication data for data communication service, and the underlying data types can be

configured and modified, which has an independent function of publish/subscribe various

types of data. Compared with the model proposed in reference [3], the function is more

perfect and the structure is more reasonable.

OMG DDS specification uses the IDL language to describe the DDS implementation

how to follow the interface and the semantics of each interface, but does not specify the

mapping of specific language, this resulting in the concrete implementation of DDS

appeared a variety of different ways of mapping. Currently, the companies provide DDS

products have reached more than a dozen, the DDS products they provide support for the

specification and the underlying technology used by each are different, such as RTI DDS

[4], OpenSplice DDS [5], OpenDDS, etc. Application layer programming relies on APIs

provided by the specific DDS implementation, although these APIs follow the same

semantics, but due to the different forms of presentation, the need for adaptation

transplant in multiple DDS implementations. If the underlying DDS-based code could not

seamlessly replaced, will lead to portability issues.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

84 Copyright ⓒ 2016 SERSC

This paper proposed the encapsulation of DDS for shielding interface differences

among different DDS implementations, and high-level just for programming with the

abstracted interface only, without concerning for the corresponding concrete class of DDS

products. In this way, no matter what the underlying DDS product changes, the interface

encapsulation layer will provide to the upper layer of the conformity and unified abstract

interface. The high-level care only about the interface of the interface encapsulation layer,

no longer makes the function of the application layer is not coupled with the underlying

concrete DDS product APIs. The interface encapsulation layer realizes the function of the

application layer and the underlying DDS can change independently.

The paper is organized as follows: section two, analyses the related theories; section

three, designs the architecture of IMGDPS, elaborates the encapsulation method of DDS;

section four, simulation tests for IMGDPS; section five, gives the conclusion of this

paper.

2. The Related Theoretical Basis

2.1. DDS Specification

DDS is the data-centric specification based on publish/subscribe mechanism,

developed by the Object Management Group in order to meet the demand for distributed

real-time communication [6-8]. It provides a platform-independent data model, using

Global Data Space [9] instead of central server, for managing the entire distributed system

of the topic publication, topic subscription, the maintenance of the node information, and

the relevance of the nodes. DDS has inherent QoS policy can be used to control the

transmission quality of data distribution. DDS specification only defines its APIs through

the platform independent language IDL, so that DDS is platform independent.

2.2. The Hierarchy of DDS

DDS specification is divided into two layers [6,10], they are Data Centric

Publish/Subscribe (DCPS) layer and Data Local Reconstruction Layer (DLRL). DCPS

layer provides the API interface, meta-information data types and event notification

mechanism of the message publish/subscribe, settings and semantics of the QoS policies,

the whole architecture of the middleware, etc.

DCPS layer can make data be transmitted from publish side to subscribe side more

quickly and efficiently, if you want to integrate with the application level, it can be

considered using a higher level of DLRL. DLRL is an optional part of DDS specification,

which specifies DDS integrates with the application layer in a simple seamless way.

Using DLRL, developers can define their own classes, make their own classes attached

with some communication entities of DCPS layer, then through the operation of the class

object to call the actual DCPS layer operation, thus give the user a better programming

experience. The hierarchy of DDS is shown in Figure 1.

javascript:void(0);

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 85

Data Centric Publish/Subscribe

（DCPS）

Application

Data Local Reconstruction Layer

（DLRL）

The underlying transport platform

Figure 1. The Hierarchy of DDS

3. The Design of IMGDPS

3.1. Architecture Design of IMGDPS

The design of the system structure is usually according to the hierarchical approach on

the system to do a very coarse-grained grouping about class, package or subsystem,

having the responsibilities of the main aspects of the system to be cohesive [11-12].

IMGDPS require independent function of publish/subscribe various types of data, and the

underlying data types can be configured and modified. According the requirements, we

design the architecture of IMGDPS, it is divided into three levels: Technical Service

layer, Domain layer and the User Interface layer. The architecture is shown in Figure 2.

