
International Journal of Database Theory and Application

Vol.9, No.11 (2016), pp.317-326

http://dx.doi.org/10.14257/ijdta.2016.9.11.28

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

A Distributed Consistency Control Method for Multi-level

Responsiveness Requirements in DVE Systems

Wei Zhang1, Hangjun Zhou 2

1
 College of Computer, National University of Defense Technology, China

2Department of Information Management, Hunan College of Finance and

Economics, Changsha, China
1zw_nudt@163.com, 2 zhjnudt@gmail.com

Abstract

In a distributed virtual environment (DVE) system, maintaining system consistency and

providing acceptable responsiveness are two core elements for maintaining system

usability. Existing consistency control methods either ignore the responsiveness

requirement factor or assume that each node has the same responsiveness requirements

which cannot meet the real needs of various entities in the virtual environment system. In

this paper, we propose a distributed consistency control method for multi-level

responsiveness requirements, which can optimize the system consistency according to the

real responsiveness needs of different nodes. Our method can achieve a better balance

between consistency control and responsiveness optimization, thereby improving the

system usability effectively. In order to evaluate the performance of the proposed method,

the experimental process and results analysis are also shown in this paper.

Keywords: Distributed Virtual Environment; Multi-level Responsiveness

Requirements; Consistency Control Method

1. Introduction

Distributed virtual environment [1] and analytic simulation system [2] are two main

application scenarios of distributed simulation technology [3, 4]. The distributed virtual

environment constructs an interactive virtual world for multiple nodes and provides a

holistic and immersive virtual space for the geographically distributed users to accomplish

the task in the space. Distributed virtual environment has developed rapidly in recent

years, and has been widely used in online games, military simulation, distance education

and so on.

In a distributed virtual environment system, maintaining system consistency and

providing acceptable responsiveness are two core elements for maintaining system

usability. Consistency refers to maintaining the same state of the system at each

participating node and providing a consistent, unified view for the users. If the

consistency cannot be guaranteed, causal violation, timing chaos and other inconsistency

phenomena will appear in the system and affect the user's normal operations. Providing

responsiveness is also very important because a user needs to observe the action effect

within an acceptable time after an action has been issued in the system. If the interval is

too long, it will seriously affect the user's interactive experience in the virtual world. In

order to maintain the usability of the system, a large number of researchers work on

optimizing these two aspects. However, because of the trade-off relationship between

system consistency and responsiveness, it is difficult to optimize both aspects at the same

time.

Existing consistency control methods either ignore the responsiveness requirement

factor, target the absolute consistency of the system, or consider a relatively simple

responsiveness requirement model, for example, assuming that each node has the same

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

318 Copyright ⓒ 2016 SERSC

responsiveness requirement. These assumptions make it difficult to match the actual

demand model for a large-scale virtual environment system with multiple types of

entities. In fact, due to differences in the physical properties of the entity, the differences

in user operating habits and other factors, the responsiveness demand of different nodes in

the virtual environment will be quite different. In this paper we call it the multi-level

responsiveness requirements. Consistency control method needs to consider the multi-

level responsiveness requirements of different nodes and meets the actual needs of

different users. Therefore, in this paper, we propose a distributed consistency control

method for multi-level responsiveness requirements, which can ensure that the multi-level

responsiveness requirements of each node can be effectively met. The method can

optimize the overall consistency of the system, thereby improving system usability

effectively.

The rest of the paper is organized as follows: Section 2 reviews the existing

consistency control methods, Section 3 gives the consistency model and multi-level

responsiveness model used in this paper. Section 4 describes the proposed distributed

consistency control method for multi-level responsiveness requirements, Section 5 shows

and discuss the experimental results, and finally, section 6 contains our conclusions.

2. Related Work

The existing consistency control methods can be divided into three categories

according to the objectives of optimization. The first category is to ensure the consistency

of the system as the goal, and ignore the responsiveness factor. In [5], the authors propose

a lock-based consistency control technique, which locks every node until the

synchronization process has completely finished in every cycle. A similar method is

proposed in [6], the method proposed in that paper controls the status of each node in the

system by means of fence synchronization. Although this kind of method can guarantee

the consistency of the system, but due to the lack of taking into account the user's

interactive experience, its practicality is greatly limited.

