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Abstract 

As a result of tremendous rise in internet usage like social media and forums, mail 

systems, scholarly and research articles, daily online transactions from multiple sources 

like health care systems, meteorological and environmental organizations etc., the data 

collected has shoot up exponentially. This vast collection of data, called Big Data, has 

caused the traditional tools incompetent for managing it from either of storage, 

computing or analytical perspective. There is an immense need of architectures, 

platforms, tools, techniques and algorithms to handle Big Data. The available 

technologies deal with two broad aspects related to Big Data that are Big Data Storage 

Management and Big Data Computing, focused to overcome various challenges such as 

scalability, faster processing speed, multiple format data processing, availability, faster 

response time and analytics etc. This paper reviews recent trends of storage and 

computing tools with their relative capabilities, limitations and environment they are 

suitable to work with. 
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1. Introduction 

Current world is the world of data. We have data all around us. This data is huge in 

volume and being generated exponentially from multiple sources like social media 

(Facebook, Twitter etc.) and forums,  mail systems, scholarly as well as research articles, 

online transactions and company data being generated daily, various sensors' data 

collected from multiple sources like health care systems [1], meteorological department, 

environmental organizations etc. The data in their native form has multiple formats too. 

Also, this data is no longer static in nature; rather it is changing over time at rapid speed. 

These features owned by bulk of current data, put a lot of challenges on the storage and 

computation of it. As a result, the conventional data storage and management techniques 

as well as computing tools and algorithms have become incapable to deal with these data. 

Despite of so many challenges associated with these data, we cannot ignore the potentials 

and possibilities lying in it that can support for analytics and for hidden patterns 

identification. These analytics can be very effective in making business strategies and 

predicting effective decisions, finding various hidden patterns associated with several 

diseases and their attributes, in genomics to analyze thousands of genes and their 

associated roles in biological systems, in climate monitoring and prediction, GPS and 

other satellite parameters mining etc. 

 

1.1 Big Data Formats and its Sources 

Big data is a huge collection of data over a time frame that is so complex and difficult 

to process and manage using conventional database management tools [2]. Big Data and 

its sources can be categorized into following categories: 
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 Structured Data - generated from various researches efforts, CRM (Customer 

Relationship Management) and other such traditional databases.  

 Semi-structured Data - such as XML formatted data.  

 Unstructured Data – These data can be generated by humans such as social 

media, discussion forums and customer feedback, comments, emails etc. or 

may be generated by machine such as online transactional, satellite and 

environmental data collected through various sensors, web-logs, call records 

etc.  

 

1.2 Big Data Characteristics and Big Data Challenges 

There are four basic characteristics depicted in Figure 1 that Big Data shows always. 

These are Volume, Variety and Velocity [3-4].  Each aspect puts a challenge in handling 

and processing this data to extract some meaningful implications. These challenges could 

be in collection, integration, storage, sorting, searching, retrieval, analysis, and 

visualization from the various aforementioned key aspects of the Big Data. 

Volume: As per current scenario, various sources of data generations throughout the 

world, generating the data at tremendous speed per day. Facebook and Twitter are the 

kind of social media that produce daily approximately 500 TB and 7 TB of data 

respectively [5-6]. According to a survey done by IBM [7], 2.5 quintillion bytes of data 

are being generated every day. A quintillion equals 1018 bytes. 

Variety: The data is being collected from multiple sources in different formats already 

discussed - Structured data, semi-structured data and unstructured data. Out of which the 

unstructured data is a big hurdle in computing and analysis part as they do not have a 

common format, therefore a common tool or algorithm cannot be followed in variety of 

modalities of the data. 

Velocity: This aspect of Big Data is associated with the speed at which data is being 

produced and processed. When we look for the real time processing and response the 

speed of data production becomes a critical challenge for analytical and visualization 

tools. If the response time of the analytical tools is not capable to cope up with speed of 

data arriving, the result becomes useless. 

 

 

Figure 1. Varying Characteristics of Big Data Over a Period of Time 

Apart from above mentioned 3Vs of Big Data, there is one more important challenge 

inherent in the term Big Data known as veracity and described as below: 

Veracity: The last but not least challenge associated with Big Data is the veracity that 

means the uncertainty in data which could be due to incompleteness, ambiguity, reliability 

of the source of data, the deception factor involved, approximations made in various 

models etc. This puts a great challenge of genuineness and trust on the data being used for 

analytics. 
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1.3 Need for Big Data Management and Processing 

There are various purposes for handling Big Data and exploring effective 

management and methodologies. The Big Data can be used for following purposes:  

 Business Intelligence: Intelligence is incorporated in making various business 

strategies as listed below: 

o Business alignment strategies: It is required so that the output value and   

strategy may be tied up closely and may give the result after appropriate 

decision making. 

o Behavioral and organizational strategies: These strategies speed up the task 

performance and improve productivity. 

o IT strategies: It provides improved efficiency in IT at lower cost.  

o Promotion and Advertisement strategies: These are required to make 

intelligent and effective marketing and advertisements to raise the profit.  

 Crime/ Fraud/ Fault Detection and Prediction: In this reference, the Big Data 

analytics can play a vital role in several aspects. For example, some of the 

applications may be as follows: 

o Credit card transaction: Analytics can predict the probability of a credit card 

holder of being fraudulent.  

o Criminal identification is possible through deep analysis of CDR (Call Detail 

Record). 

 Querying, Searching and Indexing 

o Keyword based search  

o Pattern matching  

 Knowledge discovery / Data Mining 

o Healthcare system: In healthcare system, Big Data Analytics could play a 

very vital role in variety of disease pattern identification, prediction and 

therapy suggestions such as diabetes [8], [9] heart, cancer and Parkinson 

disease [10], etc. through deeply digging Big Data using various data mining 

techniques [11].  

o Statistical Modeling: In various day to day life transactions.  

o Genomics: To identify new patterns and relations among the genes and other 

organic structures present in humans and other living beings. 

o Climate predictions and operative suggestions can be made based on the 

effective analytics of huge amount of climate and environmental data.  

 Defect detection and prediction in software and manufacturing products [12]. 

 

1.4 Organization of Paper 

The organization of the paper goes the way shown in Figure 2. The first section 

introduces the Big Data, different sources of their generation, their characteristics and 

challenges associated with it. Also, it discusses the need of handling and processing of 

Big Data in current scenario in different areas of applications. The second section 

contains a detailed description about available four well known tools and techniques for 

storing and four for computing Big Data with along with their advantages/disadvantages 

and the suitable environment they are applicable to work with. The third section gives the 

comparison of various tools and techniques based on their capabilities and limitations 

associated with them. The fourth section finally concludes this paper with some useful 

suggestions and recommendations. 
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Figure 2. Organization of the Paper 

2. Big Data Storage and Computing Paradigms and Tools 

To draw useful implications from the Big Data, appropriate tools are required to 

perform data collection, data storage and processing for various analytical perspectives. 

