
International Journal of Database Theory and Application

Vol.9, No.1 (2016), pp.45-66

http://dx.doi.org/10.14257/ijdta.2016.9.1.05

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2016 SERSC

Comparative Study of Big Data Computing and Storage Tools: A

Review

Bakshi Rohit Prasad and Sonali Agarwal

Indian Institute of Information Technology Allahabad

rohit.cs12@gmail.com, sonali@iiita.ac.in

Abstract

As a result of tremendous rise in internet usage like social media and forums, mail

systems, scholarly and research articles, daily online transactions from multiple sources

like health care systems, meteorological and environmental organizations etc., the data

collected has shoot up exponentially. This vast collection of data, called Big Data, has

caused the traditional tools incompetent for managing it from either of storage,

computing or analytical perspective. There is an immense need of architectures,

platforms, tools, techniques and algorithms to handle Big Data. The available

technologies deal with two broad aspects related to Big Data that are Big Data Storage

Management and Big Data Computing, focused to overcome various challenges such as

scalability, faster processing speed, multiple format data processing, availability, faster

response time and analytics etc. This paper reviews recent trends of storage and

computing tools with their relative capabilities, limitations and environment they are

suitable to work with.

Keywords: Big Data Computing, Big Data Computing Tools, Big Data Storage Tools,

Big Data Analytics

1. Introduction

Current world is the world of data. We have data all around us. This data is huge in

volume and being generated exponentially from multiple sources like social media

(Facebook, Twitter etc.) and forums, mail systems, scholarly as well as research articles,

online transactions and company data being generated daily, various sensors' data

collected from multiple sources like health care systems [1], meteorological department,

environmental organizations etc. The data in their native form has multiple formats too.

Also, this data is no longer static in nature; rather it is changing over time at rapid speed.

These features owned by bulk of current data, put a lot of challenges on the storage and

computation of it. As a result, the conventional data storage and management techniques

as well as computing tools and algorithms have become incapable to deal with these data.

Despite of so many challenges associated with these data, we cannot ignore the potentials

and possibilities lying in it that can support for analytics and for hidden patterns

identification. These analytics can be very effective in making business strategies and

predicting effective decisions, finding various hidden patterns associated with several

diseases and their attributes, in genomics to analyze thousands of genes and their

associated roles in biological systems, in climate monitoring and prediction, GPS and

other satellite parameters mining etc.

1.1 Big Data Formats and its Sources

Big data is a huge collection of data over a time frame that is so complex and difficult

to process and manage using conventional database management tools [2]. Big Data and

its sources can be categorized into following categories:

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

46 Copyright ⓒ 2016 SERSC

 Structured Data - generated from various researches efforts, CRM (Customer

Relationship Management) and other such traditional databases.

 Semi-structured Data - such as XML formatted data.

 Unstructured Data – These data can be generated by humans such as social

media, discussion forums and customer feedback, comments, emails etc. or

may be generated by machine such as online transactional, satellite and

environmental data collected through various sensors, web-logs, call records

etc.

1.2 Big Data Characteristics and Big Data Challenges

There are four basic characteristics depicted in Figure 1 that Big Data shows always.

These are Volume, Variety and Velocity [3-4]. Each aspect puts a challenge in handling

and processing this data to extract some meaningful implications. These challenges could

be in collection, integration, storage, sorting, searching, retrieval, analysis, and

visualization from the various aforementioned key aspects of the Big Data.

Volume: As per current scenario, various sources of data generations throughout the

world, generating the data at tremendous speed per day. Facebook and Twitter are the

kind of social media that produce daily approximately 500 TB and 7 TB of data

respectively [5-6]. According to a survey done by IBM [7], 2.5 quintillion bytes of data

are being generated every day. A quintillion equals 1018 bytes.

Variety: The data is being collected from multiple sources in different formats already

discussed - Structured data, semi-structured data and unstructured data. Out of which the

unstructured data is a big hurdle in computing and analysis part as they do not have a

common format, therefore a common tool or algorithm cannot be followed in variety of

modalities of the data.

Velocity: This aspect of Big Data is associated with the speed at which data is being

produced and processed. When we look for the real time processing and response the

speed of data production becomes a critical challenge for analytical and visualization

tools. If the response time of the analytical tools is not capable to cope up with speed of

data arriving, the result becomes useless.