Domain

User Interface

Technical Service

Configuration Management
Operation Management

Analysis DDS Data

Receive DDS Data

Send DDS Data

Generate DDS Data

Real-Time

QoS

Data Content

Common

DDS Entity

Transfer Type

Data Type

Generated
Dynamically

defined

Custom/

Legacy

Pre-defined/

Opaque

DDS_WrapperLogPersistence Memory Management

Figure 2. Architecture of IMGDPS

(1) Technical Service layer

Technical Service layer contains four modules: DDS_Wrapper, Memory Management,

Log and the Persistence.

The DDS_Wrapper module implements the encapsulation and functional adaptation of

DDS, this will be discussed in detail in Section 3.2.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

86 Copyright ⓒ 2016 SERSC

In order to improve the reliability of the model, due to the continuous request or

possible waste of resources, the Memory Management module mainly uses the Bridge

Pattern to realize a different combination of storage mode and storage area types. By

limiting the maximum number of available resources, combined with the logic cycle

semantics to achieve the purpose of the model running for a long time.

The Persistence module implements the access to the configuration file.

(2) Domain layer

Each entity in the Domain can only communicate with entities in the same Domain,

does not feel the existence of entities in other Domain, so the data publish/subscribe of

different Domain can work independently. Domain layer contains two modules:

Configuration Management and Operation Management.

Configuration Management completes the configuration operation, it includes six sub-

modules: Data Type configuration, DDS Entity configuration, Data Content

configuration, QoS configuration, Transfer Type and Common configuration. With Data

Type configuration module, we can generate new data types; dynamically modify the

supported data types of the model, set the field name and field types, as well as the name

and key field information of data types; we can use custom/legacy or pre-defined/opaque

data types in our model expediently.

Operation Management completes the operation management, it includes four sub-

modules: Generate DDS Data, Receive DDS Data, Send DDS Data and Analysis DDS

Data.

(3) User Interface layer

User Interface layer contains all the functionality of the user interface. The layer is

used to display the specific publish/subscribe information of the configured subsystems,

display the received data information, as well as the users interactive fill the data and

trigger the completion of data publication.

3.2. Design of DDS_Wrapper

Although all of DDS products follow the same interface specification, due to the use of

techniques are different, there are still some subtle differences in specific interface

presentation, it hinders the use of the code written by DDS to be unchanged used in other

DDS products. For this model, because the future choice of DDS products is uncertain,

proposed the DDS_Wrapper layer, thus shielding the APIs differences between specific

DDS products, has the vital significance to the system development, integration and

deployment.

(1) The encapsulation thought

Abstract factory pattern provides an interface to create a series of related or mutually

dependent objects, without specifying their concrete classes [13]. The pattern is used for

shielding the underlying differences, is a construction mode of providing unified interface

to the high-level. It is used to design a series of correlated objects and class libraries of

some products, just want to show its interface to the high-level and hide the underlying

implementation using this. The pattern is often combined with the singleton pattern in

common use, it separates the specific product realization and the interface expression, so

that implementation can evolve independently of the interface.

For DDS, we define an abstract factory class IEntityFactory, the class declares the

interface used to create all other DDS entities. Each specific DDS entity abstracts an

interface corresponding to it. IEntityFactory defines the creation method of the abstract

interface to a series of specific entities, when using the specific implementation of DDS,

only need to implement these interfaces to achieve the specialization of the specific DDS

APIs, and then you can directly create the corresponding entity interface to complete

high-level functions. High-level doesn't care about the underlying concrete class which is

used, the underlying concrete class of DDS is transparent to the high-level.

javascript:void(0);

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 87

(2) The encapsulation method

On the basis of DDS encapsulation, we make a specialization of RTI DDS. Including

the use of DDS_DynamicData and DDS_TypeCode provide by RTI DDS to achieve the

type bindings at the runtime, improves the flexibility. Relations of these interfaces are

shown in Figure 3.