The normal process flow diagram for Big Data Analytics is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Process Flow Diagram for Big Data Analytics 

 

2.1 Big Data Computing / Processing Tools 

 

2.1.1. HADOOP MapReduce 

Hadoop also known as Apache Hadoop [13-15] is an open source framework that has 

been provided by Apache. This framework is developed to deal with distributed and 

scalable computing as well as storage management of huge data, the Big Data. Hadoop 

platform includes two core layers; one is the distributed storage layer that is built on the 

HDFS (Hadoop Distributed File System) [16] inspired by the Google File System [17] 
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and the second layer is the distributed computing layer whose key idea is MapReduce 

computing paradigm, initially, developed by Google. 

The Hadoop framework follows the key idea of data intensive computations where it is 

better to transfer the computation code/program to the data rather transferring the bulk of 

data to the computing code. Hadoop platform involves a cluster of storage/computing 

nodes (or machines) out of which one node is assigned as master and other as the slave 

nodes. The HDFS [18] maintains each file in the chunk of same size blocks (except the 

last block). Also, various replicas of these blocks are maintained on various nodes in the 

cluster for the sake of reliability and fault tolerance. The Map-Reduce [19-20] computing 

technique divides the whole task of processing into smaller blocks and assign to various 

slave machines where the required data is available and executes computing right at that 

node. In this way it saves significant time and cost involved in transferring data from data 

server to the computing machine. Following are the advantages, disadvantages and latest 

version of Hadoop. 

i. Advantages of Hadoop 
 Open source: Being an open source, Hadoop is freely available [13]. 

 Cost Effective: Hadoop saves cost as it employs cheaper low end cluster of 

commodity of machines instead of costlier high end server. Also, distributed 

storage of data and transfer of computing code rather than data saves high 

transfer costs for large data sets [13]. 

 Scalable: To handle larger data, the Hadoop is capable to scale linearly by 

putting additional nodes in clusters [13], [14]. 

 Fault Tolerant and Robust: It replicates data block on multiple nodes that 

facilitates the recovery from a single node or machine failure.   Also, 

Hadoop's architecture deals with frequent malfunctions in hardware. If a 

node fails the task of that node is reassigned to some other node [19]. 

 High Throughput: Due to batch processing high throughput is achieved in 

Hadoop [24]. 

 Portability: Hadoop architecture can be effectively ported [21] while 

working with several commodities of operating systems and hardwares that 

may be heterogeneous [22]. 

 On-Demand Service [23]: It can be set manually on lent computing nodes on 

cloud or can be used as on-demand service such as EMR (Elastic 

MapReduce) [25] provided by Amazon or AzureMapReduce or 

CloudMapReduce [26]. 

ii. Disadvantages of Hadoop  

 Single Point Failure: Hadoop's (version up to 2.x) HDFS as well as 

MapReduce suffer from master level single points of failure [13] [28].  

 Low Efficiency/ Poor Performance than DBMS [27]:  Hadoop shows lower 

efficiency due its inability to switch to the next stage before completing the 

previous stage tasks causing Hadoop unsuitable for pipeline parallelism, 

runtime scheduling that causes degraded efficiency per node. Unlike RDBMS, 

it has no specific optimization of execution plans that could minimize the  

transfer of data among various nodes. 

 Inefficient Dealing with Small Files: As HDFS is meant for high throughput 

optimization [24], it does not suit to random reads on small files [51].  

 Not Suitable for Real Time Access: MapReduce and HDFS employ batch 

processing architecture hence; it does not fit for real-time accesses [18].  

 Hadoop does not support iterative behavior which is common to any 

procedural programming paradigm. 
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2.1.2. Cloudera Impala and Cloudera Enterprise RTQ 

Cloudera Enterprise RTQ driven by Cloudera Impala enables enterprises to exploit 

advantageous features of SQL tools to achieve real-time analytics potentials when 

working with large volumes of data, whose nature may be structured and unstructured 

[29]. Various business analysts and IT industries can use it over a wide range of supported 

data types as well as huge data volumes to interact in real time with a HBase or a HDFS 

data store for the sake of analytics. The Cloudera Impala's position in Hadoop stack is 

depicted in Figure 4. 

i Advantages of  Cloudera Impala and Cloudera Enterprise RTQ 

 Flexible data model:  It works with the same stored data and metadata in 

HBase or Hive, i.e. it supports structured as well as unstructured data [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cloudera Impala Status in Hadoop Stack [30] 

 High Performance:  It executes queries at least 10 times faster than 

Hive/MapReduce. Pure I/O bound queries and queries with at least one join 

have shown 3-4 times and 7-45 times performance gain respectively. 

Aggregation queries have been speed-up by approximately 20-90 times as 

compared to HiveQL (Hive Query Language) [29]. 

 Real-Time Interaction Support: Cloudera Enterprise RTQ reduces response 

time [30] of queries to seconds unlike minutes in HiveQL or MapReduce, as 

shown in the comparison chart in Figure 5. Up to 90% computing cost is 

saved [29] spent on ETL services.  

 Security: It offers Kerberos authentication support. Role based authorization 

is also supported in Cloudera Enterprise RTQ. 

ii. Disadvantages of Cloudera Impala RTQ   

 All joins operations are performed in memory capacity limited by the 

smallest memory node present in the cluster [29]. 

 It does not support querying streaming data such as streaming video or 

continuous sensor data etc. [30]. 

 Deleting individual rows is not possible in Cloudera Enterprise RTQ and it 

still does not support internal indexing for files [29]. 

 Single Point Failure in Query Execution: It quits the entire query if any host 

that is executing the query fails [30]. 
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Figure 5. Comparison of Response Time of Cloudera Impala RTQ and 
HiveQL [29] 

2.1.3. IBM Netezza 

Netezza can be placed in both storage and computing category as it provides data 

warehouse as well as analytics appliance. Netezza is based on Asymmetric Massively 

Parallel Processing (AMPP) shared-nothing architecture which is basically a two-tier 

architecture [31,33] shown in Figure 6 and Figure 7 which handle large complex queries 

very quickly. The first tier employs a high performance Linux based Symmetric Multi-

Processing host. This tier is responsible for compiling data query jobs and accordingly 

generating execution plans. It breaks down the original query task into sub-tasks suitable 

for parallel execution. Afterwards, these subtasks are distributed over the second tier [32]. 

The second tier involves hundreds of intelligent snippet processing blades called S-Blades 

that form the MPP engine of the appliance. These independent servers (S-Blades) contain 

Intel-based central processing units having multiple cores. Also, it includes multi-engine 

as well as high-throughput Field-Programmable Gate Arrays (FPGAs) [31,33].  

i. Advantages of IBM Netezza 

 Massive Parallel Processing: The load time in MPP is of order of 

approximately 2 TB/hour and backup and its restoration rates are of order of 

4 TB/hour and above [32]. 

 TwinFin, an integrated component of Netezza, provides fast analysis of large 

data volumes of order of petabytes [32] [34] and in-database processing in 

Netezza causes significant reduction in terms of latency [35].  