Figure 1. Varying Characteristics of Big Data Over a Period of Time

Apart from above mentioned 3Vs of Big Data, there is one more important challenge

inherent in the term Big Data known as veracity and described as below:

Veracity: The last but not least challenge associated with Big Data is the veracity that

means the uncertainty in data which could be due to incompleteness, ambiguity, reliability

of the source of data, the deception factor involved, approximations made in various

models etc. This puts a great challenge of genuineness and trust on the data being used for

analytics.

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 47

1.3 Need for Big Data Management and Processing

There are various purposes for handling Big Data and exploring effective

management and methodologies. The Big Data can be used for following purposes:

 Business Intelligence: Intelligence is incorporated in making various business

strategies as listed below:

o Business alignment strategies: It is required so that the output value and

strategy may be tied up closely and may give the result after appropriate

decision making.

o Behavioral and organizational strategies: These strategies speed up the task

performance and improve productivity.

o IT strategies: It provides improved efficiency in IT at lower cost.

o Promotion and Advertisement strategies: These are required to make

intelligent and effective marketing and advertisements to raise the profit.

 Crime/ Fraud/ Fault Detection and Prediction: In this reference, the Big Data

analytics can play a vital role in several aspects. For example, some of the

applications may be as follows:

o Credit card transaction: Analytics can predict the probability of a credit card

holder of being fraudulent.

o Criminal identification is possible through deep analysis of CDR (Call Detail

Record).

 Querying, Searching and Indexing

o Keyword based search

o Pattern matching

 Knowledge discovery / Data Mining

o Healthcare system: In healthcare system, Big Data Analytics could play a

very vital role in variety of disease pattern identification, prediction and

therapy suggestions such as diabetes [8], [9] heart, cancer and Parkinson

disease [10], etc. through deeply digging Big Data using various data mining

techniques [11].

o Statistical Modeling: In various day to day life transactions.

o Genomics: To identify new patterns and relations among the genes and other

organic structures present in humans and other living beings.

o Climate predictions and operative suggestions can be made based on the

effective analytics of huge amount of climate and environmental data.

 Defect detection and prediction in software and manufacturing products [12].

1.4 Organization of Paper

The organization of the paper goes the way shown in Figure 2. The first section

introduces the Big Data, different sources of their generation, their characteristics and

challenges associated with it. Also, it discusses the need of handling and processing of

Big Data in current scenario in different areas of applications. The second section

contains a detailed description about available four well known tools and techniques for

storing and four for computing Big Data with along with their advantages/disadvantages

and the suitable environment they are applicable to work with. The third section gives the

comparison of various tools and techniques based on their capabilities and limitations

associated with them. The fourth section finally concludes this paper with some useful

suggestions and recommendations.

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

48 Copyright ⓒ 2016 SERSC

Figure 2. Organization of the Paper

2. Big Data Storage and Computing Paradigms and Tools

To draw useful implications from the Big Data, appropriate tools are required to

perform data collection, data storage and processing for various analytical perspectives.

The normal process flow diagram for Big Data Analytics is shown in Figure 3.

Figure 3. Process Flow Diagram for Big Data Analytics

2.1 Big Data Computing / Processing Tools

2.1.1. HADOOP MapReduce

Hadoop also known as Apache Hadoop [13-15] is an open source framework that has

been provided by Apache. This framework is developed to deal with distributed and

scalable computing as well as storage management of huge data, the Big Data. Hadoop

platform includes two core layers; one is the distributed storage layer that is built on the

HDFS (Hadoop Distributed File System) [16] inspired by the Google File System [17]

Visualization

Extraction

/ Cleaning

Integration /

Aggregation /

Representatio

n
Analysis

and

Modeling

Acquisition

and

Recording

Prediction

and

Interpretation

s

Semi-Structured

Data

Un-Structured

Data

Structure

d Data

Data

Data Generated From Multiple Sources

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 49

and the second layer is the distributed computing layer whose key idea is MapReduce

computing paradigm, initially, developed by Google.