The second category of consistency control method is to ensure the consistency of the

system as the premise, and optimize the system's responsiveness as far as possible. In [7],

the authors propose a local delay based consistency control technique which guarantees

the consistency of the system by delaying all the events in the local node and the

receiving node for a period of time. A similar approach was proposed in [8], which

proposed to maintain the state consistency of each node of the system by utilizing some

time buckets. In addition, in [9], the authors propose an asynchronous clock based

consistency control method, which can improve the system's responsiveness while

ensuring the system's time consistency.

The goal of the aforementioned methods is to achieve the absolute consistency of the

system. Some other methods research on some weak consistency models to improve the

system's responsiveness capacity. In [10], the authors proposed an interval consistency

control method based on estimating network delay, which can ensure the consistency of

the message execution time interval at every node in the system. In addition, there is a

class of research work [11, 12] for the causal consistency, through the establishment of

happened before relationship [13] to construct the causal relationship between events, and

to ensure the events causality.

The third category of consistency control method is to ensure system responsiveness as

the prerequisite and maximize the consistency degree of the system. In [14], the authors

proposed a delayed consistency control method which executes the local events

immediately and delays the remote events for a constant time. This method can provide a

good responsiveness but cannot guarantee a good consistency of the system. In [15], the

authors proposed a centralized consistency control method, which reduces the

inconsistency degree of the system by concluding the consistency problem as a linear

programming problem. However, the centralized method is difficult to run efficiently

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 319

when the system scale is very large. In [7], the authors concluded that the consistency

control of continuous model is a compromise between the function and performance of

DVE system, and the optimization for one aspect will inevitably lead to the decrease of

another aspect of DVE system. In addition, in [16], the authors gave a definition of time

space inconsistency, they analyzed the factors that cause the inconsistency, and gave

some suggestions to reduce the inconsistency.

In addition, in order to reduce the amount of data transmission and improve the

efficiency of data processing, some information management techniques are introduced

into distributed virtual environment, such as relevance filtering [19], dead reckoning [20],

Package binding [21] and so on.

In order to satisfy the different responsiveness requirements of all nodes, in our

previous work [17], we proposed an asynchronous consistency control model for different

responsiveness requirements, which can improve the consistency of each node and the

overall responsiveness satisfy degree simultaneously. However, due to the uncertainty of

the latency in the large-scale DVE system, the responsiveness requirements of some

nodes cannot be met at run time, and the interactive experience of the users in the virtual

world will be destroyed. Therefore, in this paper, we will first make sure the user's various

responsiveness requirements are satisfied, and then try to reduce the system inconsistency

and improve the overall system usability.

3. System Model

In this paper, we use V to represent the set of all nodes involved in the DVE

system, and E to represent the set of all transmission delays between nodes. Given

two nodes ,i jv v V , we use ije E to represent the transmission delay between iv

and jv . We use O to represent the set of all events generated and executed in the

system. Given a node iv V , iG denotes the set of all events generated by node iv ,

iR denotes the set of all events that node iv can receive. Given an event mo O , if

m io G , ()i mTG o denotes the generate time of event mo at node iv , ()mTS o denotes

the excepted execution time of event mo set by node iv .If m io R , ()i mTR o denotes

the receive time of event mo at node, ()i mTE o denotes the actual execution time of

event mo at node iv .

In the following, we show some consistency models that can keep all nodes in the same

state. The traditional consistency model mainly includes receive order, priority order,

causal order, causal and totally order and timestamp order [22]. In [9], we further divide

the timestamp order into three levels. They are basic time stamp order(BTSO), interval

time stamp order (ITSO) and absolute time stamp order (ATSO).

Definition 1 (Basic Time Stamp Order).

, ; , () () () ()i i m n i j i m i n j m j nv v V o o R R TE o TE o TE o TE o (1)

Basic Time Stamp Order is the most basic time consistency demand, which ensures

that all events can be executed in the same order at each node.

Definition 2 (Interval Time Stamp Order).

, ; , () () () ()i i m n i j i m i n j m j nv v V o o R R TE o TE o TE o TE o (2)

Interval Time Stamp Order is stricter than Basic Time Stamp Order. It requires all

events to be executed in a consistent sequence, while ensuring that the time intervals

between events are consistent.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

320 Copyright ⓒ 2016 SERSC

Definition 3 (Absolute Time Stamp Order).

, ; , () ()i i m n i j i m j mv v V o o R R TE O TE O (3)

Absolute Time Stamp Order is the most strict time consistency demand, which requires

that all events in the system can be executed simultaneously on all nodes that can receive

the event.