 Netezza supports models like Hadoop, Java, Python, C++, etc. which is 

programming models used majorly these days [36]. 

 IBM Netezza provides faster query performance using concepts of 

parallelism and pipelined computation [33]. 

 Netezza does not use indexes, table spaces. Thus, Data Definition Language 

becomes much simpler [36]. IBM Netezza Analytics packages are free and 

inbuilt in it [37]. 

ii. Disadvantages of IBM Netezza 

 Netezza does not suit for online transactional processing [34-35]. 

 Netezza does not employ any query tuning mechanism [35].  

 Netezza does support nested correlated queries whereas some other Business 

Intelligence tools leverage this aspect to fasten turnaround [35-36]. 
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P: Independent Homogeneous Processor 

Figure 6. IBM Netezza Tier-1 [31] 

 

Figure 7. IBM Netezza Tier-2 [31] 

 

2.1.4. Apache Giraph 

Apache Giraph, running on top of Hadoop framework, is the open sourced version of 

Google's proprietary product Google Pregel [38]. It also has distributed processing 

structure suitable basically for large scale graph processing [39,43-44] such as in analysis 

of the interconnected web (for Page Ranking) or social media (Facebooks, Twitters, 

LinkedIn etc.) interaction that are nothing but a graph of interconnected vertices which 

may be a web page linked to another page through the edge (hyperlink) or it may be users 

in social media connected with each other through edges representing friendship or some 

kind fan or business following etc. The Giraph basically based on the Valient model [40] 

of Bulk Synchronous Parallel computation model. Usually, the Giraph is used in 

combination with well-known graph databases such as Infinite Graph or Neo4j or with 

Hadoop. 

i. Advantages of Apache Giraph 

 Scalable: It is used for large scale graphs' analysis involving up to trillion of 

edges. Giraph computing is based on the Valiant model of Bulk Synchronous 

Parallel computation [40]. 

 Fault Tolerant:  It achieves fault tolerance by employing check-points 

technique [41]. 

 Simple for Graph Based Problems: Apache Giraph naturally models the 

graph based problems which is based on 'Think like vertex' approach which 
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is a vertex centric programming model as shown in Figure 8 [41]. Instead of 

writing several mapper/ reducer classes a vertex is implemented. Vertices 

can send and receive messages to each other throughout computation [42]. 

 Less I/O and In-memory computation: It holds the state of a graph in-

memory throughout the execution of algorithm. It uses no sorting technique 

for computations hence time effective in query response [42]. 

 

 

Figure 8. Vertex Centric Computing Model of Apache Giraph [43] 

ii. Disadvantages of Apache Giraph 

 Apache Giraph is still in a very immature phase of development  [41-42]. 

 It lacks in providing a complete set of offered algorithms [42]. 

 

2.2. Big Data Storage Tools 
 

2.2.1. HBase  

Apache HBase [45-46] is an open source non-relational database that aims to host very 

large sized tables consisting of millions to billions of rows and columns. HBase allows 

grouping various attributes to make column families as described in Figure 9. In this way, 

attributes of a column family are put together in the table [47]. Apache HBase is a 

distributed version of the database that facilitates the same capabilities to Hadoop's HDFS 

as the Big Table of Google provides to the Google File System [48]. 

 

                                  

Figure 9. Column Family Containing as Attributes Columns 2 and 3 [46] 
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i. Advantages of HBase 

Apache HBase provides following capabilities: 

 Scalability: It scales horizontally, as it is a wide-column key-based data 

stores. Therefore, it is robust also [45].  

 HBase performs consistent reads/writes on the underlying data in the 

database but it is optimized for performing read operations [49].  

 Random and Real Time Read and Write Access: HBase stores data in 

MapFiles that are basically an Indexed Sequence Files. Thus, it becomes a 

suitable choice for streaming analysis of a MapReduce kind of style that 

involves occasional random look ups [51]. 

 It suits well to store sparse data, found usually in several data cases [49].  

 Fault Tolerance: In HBase, the failovers between Region Servers are 

supported and handled automatically [45], [46]. 

 Real Time Query support: For real time interaction with data, HBase offers 

Bloom Filters and Block caches [45].  

 

ii. Disadvantages of HBase 

There are some technical limitations with almost all NoSQL solutions and so is the 

case with HBase: 

 Compactions affect the consistent low latency in HBase [49]. 

 Single Point Failure: In HBase rows are partitioned into regions [49] and 

each region is allocated to a Region-Server which becomes a single point of 

failure. Also, HBase takes long recovery times for node failures. On the 

other hand, the Region Server failover takes approximately 10-15 minutes 

which is quite high [52].  

 Operationally Inflexible: HBase's master-oriented architectural design routes 

all reads and writes via Region-Server, thereby causing no workload 

separation across different replicas in a cluster [52]. 

 There are no optimized classic OLTP applications or analytics support in 

HBase. It does not directly support SQL, however its integration with Hive 

supports HiveQL [49-50]. 

 

2.2.2. Apache Hive 

Apache Hive, built upon Apache Hadoop, is a data warehouse tool that provides 

effective management of very large data which is stored in HDFS. It also provides 

effective query execution facility using a query language resembling to SQL. This query 

language is known as HiveQL. Since the language is SQL-like, hence the SQL users can 

easily fire their query on the database. Also, it is helpful for those programmers who 

know the MapReduce paradigm of computing. They can write their own mappers/ 

reducers and plug in them into HiveQL to achieve data analysis and data summarization 

that is more sophisticated and, otherwise could not have been achieved using capabilities 

already being provided with HiveQL [53]. 

i. Advantages of Apache Hive 

Apache Hive facilitates following capabilities:  

 Easy data ETL services: Hive provides data extract, data transform and data 

load operation in an easy way. Hive performs reads/writes which are 

independent of file formats. It uses SerDe (Serializers/Deserializers) 

framework libraries to support formats such as text, sequential files, control 

delimited or a user defined file format [54-55].  
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 Hive has provision for tables at external level to facilitate data processing 

without storing it actually on HDFS. Data partitioning in Hive, is performed 

at table level that improves query execution performance [54]. 

 The Metadata store facility introduced in the architecture of Hive enables 

easier look ups for query processing and analytics [54].  HiveQL can be 

enhanced with custom functions such as: UDF (scalar functions), UDAF 

(aggregation functions) and UDTF (table functions) [55]. 

 Scalability: It achieves scalability by dynamically adding more machines to 

the Hadoop node cluster and Hive has been made fault-tolerant to recover 

from node failures [55]. 

ii. Disadvantages of Apache Hive 

 It does not work for OLTP, hence not suited for real-time queries [53]. 