<<create>>

+setMember()
+getMember()

<<interface>>
ITopic

+handleTopic()

<<interface>>
ITopicReceived

+sendTopic()

<<interface>>
ITopicWriter +createTopic()

+createTopicReader()
+createTopicWriter()

<<interface>>
IEntityFactory

+subscribeTopic()
+unsubscribeTopic()

<<interface>>
ITopicReader

RTI_Topic

RTI_DataWriter RTI_EntityFactory RTI_DataReader

* 1 1 *

*
1

*

1

<<create>> <<create>>

*

1

*

1

Figure 3. Related Interfaces of DDS Encapsulation

IEntityFactory is the role of the abstract factory, which is used to create a series of

abstract products. IEntityFactory as the entry point to the wrapper of DDS application,

will also participate in the related operations of DDS domain, including the maintenance

and release of DDS resources, the discovery of DDS nodes, etc. IEntityFactory exists as a

container for a series of entities it created, maintains the life cycle of entities it created,

and provides its internal entity query work, etc. IEntityFactory is a pure virtual interface,

in actual use needs specialized for specific DDS, as shown in Figure 3, we made a

specialized version of RTI DDS, RTI_EntityFactory as the entry point of all RTI DDS

related operations.

ITopic interface is the abstraction of topic and data samples associated with topic in

DDS specification, provides the interface method for read/set the relevant field in data

samples. ITopicWriter interface is the abstraction of datawriter and publisher entities in

DDS specification, which can be used for publisher to write topic to the network.

ITopicReader interface is the abstraction of datareader and subscriber entities in DDS

specification, which can be used for subscriber to read topic from the network.

ITopicReceived interface can be seen as the encapsulation of the listener mechanism of

DDS.

Through the abstracted interface above, we have finished the call between the bottom

DDS middleware and the upper application. The upper application depends only on the

interface we abstract, and no longer depend on the specific implementation of DDS APIs,

the concrete realization of the lower level DDS just need to achieve our interface. Here,

our DDS_Wrapper layer is a glue layer, it lifting the coupling of the upper application and

the concrete implementation of the underlying DDS, so that the seamless replacement of

different DDS products can be realized.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

88 Copyright ⓒ 2016 SERSC

4. Simulation and Evaluation

According to the structure of IMGDPS, the simulation system is constructed and

simulated by using multiple computers under the laboratory environment, and complete

the required function and performance evaluation.

4.1. Function Evaluation

Function evaluation is to explore IMGDPS for the current simulation system on the

function support of data publish/subscribe, by selecting more representative

communication scenarios. We select the typical scene of the lab, and the evaluation script

is put forward according to the requirement. Scene is the system A and system B all

messages interaction, the communication scenario covers all message types of this

simulation system and the way the message transmission, Table 1 describes the evaluation

script and execution results.

Table 1. Evaluation Script and Execution Results

Operation Results

A subscribe M1_Info, M2_State,

M3_Info, M6_Info

B subscribe M1_Info, M4_Data,

M5_State, M6_Info

Using RTI Analyzer to view the publication and

subscription information of nodes

A send M4_Data B received M4_Data, the data is consistent

B send M1_Info A and B received M1_Info, the data is consistent

A cycle to send M6_Info A and B continuously received M6_Info data update

B cycle to send M2_State A continuously received M2_State data update

A update M5_State B received M5_State data update

B update M3_Info A received M3_Info data update

From Table 1 we can see that the simulation system completely covers the script of the

scene, and the simulation results show that IMGDPS is fully adapted to the functional

requirements of system A and system B for the data publish/subscribe in the scene.

4.2. Performance Evaluation

Through measuring the message transmission delay, jitter, maximum transmission rate

and throughput to evaluate the performance of IMGDPS, analyze the change trend of the

performance, to check whether they are able to meet the performance requirement of the

existing simulation system [14-15].

(1)Delay

Select the one-to-one and one-to-many (test using 4 units) for DDS messaging,

according the different length of messages, measure the message delay respectively.

Using 100Mbps network card for different sizes of messages transmission, at least about

1000 samples were collected from the transmission interval of 10ms, take the average

delay. Results as shown in Figure 4, abscissa is the message size (byte), ordinate for the

delay time (microseconds).