The Hadoop framework follows the key idea of data intensive computations where it is

better to transfer the computation code/program to the data rather transferring the bulk of

data to the computing code. Hadoop platform involves a cluster of storage/computing

nodes (or machines) out of which one node is assigned as master and other as the slave

nodes. The HDFS [18] maintains each file in the chunk of same size blocks (except the

last block). Also, various replicas of these blocks are maintained on various nodes in the

cluster for the sake of reliability and fault tolerance. The Map-Reduce [19-20] computing

technique divides the whole task of processing into smaller blocks and assign to various

slave machines where the required data is available and executes computing right at that

node. In this way it saves significant time and cost involved in transferring data from data

server to the computing machine. Following are the advantages, disadvantages and latest

version of Hadoop.

i. Advantages of Hadoop
 Open source: Being an open source, Hadoop is freely available [13].

 Cost Effective: Hadoop saves cost as it employs cheaper low end cluster of

commodity of machines instead of costlier high end server. Also, distributed

storage of data and transfer of computing code rather than data saves high

transfer costs for large data sets [13].

 Scalable: To handle larger data, the Hadoop is capable to scale linearly by

putting additional nodes in clusters [13], [14].

 Fault Tolerant and Robust: It replicates data block on multiple nodes that

facilitates the recovery from a single node or machine failure. Also,

Hadoop's architecture deals with frequent malfunctions in hardware. If a

node fails the task of that node is reassigned to some other node [19].

 High Throughput: Due to batch processing high throughput is achieved in

Hadoop [24].

 Portability: Hadoop architecture can be effectively ported [21] while

working with several commodities of operating systems and hardwares that

may be heterogeneous [22].

 On-Demand Service [23]: It can be set manually on lent computing nodes on

cloud or can be used as on-demand service such as EMR (Elastic

MapReduce) [25] provided by Amazon or AzureMapReduce or

CloudMapReduce [26].

ii. Disadvantages of Hadoop

 Single Point Failure: Hadoop's (version up to 2.x) HDFS as well as

MapReduce suffer from master level single points of failure [13] [28].

 Low Efficiency/ Poor Performance than DBMS [27]: Hadoop shows lower

efficiency due its inability to switch to the next stage before completing the

previous stage tasks causing Hadoop unsuitable for pipeline parallelism,

runtime scheduling that causes degraded efficiency per node. Unlike RDBMS,

it has no specific optimization of execution plans that could minimize the

transfer of data among various nodes.

 Inefficient Dealing with Small Files: As HDFS is meant for high throughput

optimization [24], it does not suit to random reads on small files [51].

 Not Suitable for Real Time Access: MapReduce and HDFS employ batch

processing architecture hence; it does not fit for real-time accesses [18].

 Hadoop does not support iterative behavior which is common to any

procedural programming paradigm.

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

50 Copyright ⓒ 2016 SERSC

2.1.2. Cloudera Impala and Cloudera Enterprise RTQ

Cloudera Enterprise RTQ driven by Cloudera Impala enables enterprises to exploit

advantageous features of SQL tools to achieve real-time analytics potentials when

working with large volumes of data, whose nature may be structured and unstructured

[29]. Various business analysts and IT industries can use it over a wide range of supported

data types as well as huge data volumes to interact in real time with a HBase or a HDFS

data store for the sake of analytics. The Cloudera Impala's position in Hadoop stack is

depicted in Figure 4.

i Advantages of Cloudera Impala and Cloudera Enterprise RTQ

 Flexible data model: It works with the same stored data and metadata in

HBase or Hive, i.e. it supports structured as well as unstructured data [29].

Figure 4. Cloudera Impala Status in Hadoop Stack [30]

 High Performance: It executes queries at least 10 times faster than

Hive/MapReduce. Pure I/O bound queries and queries with at least one join

have shown 3-4 times and 7-45 times performance gain respectively.

Aggregation queries have been speed-up by approximately 20-90 times as

compared to HiveQL (Hive Query Language) [29].

 Real-Time Interaction Support: Cloudera Enterprise RTQ reduces response

time [30] of queries to seconds unlike minutes in HiveQL or MapReduce, as

shown in the comparison chart in Figure 5. Up to 90% computing cost is

saved [29] spent on ETL services.

 Security: It offers Kerberos authentication support. Role based authorization

is also supported in Cloudera Enterprise RTQ.

ii. Disadvantages of Cloudera Impala RTQ

 All joins operations are performed in memory capacity limited by the

smallest memory node present in the cluster [29].

 It does not support querying streaming data such as streaming video or

continuous sensor data etc. [30].