 Hive is incapable of making updates and delete at row-level. Also, a single 

record insertion is not supported by Hive; rather it is loaded from a file in 

batch using LOAD command [54]. 

 Correlated sub queries cannot be executed in Hive as well as access control 

has not been implemented in Hive [54]. 
 

2.2.3. Neo4j 

Neo4j is a graph database that is available as open source as well as commercial 

licensed version. It stores data modeled as a graph which is a collection of nodes (with an 

Id) and relationships among them represented as edges in the graph. These nodes or edges 

store some properties represented as key/value pairs. Neo4j is an embedded, fully 

transactional, a disk-based Java persistence engine.   

i. Advantages of Neo4j 

 Massive scalability:  Neo4j can easily handle large graphs containing nodes / 

relationships / properties of order of billions using even a single machine. Its 

computation can run in parallel on multiple processors via read threads [54].    

 Schema-Free Database: The schema free architecture provides for an 

efficient storage solution for semi structured information [55]. Since, nodes 

do not have fixed set of properties hence; it facilitates easy schema-changes. 

 High Performance: Unlike RDBMSs, Neo4j overcomes the performance 

degradation problem with several joins by performing graph traversal that 

works at the same speed  no matters how much data constitutes it [55-56]. 

Neo4j enables 2 million read/per second for the relationship. Calculations of 

shortest-paths scale far better than RDBMS [57]. Neo4j outperforms 

relational data stores with greater than 1000 times performance gain in many 

examples of deep query analytics [58]. 

 Neo4j exhibits support for ACID transaction properties that facilitates 

rollbacks and recovery from transactional failures [57]. 

 No O/R (object-relational) Mismatch: Neo4j naturally maps a graph 

structure to some Object Oriented language such as Java or Ruby and hence, 

does not need any complex O/R mapping tool [58]. 

ii. Disadvantages of Neo4j 

 Single Point Failure: Neo4j has a Master-Slave model for replication as 

depicted in Figure 10(a) and 10(b) where all write operations are handled by 

the master and changes performed are reflected to the read only slaves. At 

master level, there can be a single point failure [57]. 

 Slow Online Write Transaction Speed:  While committing in Neo4j, data is 

made permanent on disk that requires disk writes at each commit hence write 

speed is limited by the single server hardware's I/O capacity. 
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(a) When Master is Written   (b) When a Slave is Written 

Figure 10. Replication Model of Neo4j [64] 

2.2.4. Apache Cassandra 

Apache Cassandra is basically an open source column store peer to peer architecture 

distributed database [61]. It provides high end scalability and effective data replication 

that facilitates the fault tolerant feature and high availability. Despite of complex 

administering and data management than some other NoSQL alternatives, it has 

outperformed many of them [59] with its tremendous capabilities such as near real time 

interaction with users and streaming data analytics, etc. Some of the features [60-62] 

listed below. 

i. Advantages of Apache Cassandra 

 High Scalability: Cassandra provides two kinds of scalability. One is the 

data scalability. Second is throughput/performance scalability that enables 

response times in sub-seconds that scales linearly i.e. (two nodes double the 

throughput, four quadruple the throughput, and so on) [60]. 

 Very High Throughput for Write Operations: Provides very high throughput 

for write operations whereas considerably well throughput for read 

operations too [61]. Cassandra performs 'Per-Partition Ordering' specified 

while creating a table as sorting million rows is faster during development 

than sorting billions during production [63]. 

 Fault Tolerance and High Availability: It is achieved by the absence of 

single point failure [60] since it does not work on master/slave architecture. 

Data replication is done to several nodes in the data cluster centers [60], 

which improve the availability.  

 Transaction Support: It delivers the ―AID‖ (Atomicity, Isolation, Durability) 

through 'commit logs' to track each write to the database. It achieves 

durability through built-in redundancies [61].  

 It serves streaming data analysis required in several areas like social media, 

stock trading, energy systems, healthcare systems, multimedia streaming 

systems etc. Also, through integration with DataStax Enterprise it achieves 

built-in data security i.e. authentication, data encryption, etc. [61]. 

ii. Disadvantages of Apache Cassandra 

 A single column value may not be larger than 2GB; in practice. The number 

of cells allowed per row in one partition is maximum two billion [62-63]. 
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 No join or sub query support: It does not offer join or sub query but very 

limited support for aggregation [63]. Join operations are implemented in the 

program which are expensive tasks in huge data sets [72]. 

 There is no in-built searching support in Cassandra architecture's. However, 

it supports for secondary indexes create them automatically and users must 

understand data model to create indexes in the absence of automatic 

secondary index support [72]. 
 

3. Results and Discussion 

The overall management of Big Data involves storing, processing and analyzing it for 

various purposes, hence we can visualize the infrastructure, to handle Big Data related 

tasks, as a layered architecture as shown in Figure 11. 

 

                         

Figure 11. Layered Architecture for Big Data Handling 

Through the detail analysis of various computing and storage tools, we have found 

several attributes that may give us a way to compare these tools. The various 

advantages/disadvantages of these tools let us know the suitability of various tools in 

various kinds of application domains.  

 

3.1. Comparison of Computing Tools  

Below is comparison Table 1, Table 2 and Table 3, consisting of various computing 

tools and the key features or facilities they support.  

Table 1. Computing Tools Comparison Table 

Computing 

Tools  

Scala-

bility 

Distributed 

Architecture 

Parallel 

Computation 

Fault 

Tolerance 

Single Point 

Failure 

Hadoop Yes Yes Yes High Yes- At master 

nodes) 

Cloudera 

Impala RTQ 

Yes Yes Yes Yes Yes - If any host 

quits query 

execution entire 

query is stopped 

Data Format  Data Storage Layer Data Computing & Analytics 

 

Semi - 

Structured / 

Unstructured 

 

Structured 

Real Time 

NoSQL 

Database 
File Storage 

System such 

as HDFS etc. 

Data Warehouse 

Real Time 

Analytics 

Map Reduce 

Analytics 

Business 

Intelligence 

Analytics 

End Result 

Real Time 

Insights 

Real Time 

Operations 

Business 

Intelligence and 

Actionable 

Insights 

Operational 

Applications 



International Journal of Database Theory and Application  

Vol.9, No.1 (2016) 

 

 

58   Copyright ⓒ 2016 SERSC 

IBM 

Netezza 

Yes Yes Yes- Asymmetric 

Massively Parallel 

Processing 

Yes- 

Using 

redundant 

SMP hosts 

At SMP server 

level 

Apache 

Giraph 

Yes Yes Yes - Bulk 

Parallel 

processing 

Yes - by 

check 

points 

No - Multiple 

master threads 

running 

Table 2. Computing Tools Comparison Table 

Computing 

Tools  

Query 

Speed 

Real-Time 

Analytics / 

Response 

Time 

Streaming 

Query 

Support 

ETL 

Required? 