In addition to the functional correctness requirements of the system, we also need

to consider the performance requirements, that is, response time requirements or

responsiveness requirements. It represents the system's ability to respond to the

interaction. For an event m io G , we use ()i mCF o to denote the responsiveness of

the event on the node
iv , which is equal to the difference between the expected

execution time and the generation time of the event.

Definition 4 (Event Responsiveness).

() () (), ,i m m i m i m iCF O TS O TG O v V o G (4)

For each node in the system, the actual responsiveness of a node is defined as the

average responsiveness of all its generated events.

Definition 5 (Node Responsiveness).

()
,

| |

m i
i mo G

i i

i

CF O
CF v V

G

 (5)

For a given node iv , we use irr to denote its responsiveness requirement. Due to the

differences in the physical attributes of the entities and the differences in the user's

operating habits, there is a big difference in the responsiveness requirements of different

nodes. In this paper, we adopt a multi-level responsiveness requirement model. We

assume that there are multiple levels of responsiveness requirements in the system, and

the requirements of different nodes belong to different levels.

Definition 6 (Multi-level Responsiveness Requirements).

, [1,],i irr xRRUnit x RRMax v V (6)

In the definition, RRUnit represents the basic unit between different responsiveness

requirement levels, RRMax represents the maximum value of the responsiveness

requirement level. The larger the value of x is, the weaker the responsiveness

requirement of the node is, and vice versa. To ensure that the node's actual responsiveness

meets its responsiveness requirements, it is necessary to ensure that the following

constraints are met.

Condition 1 (Responsiveness Requirement Satisfaction Constraints).

, () ()m i m i m io G TS O TG O rr (7)

However, due to the existence of network transmission delay, there may be a node jv

that receive the event later than the expected execution time, that is () ()j m mTR o TS o . In

this case we cannot guarantee that the event is executed simultaneously at all nodes. Here

we define the inconsistency degree of event mo at the node jv as the difference between

the actual execution time and the expected execution time.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 321

Definition 7 (Event Inconsistency Degree).

0 () ()
()

() () () ()

j m m

j m

j m m j m m

TE O TS O
IC O

TE O TS O TE O TS O

，

，
 (8)

Then, we define the inconsistency degree of the whole system as the sum of the

inconsistencies of all the events at all nodes.

Definition 8 (System Inconsistency Degree).

,
()

i m
all i mv V o O

IC IC o

 (9)

In this paper, we will first ensure that each node's multi-level responsiveness

requirements are met, and then through the distributed consistency control method to

reduce the overall system inconsistency. In our previous work [15], we proposed a control

method to reduce the inconsistency degree of DVE system, but this method does not take

into account the multi-level responsiveness requirements of different nodes in the system,

and because that method adopts centralized processing method, it cannot guarantee the

efficiency when the scale of the system is very large. In the next section, we will

introduce the asynchronous clock model and the distributed consistency control method

used in this paper.

4. Distributed Consistency Control Method

4.1 Asynchronous Clock Model

Unlike the traditional synchronous clock model, the asynchronous clock model [9]

does not guarantee that each node's simulation time is strictly synchronized with the wall

clock time. Instead, in asynchronous clock model the system time resources are

reallocated by setting the deviation time for some nodes to optimize the system

performance. The deviation time for each node is defined as the difference between the

wall clock time and its simulation time.

Definition 9 (Node Deviation Time).

,i i w iv V d t t (10)

In the case where the deviation time exists, for a given event m io G , its actual

execution time at a certain node jv can be known as () ()j m i m ij i jTE O TG O e d d .

So we can get the calculation method of the event inconsistency in the asynchronous

clock model.

Definition 10 (Event Inconsistency Degree in Asynchronous Clock Model).