 Deleting individual rows is not possible in Cloudera Enterprise RTQ and it

still does not support internal indexing for files [29].

 Single Point Failure in Query Execution: It quits the entire query if any host

that is executing the query fails [30].

Integration

Resource Management

NoSQL Database

HBase

Distributed File

System

HDFS

Batch

Processing

MapReduce /

Hive & Pig

Real Time

Processing

Impala

Enterprise RTQ

Machine

Learning

Mahout etc

Data Storage

H
iv

e

M
etasto

re

H
D

F
S

N
am

en
o
d

e
Im

p
ala

S
tatesto

re

M
etad

ata

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 51

Figure 5. Comparison of Response Time of Cloudera Impala RTQ and
HiveQL [29]

2.1.3. IBM Netezza

Netezza can be placed in both storage and computing category as it provides data

warehouse as well as analytics appliance. Netezza is based on Asymmetric Massively

Parallel Processing (AMPP) shared-nothing architecture which is basically a two-tier

architecture [31,33] shown in Figure 6 and Figure 7 which handle large complex queries

very quickly. The first tier employs a high performance Linux based Symmetric Multi-

Processing host. This tier is responsible for compiling data query jobs and accordingly

generating execution plans. It breaks down the original query task into sub-tasks suitable

for parallel execution. Afterwards, these subtasks are distributed over the second tier [32].

The second tier involves hundreds of intelligent snippet processing blades called S-Blades

that form the MPP engine of the appliance. These independent servers (S-Blades) contain

Intel-based central processing units having multiple cores. Also, it includes multi-engine

as well as high-throughput Field-Programmable Gate Arrays (FPGAs) [31,33].

i. Advantages of IBM Netezza

 Massive Parallel Processing: The load time in MPP is of order of

approximately 2 TB/hour and backup and its restoration rates are of order of

4 TB/hour and above [32].

 TwinFin, an integrated component of Netezza, provides fast analysis of large

data volumes of order of petabytes [32] [34] and in-database processing in

Netezza causes significant reduction in terms of latency [35].

 Netezza supports models like Hadoop, Java, Python, C++, etc. which is

programming models used majorly these days [36].

 IBM Netezza provides faster query performance using concepts of

parallelism and pipelined computation [33].

 Netezza does not use indexes, table spaces. Thus, Data Definition Language

becomes much simpler [36]. IBM Netezza Analytics packages are free and

inbuilt in it [37].

ii. Disadvantages of IBM Netezza

 Netezza does not suit for online transactional processing [34-35].

 Netezza does not employ any query tuning mechanism [35].

 Netezza does support nested correlated queries whereas some other Business

Intelligence tools leverage this aspect to fasten turnaround [35-36].

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

52 Copyright ⓒ 2016 SERSC

P: Independent Homogeneous Processor

Figure 6. IBM Netezza Tier-1 [31]

Figure 7. IBM Netezza Tier-2 [31]

2.1.4. Apache Giraph

Apache Giraph, running on top of Hadoop framework, is the open sourced version of

Google's proprietary product Google Pregel [38]. It also has distributed processing

structure suitable basically for large scale graph processing [39,43-44] such as in analysis

of the interconnected web (for Page Ranking) or social media (Facebooks, Twitters,

LinkedIn etc.) interaction that are nothing but a graph of interconnected vertices which

may be a web page linked to another page through the edge (hyperlink) or it may be users

in social media connected with each other through edges representing friendship or some

kind fan or business following etc. The Giraph basically based on the Valient model [40]

of Bulk Synchronous Parallel computation model. Usually, the Giraph is used in

combination with well-known graph databases such as Infinite Graph or Neo4j or with

Hadoop.

i. Advantages of Apache Giraph

 Scalable: It is used for large scale graphs' analysis involving up to trillion of

edges. Giraph computing is based on the Valiant model of Bulk Synchronous

Parallel computation [40].

 Fault Tolerant: It achieves fault tolerance by employing check-points

technique [41].