Data 

Format for 

Analytics 

Hadoop Slow No No No Structured/ 

Unstructured 

Cloudera 

Impala RTQ 

High Yes / in 

seconds 

No No Structured 

/Unstructured 

IBM 

Netezza 

High Yes / in 

seconds 

Yes No  Structured 

(RDBMS) 

Apache 

Giraph 

High Yes / very 

less 

 No No Graph 

Database 

Table 3. Computing Tools Comparison Table 

Computing 

Tools / 

Paradigm 

I/O 

Optimization 

Optimized 

Query Plans? 

Efficiency Latency Time 

for Query 

Hadoop 

MapReduce 

No Not Applicable Low for real time 

applications (High 

for batch 

processing) 

Not Applicable 

Cloudera Impala 

RTQ 

Yes Yes Higher Low Latency due 

to use of 

dedicated 

distributed query 

engine  

IBM Netezza Not Required Yes High  Very Low- in 

seconds, due to 

in-memory data 

base processing 

and parallelism  

Apache Giraph Not Required Yes – In terms 

of graph query/ 

algorithms 

High Low - In memory 

computation 
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Based on the comparison Table 1, Table 2 and Table 3, we identified following set of 

categories on which we would like to evaluate the above tools and computing paradigm in 

subsequent sub-sections: 

 

3.1.1. Distributed Computation, Scalability and Parallel Computation 

As we can see from the comparison tables, all computing tools provide these facilities. 

Hadoop distributes data as well as computing via transferring it to various storage nodes. 

Also, it linearly scales by adding a number of nodes to computing clusters but shows a 

single point failure. Cloudera Impala also quits execution of the entire query if a single 

part of it stops. IBM Netezza and Apache Giraph whereas does not have single point 

failure. In terms of    parallel computation IBM Netezza is fastest due to hardware built 

parallelism.  

 

3.1.2. Real Time Query, Query Speed, Latency Time 

The Hadoop employs MapReduce paradigm of computing which targets batch-job 

processing. It does not directly support the real time query execution i.e OLTP. Hadoop 

can be integrated with Apache Hive that supports HiveQL query language which supports 

query firing, but still not provide OLTP tasks (such as updates and deletion at row level) 

and has late response time (in minutes) due to absence of pipeline parallelism and run-

time scheduling of task assignment to distributed nodes. 

All other three computing tools support the real time query execution very well and 

have early response time in seconds. However, Cloudera executes queries at least 10 

times faster than Hive/MapReduce. Hadoop has comparatively higher latency time as it 

targets batch-job processing. The Cloudera Impala has low latency time as it uses a 

dedicated distributed engine to access data. IBM Netezza and Apache Giraph also achieve 

very low latency time due to in-memory database processing and computation. Apart 

from these tools there are other frameworks that are dedicated only to big data stream 

computing and mining [65-66] for supporting real time analytics too but they are not 

discussed in this paper. 

 

3.1.3. I/O and Query Optimization, Efficiency & Performance 

Hadoop does not generate optimized query execution plans thus offers low efficiency 

for queries whereas Cloudera, IBM Netezza and Giraph have provision of I/O and query 

execution plans optimizations which results in higher efficiency and high performance in 

query execution. In Cloudera, purely I/O bound queries achieve approximately 3-4 times, 

queries of join or multiple MapReduces achieves approximately 7-45 and simple 

aggregation queries achieve 20-90 times performance gain over Hive/MapReduce. Giraph 

also provides high performance in terms of large scale graph processing for even trillion 

of edges. 

 

3.1.4. ETL Requirement, Cost Effectiveness, Fault Tolerance 

Since Hadoop, Giraph and Cloudera RTQ are open sourced, hence are a cost effective 

solution whereas IBM Netezza is proprietary to IBM, hence a costly solution for handling 

BigData. Also, since Clouera and Giraph perform in memory computation they do not 

require data input and data output that saves a lot of processing cost involved in I/O. None 

of the tools require the ETL (Extract, Transform and Load) service, thereby they save a 

major cost involved in data preprocessing. Hadoop is highly fault tolerant that is achieved 

by maintaining multiple replicas of data sets, and its architecture that facilitates dealing 

with frequent hardware malfunctions. Giraph achieves fault tolerance using barrier 

checkpoints. 
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3.1.5. Data Format, Language Support and Application Development 

Hadoop HDFS is purpose built for supporting multi-structure data unlike the relational 

data bases whereas IBM Netezza deals strictly with the relational database. The Cloudera 

Impala RTQ supports both structured as well as unstructured data store. Apache Giraph is 

designed specially to work on graph data base such as Neo4j. Hadoop itself work on 

simply MapReduce paradigm but may support a range of languages for application 

development when integrated with other technologies such as Apache PIG that supports 

Python, Javascript and JRuby languages. Cloudera can be successfully integrated with 

various BI tools supporting various languages. IBM Netezza directly supports a wide 

range of languages (C, C++, Fortran, Java, Lua, Perl, PythonR) for application 

development. Apache Giraph builds applications implemented using Java libraries. 

 

3.2. Comparison of Storage Paradigms/Tools 

Below is comparison Table 4, Table 5 and Table 6, consisting of various storage tools 

and the key features or facilities they support.  

Table 4. Storage Tools Comparison Table 

Storage 

Tools 

Open 

Source  

Distributed  Scalable Data Storage Format ETL 

Required?  

HBase Yes Yes Yes Structured i.e. Tabular but 

not exactly row-oriented 

Relational Table 

Yes 

Apache 

Hive 

 

Yes Yes Yes - 

Good 

Structured/ Unstructured 

 

Yes - Hence a 

bit higher 

latency in 

minutes 

Neo4j  Yes Yes Yes Non-relational  

i.e. graph database 

(schema less) 

No 

Apache 

Cassandra 

Yes Yes Yes -vast Structured / Semi-

structured / unstructured 

(schema less) 

No 

Table 5. Storage Tools Comparison Table 
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Table 6. Storage Tools Comparison Table 

Storage 

Tools 

Failover 

Recovery 

Fault 

Tolerance 

Meta 

Data 

Store 

Language 

Interface 

Support 

Access 

Control 

HBase 
Long time at 

node level 

failure whereas 

10 to 15 

minutes at 

Region Server 

level  

 

Yes  Yes Less - Java 

Centric, Non-java 

clients are 

supported through 

REST and Thrift 

gateways 

Yes 

Apache 

Hive 

Yes - supports 

node level 

recovery 

Yes - 

replication 

mechanism to 

have synced 

with 

metastore 

Yes Clojure, Go, 

Groovy, Java 

JavaScript,  Perl, 

PHP, Python, 

JRuby, Scala 

No in-built 

security 

provisions 

Neo4j Yes - 

Select the new 

master 

 

Yes - 

Supported by 

ACID 

Transaction 

system 

Yes - 

Optional 

schema 

Java, PHP, .Net, 

Python, Clojure, 

Ruby, Scala, etc.  