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 89

Figure 4. Delay

When the sample size is less than 5000 bytes, the delay is similar in below 2000

microseconds and the increase is not obvious; but when the sample size rise to 10000

bytes, whether it is one-to-one or one-to-many transmission, the delay will have a more

substantial increase, and with the increase of sample size, the trend of the delay also

increases linearly. One-to-many, using the network analysis tool Wireshark for analysis,

in the case without changing the default QoS policies, each packet will be delivered in the

form of point-to-point. So from the analysis of results shown above, when increasing the

number of subscribers, delay will increase.

From the perspective of practical application, the actual size of sending and receiving

packets for the application layer is usually less than 4k (typically less than 1k), in this case

using IMGDPS the delay is smooth enough to meet the requirements of real-time

communication.

(2)Jitter

According to the delay sample values, the jitter of the system delay is calculated.

Results as shown in Figure 5, abscissa is the message size (byte), ordinate for the delay

jitter rate (ratio).

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

90 Copyright ⓒ 2016 SERSC

Figure 5. Delay Jitter

From Figure 5 we can see that with the increase of packet size, whether it is one-to-one

or one-to-many transmission, when the package size is less than 5000 bytes, delay jitter

rate steady at around 10%, when more than 5000 bytes, delay jitter rate increased rapidly.

Because as packet size increases, the corresponding IP packets will be more and more

when the network layer is transmit. More delay will cause the instability of the delay,

which means the delay jitter rate will increase significantly.

From the practical application point of view, the message packet size of the application

layer is generally less than 5000 bytes, in this case, the delay jitter rate steady at about

10%. This provides a basis for forecasting the worst case of the system, it proves that the

system under the worst case delay is not big, indicating IMGDPS is sufficient to meet the

requirements of the delay stability.

(3)Maximum transmission rate

Select the one-to-one for DDS messaging, just to send and receive one topic. On

sending machine sends DDS messages continuous uninterrupted, ensure the subscriber

can receive the messages. Constantly changing the length of the messages, recording the

number of messages that can be sent per second is the maximum transmission rate. The

sender uses two kinds of network cards for measurement: 100Mbps and 1000Mbps.

Results as shown in Figure 6, abscissa is the message size (byte), ordinate for the message

rate (n/s).

From Figure 6, the maximum transmission rate is almost constant and at a high level

when the sample size is no more than 500 bytes. When more than 1000 bytes, the two

kinds of network cards shown different message transmission rate. Using 100Mbps

network card, the sample size less than 500 bytes exhibited a similar message

transmission rate; samples of 500 to 5000 bytes in size have the consistent message

transmission rate, but is lower than samples less than 500 bytes in size; when more than

10000 bytes, message transmission rate reduced significantly. Using 1000Mbps network

card, in addition to the sample size is less than 500 bytes show a consistent message

transmission rate, with the increase of sample size, the message transmission rate declines

linearly.

When the data timeliness requirements are high, the smaller data format should be used

to transmit DDS packets to improve the message transmission rate, meet the real-time

requirements of the specific communications.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 91

Figure 6. Maximum Transmission Rate

(4)Throughput

Select the one-to-one for DDS messaging, just to send and receive one topic. On

sending machine changing the sending frequency, send 10000 messages, ensure the

subscriber can receive the messages, until get a critical maximum transmission rate.

Constantly changing the length of the messages, recording the total time used for sending

10000 messages. The sender uses two kinds of network cards for measurement: 100Mbps

and 1000Mbps. Results as shown in Figure 7, abscissa is the message size (byte), ordinate

for the bandwidth (MB/s).

Figure 7. Throughput

From Figure 7 we can see that the throughput of 100Mbps and 1000Mbps network

cards is similar changes, when transmitting larger bytes messages will have larger

bandwidth occupancy rate, increase the sending time. With 100Mbps network card, when

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

92 Copyright ⓒ 2016 SERSC

the packet size of 10000 bytes, the throughput will decline. This is because the limited

bandwidth of the network card, when the packet size is 10000 bytes, the amount of

packets sent per unit time decrease, and packets are not big, thus caused the decline of

sending bytes, resulting in the decline of the throughput. This in Figure 6, when the

packet size reaches 10000 bytes, the maximum transmission rate will be drastically

reduced, which is also illustrated this situation by the other hand. But 1000Mbps network

card does not have this problem.