0
()

ij i j i

j m

ij i j i ij i j i

e d d rr
IC O

e d d rr e d d rr

，

，
 (11)

The goal of this paper is to adjust and set the deviation time of each node so that the

total system inconsistency is minimized under the asynchronous clock model. The

following example describes how to adjust the deviation time to optimize the system

consistency.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

322 Copyright ⓒ 2016 SERSC

Figure 1. An Example of Asynchronous Clock Model

As shown in Figure 1, there are two nodes in the system, the communication

delay between two nodes is 10, and the responsiveness requirements of two nodes

are 12 and 6 respectively. During one period, node 1v sends two events to node 2v ,

and node 2v sends four events to node 1v . In the current state, it can be calculated

that the inconsistency degrees of these two events 1v generates are 0, and the

inconsistency degrees of the four events 2v generates are 4, and the total

inconsistency degree is 16. At this point, if we set the deviation time of the node 1v

to 2, then the inconsistency degree of the two events are still 0, but inconsistency

degree of the four events have become 2, the overall system inconsistency degree is

reduced to 8. If the deviation time of node 1v is set to 4, the inconsistency degree of

the two events becomes 2, the inconsistency degree of the four events generated by

node 2v becomes 0, and the total inconsistency degree of the system is reduced to 4,

the system inconsistency degree is reduced by 75% compared to the initial state. It

can be seen that the system time resources can be reallocated by the asynchronous

clock method, which reduces the overall system inconsistency. In the next

subsection, we will detail the distributed consistency control method.

4.2 Algorithm Description

The key issue of asynchronous clock consistency control method is how to set the

proper deviation time of each node. We need to consider the difference of the

responsiveness requirement of each node and the difference between the frequencies of

sending and receiving events. For nodes with weak responsiveness requirements, it may

be appropriate to increase deviation time, and vice versa. In addition, if the difference

between the frequencies of receiving events and sending events is large, the deviation

time for that node should also be set to a large value.

When we set the deviation time of each node, the constraints of deviation time

between nodes should be taken into account. For a given node jv and its neighbor

node iv , if the deviation time of jv exceeds jrr and reaches ij i ie d rr , the

inconsistency degree of node's received events have been 0, further increasing the

deviation time of jv will not reduce the inconsistency degree of the events from

node iv , but will increases the inconsistency degree of events jv generates. Here, we

call ij i ie d rr the constraint value of node iv for the node jv . It is necessary to

compare the frequencies of receiving events that removed the element of receiving

events from the node iv and sending events of the node jv , then we could know if

we should continue to increase the deviation time of jv . For this reason, we

designed a distributed deviation time adjustment strategy, the main operation of the

process is shown in Figure 2.

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 323

Figure 2. Distributed Consistency Control Method

The whole method includes three stages: initial stage, information collection stage and

adjustment stage. In the initial stage, we first set the deviation time of each node to 0.

After that, each node first enters the information collection stage, and continuously

collects information such as delays and inconsistency degrees of the sending and

receiving events. The adjustment stage logic is executed at the end of the period, and the

new deviation time is calculated and adjusted. After that, each node enters the next

information collection stage.

In the adjustment stage, each node first compares the numbers of the received and sent

events collected in the previous period. If the number of received events is less than the

number of sent events, it indicates that the node is generating and sending large numbers

of events. In this case, a large deviation time will increase the inconsistency of the

sending events, resulting in the increasing overall inconsistency of the system. In this

case, it is necessary to set the deviation time of this node to zero. If the number of

received events is greater than or equal to the number of sending events, it means that the

node is mainly receiving the events from other nodes and we can set a proper value of

deviation time for this node to optimize the system's inconsistency degree.

When we choose the value of deviation time, the constraint values between neighbor

nodes need to be considered, because once the deviation time value exceeds the constraint

value of a neighbor node, increasing the deviation time value of this node will not

decrease the inconsistency degree of the events from the neighbor node. Based on this

consideration, all neighbor nodes are sorted according to the ascending order of their

constraint values, and the received event number of each node in the queue are subtracted

one by one in the total received event number until the received event number is not

greater than the sent event number. The constraint value of the current node in the queue

is used as the new deviation time of this node. At this time, if the deviation time is further

increased, since the received event number is already equal to or less than the sent event

number, the inconsistency degree of the whole system will be increased. After obtaining

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

324 Copyright ⓒ 2016 SERSC

the appropriate deviation time, the node broadcasts the new value to other neighbor nodes.

The process runs periodically at run-time, and continues to optimize overall system

consistency.

In fact, a centralized approach can be used to solve this problem by collecting all the

information into a single node and solving the deviation time for each node on a

centralized node. However, when the scale of the system is large, the information

gathering and calculation process will become the bottleneck of the whole algorithm,

which will seriously affect the efficiency of the algorithm. In the next section, we will

compare the experimental results of our distributed method with the centralized method.