 

Yes  

Apache 

Cassandra 

Yes - 

Optimized for  

the Recovery 

performance 

Yes - 

Optional 

Yes -Due 

to flexible 

schema 

support 

Java, Python,  

Node.JS,  etc.  

 

 

Yes - 

Provided by 

the DataStax  

Enterprise 

 

Based on the comparison tables, storage tools can be categorized and evaluated based 

on following subsets of characteristics that provides some insights of applicability of 

various tools in different application domains: 

 

3.2.1. Distributed, Scalability and Data Format Flexibility 

All storage tools provide distributed data storage and querying facility and scalable in 

nature. HBase can be easily scaled-up with new records up to millions of rows and 

billions of columns. HBase and Hive run on Hadoop data node clusters, hence exploits its 

scalable property to further expand the database through data partitioning over multiple 

cluster data nodes. Neo4j is also scaled up by simply adding new nodes if required and 

can model 232 billion nodes. Neo4j supports scalability in terms of parallel readings on 

multiple nodes. Cassandra is highly scalable NoSQL database whose throughput and 

query response scales linearly with machine nodes.  

HBase has tabular data structure format, but it is wide-column and key-value-based 

data store capable of supporting a huge number of columns and flexible schema 

architecture.  Hive also supports the unstructured database whereas Cassandra supports a 

full range of structured and unstructured data formats and the dynamic changes in data 

structure can be accommodated easily. Neo4j is extremely flexible schema less database 

solutions that solves graph modeled problems. 

 

3.2.2. Availability, Fault Tolerance, Fault Recovery 

The HBase and Hive run on Hadoops master/slave architecture of nodes that cause a 

single point failure at the master level failure. In HBase, RegionServer that manages the 

partitioned data into a cluster region becomes single-point-failure. Similarly, Neo4j's 
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write-master is single point failure. All these are fault tolerant but HBase and Hive offers 

a bit low availability. Neo4j has a much better availability whereas Cassandra is highly 

available due to the absence of master/slave paradigm. 

 

3.2.3. Real Time and Streaming Query Support, Query Performance 

HBase is optimized for read operations and hence not much efficient for writes. On the 

other hand, Hive does not suit for OLTP due to absence of row level updates and deletes. 

Neo4j supports real time queries, but in the form of graph traversals. Cassandra supports 

OLTP very well on a full range of data formats. For stream query analysis, Cassandra is 

the best solution. The HBase stores data in MapFiles (that are indexed Sequence Files) 

thus becomes a suitable choice for streaming analysis of a MapReduce kind of style that 

involves occasional random look ups. The performance of query in Hive is increased 

through meta-store, data partitioning and external level table support that is not required 

to be pushed on HDFS. Neo4j overcomes the performance degradation problem in 

traditional RDBMS queries with several joins because a graph traversal is performed 

which works at the same speed, no matter how much data constitutes it. Cassandra 

provides very high throughput for write operation queries. 
 

3.2.4. Open Source, Access Control, Language Support 

All storage tools discussed in this paper are open source, hence free available and cost 

effective. Out of them, Cassandra and Neo4j does not have a requirement of ETL services 

that causes no extra processing cost overhead and become the cheapest choices among 

them. HBase, Neo4j and Apache Cassandra fully support an access control mechanism 

that provides security, authorized access and modification to the database whereas Hive 

does not provide such efficient control. HBase is java centric hence directly supports 

lesser languages but through REST and Thrift Gateways interface support languages. 

Neo4j supports several languages through various Neo4j language clients and REST APIs 

whereas Cassandra supports all key languages that are required to develop a variety of 

applications without need of any intermediate gateways.  

 

4. Conclusion 

This survey aims to find some available computing and storage paradigms and tools 

that are being used in current scenario to address challenges of Big Data processing. We 

have categorized the survey into two streams. One stream contains study and survey of 

existing computing paradigms and tools used to perform computation on Big Data and the 

other stream gives a detailed survey of storage mechanisms and tools available today. In 

this reference, we focused on Apache Hadoop, Cloudera Impala and Enterprise RTQ, 

IBM Netezza and Apache Giraph as computing tools and HBase, Hive, Neo4j and Apache 

Cassandra as storage tools. Based on deep and detailed analysis of their features, relative 

advantages and disadvantages we have made a critical comparison among these tools. The 

comparison is made on the most striking attributes that one looks for before choosing 

these tools for its application domain to handle Big Data. We have discussed various 

issues associated with various tools and compared them accordingly and gave critical 

review on the suitability and applicability of different storage and computing tools with 

respect to a variety of situations, domains, users and requirements. We found that Hadoop 

is an economic choice in many ways, but if some company or enterprise has no issue with 

spending money at all then high-end IBM Netezza AMPP is a better choice. Also, the 

world wide adoption of Hadoop has caused significant rise in the NoSQL databases that 

could be easily integrated with Hadoop. In this reference the HBase has supports a wide 

range of a community of users, multiple commercial vendors and developers and 

provision for cloud storage through Amazon Web Services (AWS).  Also, it has shown a 

strong integration with Hadoop using Apache Hive. Due to strong consistency and easier 
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application development, it is a good choice from developer point of view. Due to very 

high latency (in minutes), Hive is not a good solution for real time query applications 

and/or OLTP applications that require frequent write operations. Graphs are best suited 

for modeling real world situations such as computer networks, social networks, 

geographic pathways that calculate the shortest paths in graphs, etc. Hence, Neo4j and 

Giraph are the best choices for storage and computation respectively, to model such 

vertex-edge scenarios. 

 

References 

[1] S. Agarwal, Divya and G. N. Pandey, ―SVM based context awareness using body area sensor network 

for pervasive healthcare monitoring‖, IITM, ACM, New York, (2010), pp. 271-278. 

[2] M. R. Wigan and R. Clarke, ―Big Data’s Big Unintended Consequences‖, IEEE Computer Society, 

DOI:http://dx.doi.org/10.1109/MC.2013.195, vol. 46, no. 6, (2013), pp. 46-53. 

[3] M. Kendrick, ―Big Data, Big Challenges, Big Opportunities: 2012 IOUG Big Data Strategies Survey‖, 

http://www.ioug.org/p/cm/ld/fid=91, (Retrieved on September 2, 2015), (2012). 

[4] N. Wallis, ―Big Data in Canada: Challenging Complacency for Competitive Advantage‖, in: T. White 

(Eds.), Hadoop: The Definitive Guide, third ed., O’Reilly Media, Yahoo Press, (2012).  

[5] J. Constine, ―How Big Is Facebooks Data? 2.5 Billion Pieces Of Content And 500+Terabytes Ingested 

Every Day‖, http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-billion-pieces-of-

content-and-500-terabytes-ingested-every-day, (Retrieved on September 2, 2015), (2012). 