When data timeliness requirements is not high and the amount of data is large, suitable

for larger data formats to send data packets using DDS, in order to increase the bandwidth

utilization ratio. Because larger packets, the overall trend of throughput is better.

5. Conclusion

IMGDPS achieves the function of data recording and data transmission using DDS

communication service middleware. The model supports the configuration and

modification of the underlying data types, its communication flexibility is very well. We

made an encapsulation on DDS based on the abstract factory pattern to avoid the impact

on the application layer while changing the underlying DDS product. Through the

analysis of the evaluation, IMGDPS can be well applied to various types of data

publish/subscribe occasions, can completely satisfy the data publish/subscribe function

and the demand for performance, can provide the support for software development,

testing and debugging of the next generation equipment.

References

[1] M. Mazouzi, S. Hasnaoui and M. Abid, “Challenges and solutions in configuring, rapid developing and

deploying of a QoS-enabled component middleware”, 2008 3rd International Design and Test Workshop,

(2008), pp. 221-224.

[2] J. Ma, T. Huang, J. Wang, G. Xu and D. Ye, “Underlying Techniques for Large-Scale Distributed

Computing Oriented Publish/Subscribe System”, Journal of Software, vol. 17, no. 1, (2006), pp.

134−147.

[3] X. Ma and S. Liu, “Research on General Data Publish/Subscribe Model Based on DDS”, Applied

Mechanics and Materials, (2013), pp. 2491-2494.

[4] RTI Inc, “RTI Data Distribution Service: The Real-Time Publish Subscribe Middleware User’s Manual

v4.5”, http://www.rti.com/.

[5] J. H. V. Hag, “Data-centric to the max, the SPLICE architecture experience”, 23rd International

Conference on Distributed Computing Systems Workshops, (2003), pp. 207-212.

[6] G. P. Castellote, “OMG data-distribution service: Architectural overview”, 23rd International

Conference on Distributed Computing Systems Workshops, (2003), pp. 200-206.

[7] N. Wang, D. C. Schmidt, H. van't Hag and A. Corsaro, “Toward an adaptive data distribution service for

dynamic large-scale network-centric operation and warfare (NCOW) systems”, IEEE Military

Communications Conference MILCOM, (2008), pp. 1-7.

[8] J. M. Schlesselman, G. P. Castellote and B. Farabaugh, “OMG data-distribution service (DDS):

architectural update”, IEEE Military Communications Conference MILCOM, vol. 2, no. 2, (2004), pp.

961-967.

[9] OMG, “Data Distribution Service for Real-Time Systems”, Version1.2,

http://www.omg.org/docs/formal/07-01-01, (2007).

[10] OMG, “The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol

Specification”, Version2.1, http://www.omg.org/spec/DDSI/2.1/PDF/, (2009).

[11] OCI, “OpenDDS Developer’s Guide”, Version3.4, (2013).

[12] OMG, “The Common Object Request Broker: Architecture and Specification”, (2002).

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of Reusable Object-

Oriented Software”, Addison-Wesley Longman. Inc., (1995).

[14] O. Jun, C. Zhiming and W. Ximin, “Performance Test Based on DDS Middleware”, Ship Electronic

Engineering, vol. 31, no. 11, (2011), pp. 136-139.

[15] S. B. Moon, P. Skelly and D. Towsley, “Estimation and removal of clock skew from network delay

measurements”, IEEE INFOCOM, vol. 1, no. 1, (1999), pp. 227-234.

http://www.rti.com/
http://www.omg.org/spec/DDSI/2.1/PDF/

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 93

Authors

Shufen Liu, currently she is a professor in College of Computer

Science and Technology of Jilin University. She has been conducting

research for many years on computer network and security

technology, computer supported cooperative work, computer

simulation technology, software programming method based on

model-driven, etc.

Xuejun Ma, she is a Ph.D. candidate in College of Computer

Science and Technology of Jilin University. Her research area covers

software engineering, computer network and cooperative computing.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

94 Copyright ⓒ 2016 SERSC