8. Experimental Results

In order to verify the effectiveness of our method, we construct a simulated distributed

virtual environment system with up to 2000 simulated nodes. We use DS2 tool [18] to

generate the inter-node delay and simulate the communication characteristics of the

network. DS2 is a delay synthesis and generation tool based on the delay measurement of

real internet communications. It can effectively simulate the delay model of

communications through internet. For responsiveness requirements, we designed five

levels, ranging from 100ms to 500ms, to simulate the needs for different types of entities.

We run the virtual environment for 10,000 cycles. Every node in each cycle has a

probability of 20%-60% to send an event to its neighbor nodes, and we run our distributed

consistency control algorithm one time every 100 cycles. The statistical results are shown

in Figure 3.

Figure 3. Comparison Results of Inconsistency

In Figure 3, the x-axis represents the number of participating nodes in the virtual

environment, varying from 400 to 2000, and the y-axis represents the total system

inconsistency throughout the run-time. The blue bars represent the results without using

consistency control method. The green bars represent the results obtained by using the

consistency control method presented in this paper. The red bars represent the results that

all the information are collected by a single node and computed by a centralized way.

From the results, we can see that compared with the case without using the consistency

control method, our method can effectively reduce the total system inconsistency in all

cases from 400 nodes to 2000 nodes. And the more nodes there are in the system, the

more optimization we can get from our method. In all cases our method can reduce the

overall system inconsistency by at least 15%. Compared with the centralized method, the

distributed method in this paper can achieve very close optimization results, the difference

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

Copyright ⓒ 2016 SERSC 325

is less than 5%. After that, the performance comparison results between distributed

method and centralized method are shown in Figure 4.

Figure 4. Comparison Results of Overhead

In Figure 4, the x-axis represents the number of participating nodes in the virtual

environment, and the y-axis represents the additional time overhead associated with the

consistency control approach at run-time. The blue bars represent the distributed

consistency control method presented in this paper, while the red bars represent the

centralized consistency control method. It can be seen from figure that with the increase

of the scale of the system, the overall time overhead of the centralized method is

increasing very fast due to the need of collecting a large amount of information and

carrying out a large number of solving processes at one node. But the overhead of our

distributed consistency control method are not increased fast when the scale of the system

increases. So our method has better scalability.

The above experiments show that the asynchronous consistency control method

proposed in this paper can reduce the overall inconsistency of the system under the

premise of guaranteeing the system responsiveness, so it improves the usability of the

DVE system.

9. Conclusion

Due to the difference of the object’s natural attributes and the differences of the user's

operating habits in the distributed virtual environment system, the responsiveness

requirements of the nodes in the system are not the same. However, the existing

consistency control method usually neglects this characteristic and adopts a simple

responsiveness requirement model, which is hard to match the actual demand of the DVE

system. To solve this problem, in this paper we proposed a distributed consistency control

method for multi-level responsiveness requirements. By adjusting the distribution of time

resources on the participating nodes, the consistency state of the system is optimized. The

overall system inconsistency can be effectively reduced and the usability of the system

can be improved. The experimental results verify the effectiveness of the proposed

method.

The consistency metric model proposed in this paper is based on the assumption that

the multi-level responsiveness requirement of each node of the system can be fully

satisfied. The main consideration is the deviation between the real execution time of the

event and the expected execution time. However, in some distributed virtual environments,

consistency need is much more important than the responsiveness requirement need. We

will consider how to accommodate the satisfy degree of the multi-level responsiveness

International Journal of Database Theory and Application

Vol.9, No.11 (2016)

326 Copyright ⓒ 2016 SERSC

requirements in consistency metric model in our future work, so that the proposed method

has better adaptability.

Acknowledgments

The work described in this paper was supported by the National Natural Science

Foundation of China (Grant No. 61303187).

References

[1] A. Valadares, E. Gabrielova and C. V. Lopes, “On designing and testing distributed virtual

environments”, Concurrency and Computation: Practice and Experience, (2016).

[2] R. M. Fujimoto, “Parallel and distributed simulation systems”, New York: Wiley, (2000).

[3] Y. H. Tang, B. D. Zhang, J. J. Wu, et al., “Parallel architecture and optimization for discrete-event

simulation of spike neural networks”, Science China-Technological Sciences, vol.56, no.2, (2013), pp.

509-517.