[6] D. Tam, ―Facebook processes more than 500 TB of data daily‖, http://news.cnet.com/ 8301-1023_3-

57498531-93/facebook-processes-more-than-500-tb-of-data-daily, (Retrieved on September 3, 2015), 

August (2012). 

[7] IBM, ―What is big data?‖ http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html, 

(Retrieved on September 3, 2015), (2013). 

[8] D. Tomar and S. Agarwal, ―Predictive Model for diabetic patients using Hybrid Twin Support Vector 

Machine‖, Proceedings of 5th International Conferences on advances in communication Network and 

Computing, (2014). 

[9] B. R. Prasad and S. Agarwal, ―Modeling risk prediction of diabetes—A preventive measure‖, 

Proceedings of 9th IEEE International Conference on Industrial and Information Systems (ICIIS’ 14), 

(2014), pp. 1-6. 

[10] D. Tomar, B. R. Prasad and S. Agarwal, ―An efficient Parkinson disease diagnosis system based on 

Least Squares Twin Support Vector Machine and Particle Swarm Optimization‖, Proceedings of 9th 

IEEE International Conference on Industrial and Information Systems, (2014), pp. 1-6. 

[11] D. Tomar, and S. Agarwal, ―A survey on Data Mining approaches for Healthcare‖, International Journal 

of Bio-Science and Bio-Technology, vol. 5, no. 5, (2013), pp. 241-266. 

[12] S. Agarwal, Divya and Siddhant, ―Prediction of Software Defects using Twin Support Vector Machine‖, 

Proceedings of 2nd IEEE International conference on Information Systems & computer Networks 

(ISCON), (2014), pp. 128-132.  

[13] J. Venner, ―Pro Hadoop‖, a press, (2009). 

[14] T. White,‖ Hadoop: The Definitive Guide‖, third ed., O'Reilly Media, Yahoo Press, (2012). 

[15] S. Ketu, B. R. Prasad and S. Agarwal, ―Effect of Corpus Size Selection on Performance of Map-Reduce 

Based Distributed K-Means for Big Textual Data Clustering‖, In Proceedings of the Sixth International 

Conference on Computer and Communication Technology 2015, pp. 256-260. ACM, (2015). 

[16] W. Tantisiriroj, S. Patil and G Gibson, ―Data-intensive File Systems for Internet Services‖, A Rose by 

Any Other Name (CMU-PDL-08-114). Research Centers and Institutes at Research Showcase, 

http://repository.cmu.edu/pdl/9. Technical report, Carnegie Mellon University, (2008). 

[17] M. K. McKusick and S. Quinlan, ―GFS: Evolution on Fast-forward‖, ACM Queue, New York, vol. 7, 

no. 7, (2009). 

[18] K. Shvachko, H. Kuang, S. Radia and R Chansler, ―The Hadoop Distributed File System‖, Proceedings 

of IEEE Conference, 978-1-4244-7153-9/10, (2010). 

[19] J. Dean and S. Ghemawat, ―Mapreduce: Simplified data processing on large clusters‖, commun. ACM, 

vol. 51, no. 1, (2008), pp. 107–113. 

[20] J. Dean and S. Ghemawat, ―Mapreduce: A flexible data processing tool‖, commun. ACM, vol. 53, no. 1, 

(2010), pp. 72–77. 

[21] J. Shafer, S. Rixner and A. L. Cox, ―The Hadoop Distributed File system: Balancing Portability and 

Performance‖, Proceedings of IEEE Conference, 978-1-4244-6022-9/10, (2010). 

[22] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares and X. Qin, ―Improving 

MapReduce Performance through Data Placement in Heterogeneous Hadoop Clusters, in: Parallel & 

Distributed Processing‖, Workshops and PhD Forum, IEEE, 978-1-4244-6534-7/10, (2010). 



International Journal of Database Theory and Application  

Vol.9, No.1 (2016) 

 

 

64   Copyright ⓒ 2016 SERSC 

[23] T. Gunarathne, T. Wu, J. Qiu and G. Fox, ―MapReduce in the Clouds for Science‖, Proceedings of 2nd 

IEEE International Conference on Cloud Computing Technology and Science. 

DOI:http://dx.doi.org/10.1109/CloudCom.2010.107, (2010). 

[24] R. Chansler, H. Kuang, S. Radia, K. Shvachko and S. Srinivas, ―The Hadoop Distributed File System‖, 

http://www.aosabook.org/en/hdfs.html, (Retrieved on September 4, 2015), (2014). 

[25] Amazon, Amazon EMR, http://aws.amazon.com/elasticmapreduce, (Retrieved on September 6, 2015), 

(2010). 

[26] H. Liu and D. Orban, ―Cloud MapReduce: a MapReduce Implementation on top of a Cloud Operating 

System‖, Proceedings of IEEE International Symposium on Cluster Computing and the Grid, Newport 

Beach, CA, (2011). 

[27] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden and M. Stonebraker, ―A 

comparison of approaches to large-scale data analysis‖, Proceedings of ACM SIGMOD International 

Conference on Management of data, ACM, (2009), pp. 165–178. 

[28] V. Kumar and Vavilapalli, ―Apache Hadoop YARN: Yet Another Resource Negotiator‖, Proceedings of 

ACM Symposium on Cloud Computing, ACM, 978-1-4503-2428-1, (2013). 

[29] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi and J. Erickson, ―Impala: A 

modern, open-source SQL engine for Hadoop‖, Proceedings of the Conference on Innovative Data 

Systems Research, (2015). 

[30] J. Russell, ―Cloudera Impala‖, O'Reilly Media, Inc., (2013). 

[31] P. Francisco, ―The Netezza data appliance architecture: A platform for high performance data 

warehousing and analytics‖, IBM Redbooks, (2011). 

[32] L. Dignan, ―Netezza's Twin Fin fuels profit surge‖, ZDNet Blog, http://www.zdnet.com/ 

blog/btl/netezzas-twinfin-fuels-profit-surge/38539, (Retrieved on September 13, 2015), (2010). 

[33] Large Scale Data Management Experts, ―Concurrency & Workload Management in Netezza‖, in: 

Winter Corporation White Paper, WINTER CORPORATION, Cambridge MA, (2009). 

[34] E. Lai, ―Netezza launches Skimmer data appliance, teases two more‖, http://www. 

computerworld.com/s/article/9147719/Netezza_launches_Skimmer_data, (Retrieved on September 15, 

2015), (2010). 

[35] M. Singh and B. Leonhardi, ―Introduction to the ibm netezza warehouse appliance‖, Proceedings of the 

2011 Conference of the Center for Advanced Studies on Collaborative Research, IBM Corp., (2011), pp. 

385-386. 

[36] T. Salomie, I. E. Subasu, J. Giceva and G. Alonso, ―Database engines on multicores, why parallelize 

when you can distribute?", Proceedings of the 6th conference on Computer systems, ACM, (2011), pp. 

17-30.  