[4] B. Hou, Y. Yao, B. Wang B, et al., “Modeling and simulation of large-scale social networks using

parallel discrete event simulation”, Simulation-Transactions of The Society for Modeling and

Simulation International, vol.89, no.10, (2013), pp. 1173-1183.

[5] T. A. Funkhouser, “RING: a client-server system for multi-user virtual environments”, Proceedings of

the 1995 symposium on Interactive 3D graphics, ACM, (1995), pp. 85-ff.

[6] B. Di Chen and M. Maheswaran, “A fair synchronization protocol with cheat proofing for decentralized

online multiplayer games”, Proceedings on Third IEEE International Symposium on Network

Computing and Applications 2004 (NCA 2004), IEEE, (2004), pp. 372-375.

[7] M. Mauve, J. Vogel, V. Hilt, et al., “Local-lag and timewarp: providing consistency for replicated

continuous applications”, IEEE transactions on Multimedia, vol.6, no.1, (2004), pp. 47-57.

[8] L. Gautier, C. Diot and J. Kurose, “End-to-end transmission control mechanisms for multiparty

interactive applications on the internet”, INFOCOM'99, Proceedings of the Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Societies, IEEE, vol.3, (1999), pp. 1470-1479.

[9] W. Zhang, H. J. Zhou, Y. X. Peng, et al., “Asynchronous time consistency control methods in

distributed interactive simulation”, Journal of Software, vol.21, no.6, (2010), pp. 1208-1219.

[10] W. Zhang, H. Zhou, Y. Peng, et al., “An Interval Consistency Control Method Based on Estimating

Network Delay in DVE Systems”, Computer Engineering & Science, vol.34, no.3, (2012), pp. 55-61.

[11] W. Cai, S. J. Turner, B. S. Lee, et al., “An alternative time management mechanism for distributed

simulations”, ACM Transactions on Modeling and Computer Simulation (TOMACS), vol.15, no.2,

(2005), pp. 109-137.

[12] S. P. Hernandez, J. Fanchon and K. Drira, “The immediate dependency relation: an optimal way to

ensure causal group communication”, Annual Review of Scalable Computing, vol.6, no.3, (2004), pp.

61-79.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed system”, Communications of the

ACM, vol.21, no.7, (1978), pp. 558-565.

[14] X. Qin, “Delayed consistency model for distributed interactive systems with real-time continuous

media”, Journal of Software, vol.13, no.6, (2002), pp. 1029-1039.

[15] W. Zhang and H. Zhou, “An Asynchronous Control Method for Reducing Inconsistency in DVE

Systems”, To appear in JIMET 2017, (2017).

[16] S. Zhou, W. Cai, B. S. Lee, et al., “Time-space consistency in large-scale distributed virtual

environments”, ACM Transactions on Modeling and Computer Simulation (TOMACS), vol.14, no.1,

(2004), pp. 31-47.

[17] W. Zhang, H. Zhou, Y. Peng, et al., “Providing Responsiveness Requirement Based Consistency in

DVE”, 2009 15th International Conference on Parallel and Distributed Systems (ICPADS), IEEE,

(2009), pp. 594-601.

[18] B. Zhang, T. S. Ng, A. Nandi, et al., “Measurement based analysis, modeling, and synthesis of the

internet delay space”, Proceedings of the 6th ACM SIGCOMM conference on Internet measurement,

ACM, (2006), pp. 85-98.

[19] M. A. Bassiouni, M. H. Chiu, M. Loper, et al., “Performance and reliability analysis of relevance

filtering for scalable distributed interactive simulation”, ACM Transactions on Modeling and Computer

Simulation (TOMACS), vol.7, no.3, (1997), pp. 293-331.

[20] B. Blau, C. E. Hughes, M. J. Moshell, et al., “Networked virtual environments”, Proceedings of the

1992 symposium on Interactive 3D graphics, ACM, (1992), pp. 157-160.

[21] L. A. H. Liang, W. Cai, B. S. Lee, et al., “Performance analysis of packet bundling techniques in DIS”,

Proceedings of the 3rd IEEE International Workshop on Distributed Interactive Simulation and Real-

Time Applications 1999, IEEE, (1999), pp. 75-82.

[22] R. M. Fujimoto and R. M. Weatherly, “Time management in the DoD high level architecture”, ACM

SIGSIM Simulation Digest, IEEE Computer Society, vol.26, no.1, (1996), pp. 60-67.