[37] IBM-Corporation, IBM Netezza Analytics Release Notes, http://delivery04.dhe.ibm.com/sar/ 

CMA/IMA/032ig/0/IBM_Netezza_Analytics_Release_Notes.pdf., Release 1.2.4, (Retrieved on 

September 20, 2015), (2011). 

[38] A. Ching and K. Christian, ―Apache Giraph‖, (2013). 

[39] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser and G. Czajkowski, Pregel, 

―A system for large scale graph processing‖, Proceedings of ACM SIGMOD International Conference 

on Management of data, ACM, New York, NY, USA, (2010), pp.135-146. 

[40] L. G. Valiant, ―A bridging model for parallel computation‖, commun. ACM, vol. 33, no. 8, (1990), pp. 

103-111. 

[41] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda and J. McPherson, ―From think like a vertex to think 

like a Graph‖, Proceedings of the VLDB Endowment, vol. 7, no. 3, (2013), pp. 193-204. 

[42] ―Apache Giraph, Introduction to Giraph‖, http://giraph. apache.org/intro.html, (Retrieved on Sep 22, 

2015), (2014). 

[43] C. Martella, ―Apache Giraph: Distributed Graph Processing in the Cloud‖, FOSDEM, (2012). 

[44] H. Kristen, ―An Introduction to Apache Giraph‖, (Safari books online), http://blog. 

safaribooksonline.com/2014/02/10/intro-apache-giraph, (Retrieved on September 23, 2015), (2014). 

[45] A. Marcus, ―The NoSQL Ecosystem‖, the Architecture of Open Source Applications, (2011), pp. 185-

205. 

[46] L. George, ―HBase: The Definitive Guide‖, first ed., O'Reilly Media, 9781449396107, (2011). 

[47] C. Li, ―Transforming relational database into HBase: A case study‖, Proceedings of IEEE International 

Conference on Software Engineering and Service Sciences (ICSESS), (2010), pp. 683,687.  

[48] ―Apache HBase, Welcome to Apache HBase‖, https://hbase.apache.org/index.html, (Retrieved on Sep 

26, 2015), (2013). 

[49] M. N. Vora, ―Hadoop-HBase for large-scale data‖, Proceedings of International Conference on 

Computer Science and Network Technology (ICCSNT), IEEE, vol. 1, (2011), pp. 601-605. 

[50] L. Francke, ―Hive HBase Integration‖, https://cwiki.apache.org/confluence/display/Hive/HBase 

Integration, (Retrieved on September 27, 2015), (2012). 

[51] T. White, ―The Small Files Problem‖, http://blog.cloudera.com/blog/2009/02/the-small-files-problem, 

(Retrieved on September 27, 2015), (2009). 

http://www.aosabook.org/en/intro1.html#chansler-robert
http://www.aosabook.org/en/intro1.html#kuang-hairong
http://www.aosabook.org/en/intro1.html#radia-sanjay


International Journal of Database Theory and Application  

Vol.9, No.1 (2016) 

 

 

Copyright ⓒ 2016 SERSC  65 

[52] H. Doug, ―Big Data Debate: Will HBase Dominate NoSQL?‖, http://www.informationweek.com/big-

data/software-platforms/big-data-debate-will-hbase-dominate-nosql/d/d-id/1111048?, (Retrieved on Sep 

28, 2015), (2013). 

[53] L. Francke, ―Hive HBase Integration‖, https://cwiki.apache.org/confluence/display/Hive, (Retrieved on 

September 28, 2015), (2012). 

[54] B. Singhvi, ―Apache Hive Review‖, http://www.gise.cse.iitb.ac.in/wiki/images/2/26/Hive.pdf, 

(Retrieved on September 28, 2015), (2012). 

[55] ―Neo Technology, Advantages of a Graph Database‖, http://neo4j.rubyforge.org/guides/why 

_graph_db.html, (Retrieved on September 29, 2015), (2014). 

[56] M. Hunger, ―Neo4j: Java-based NoSQL Graph Database‖, http://www.infoq.com/news/2010 /02/neo4j-

10, (Retrieved on September 29, 2015), (2010). 

[57] R. Sasirekha, ―Neo4j, the Graph Database for high performance traversals‖, 

http://itknowledgeexchange.techtarget.com/enterprise-IT-tech-trends/neo4j-the-graph-database, 

(Retrieved on September 30, 2015), (2010). 

[58] E. Eifrem, ―Neo4j - The Benefits of Graph Databases‖, http://www.oscon.com/oscon2009/public/ 

schedule/detail, (Retrieved on September 30, 2015), (2009). 

[59] K. Jeff, ―Cassandra Continues to Win Real-Time Big Data Converts‖, 

http://wikibon.org/wiki/v/Cassandra_Continues_to_Win_Real-Time_Big_Data_Converts, (Retrieved on 

September 31, 2015), (2012). 

[60] A. Lakshman and P. Malik, ―Welcome to Apache Cassandra‖, http://cassandra.apache.org, (Retrieved 

on September 30, 2015), (2011). 

[61] DataStax Corporation, ―Introduction to Cassandra -A White Paper‖, (2013). 

[62] T. B. George and C. Bucur, ―A comparison between several NoSQL databases with comments and 

notes‖, Proceedings of 10th IEEE Roedunet International Conference (RoEduNet), (2011), pp. 1-5. 

[63] G. Kunz, ―Cassandra Limitations‖, http://wiki.apache.org/cassandra/CassandraLimitations, (Retrieved 

on September 1, 2015), (2013). 

[64] J. Webber, http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha (Retrieved on 

September 20, 2015), (2011). 

[65] B. R. Prasad and S. Agarwal, ―Handling Big Data Stream Analytics using SAMOA Framework - A 

Practical Experience‖, Int. J. Database Theory and Application, vol. 7, no. 4, (2014), pp. 197-208, 

(2011). 

[66] A. Murdopo, A. Severien, G. D. F. Morales and A. Bifet, ―SAMOA: Developer's Guide‖, Yahoo Labs, 

(2013). 

 

Authors 
 

Bakshi Rohit Prasad, He is a research scholar in Information 

Technology Division of Indian Institute of Information 

Technology (IIIT), Allahabad, India His primary research 

interests are Data Mining, Machine Learning, Big Data 

Computing and Algorithms along with their applications in 

several domains. 

 

 

Sonali Agarwal, She is working as an Assistant Professor in 

the Information Technology Division of Indian Institute of 

Information Technology (IIIT), Allahabad, India. Her primary 

research interests are in the areas of Data Mining, Data 

Warehousing, E-Governance and Software Engineering. Her 

current focus in the last few years is on the research issues in Big 

Data Computing and its application. 

http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha%20(Retrieved%20on%20September%2020,%202015)
http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha%20(Retrieved%20on%20September%2020,%202015)


International Journal of Database Theory and Application  

Vol.9, No.1 (2016) 

 

 

66   Copyright ⓒ 2016 SERSC 

 