 Simple for Graph Based Problems: Apache Giraph naturally models the

graph based problems which is based on 'Think like vertex' approach which

Database Partition

S-Blade

Multi-Core CPU

FPGA

Memory

Disks

Database Partition

S-Blade

Multi-Core CPU

FPGA

Memory

Disks

Database Partition

S-Blade

Multi-Core CPU

FPGA

Memory

Disks

Communication Interface

System Bus Bus

Arbiter

Shared

Main Memory

Shared

I/O

Cache-1

P1

Cache-2

P2

Cache-N

PN

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 53

is a vertex centric programming model as shown in Figure 8 [41]. Instead of

writing several mapper/ reducer classes a vertex is implemented. Vertices

can send and receive messages to each other throughout computation [42].

 Less I/O and In-memory computation: It holds the state of a graph in-

memory throughout the execution of algorithm. It uses no sorting technique

for computations hence time effective in query response [42].

Figure 8. Vertex Centric Computing Model of Apache Giraph [43]

ii. Disadvantages of Apache Giraph

 Apache Giraph is still in a very immature phase of development [41-42].

 It lacks in providing a complete set of offered algorithms [42].

2.2. Big Data Storage Tools

2.2.1. HBase

Apache HBase [45-46] is an open source non-relational database that aims to host very

large sized tables consisting of millions to billions of rows and columns. HBase allows

grouping various attributes to make column families as described in Figure 9. In this way,

attributes of a column family are put together in the table [47]. Apache HBase is a

distributed version of the database that facilitates the same capabilities to Hadoop's HDFS

as the Big Table of Google provides to the Google File System [48].

Figure 9. Column Family Containing as Attributes Columns 2 and 3 [46]

Column-Family

Col-Name-2

Value-2

Col-Name-3

Value-3

Row-

Key-1

Col-Name-1

Vaue-1
Column-

Family-

Name

Col-Name-4

Vaue-4

Message

Edge < Id = 9, value =10>

Id = 1

Key =10

Id = 5

Key = 3

Edge < Id = 5, value =10>

Id = 9

Key = 7

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

54 Copyright ⓒ 2016 SERSC

i. Advantages of HBase

Apache HBase provides following capabilities:

 Scalability: It scales horizontally, as it is a wide-column key-based data

stores. Therefore, it is robust also [45].

 HBase performs consistent reads/writes on the underlying data in the

database but it is optimized for performing read operations [49].

 Random and Real Time Read and Write Access: HBase stores data in

MapFiles that are basically an Indexed Sequence Files. Thus, it becomes a

suitable choice for streaming analysis of a MapReduce kind of style that

involves occasional random look ups [51].

 It suits well to store sparse data, found usually in several data cases [49].

 Fault Tolerance: In HBase, the failovers between Region Servers are

supported and handled automatically [45], [46].

 Real Time Query support: For real time interaction with data, HBase offers

Bloom Filters and Block caches [45].

ii. Disadvantages of HBase

There are some technical limitations with almost all NoSQL solutions and so is the

case with HBase:

 Compactions affect the consistent low latency in HBase [49].

 Single Point Failure: In HBase rows are partitioned into regions [49] and

each region is allocated to a Region-Server which becomes a single point of

failure. Also, HBase takes long recovery times for node failures. On the

other hand, the Region Server failover takes approximately 10-15 minutes

which is quite high [52].

 Operationally Inflexible: HBase's master-oriented architectural design routes

all reads and writes via Region-Server, thereby causing no workload

separation across different replicas in a cluster [52].

 There are no optimized classic OLTP applications or analytics support in

HBase. It does not directly support SQL, however its integration with Hive

supports HiveQL [49-50].

2.2.2. Apache Hive

Apache Hive, built upon Apache Hadoop, is a data warehouse tool that provides

effective management of very large data which is stored in HDFS. It also provides

effective query execution facility using a query language resembling to SQL. This query

language is known as HiveQL. Since the language is SQL-like, hence the SQL users can

easily fire their query on the database. Also, it is helpful for those programmers who

know the MapReduce paradigm of computing. They can write their own mappers/

reducers and plug in them into HiveQL to achieve data analysis and data summarization

that is more sophisticated and, otherwise could not have been achieved using capabilities

already being provided with HiveQL [53].

i. Advantages of Apache Hive

Apache Hive facilitates following capabilities:

 Easy data ETL services: Hive provides data extract, data transform and data

load operation in an easy way. Hive performs reads/writes which are

independent of file formats. It uses SerDe (Serializers/Deserializers)

framework libraries to support formats such as text, sequential files, control

delimited or a user defined file format [54-55].

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 55

 Hive has provision for tables at external level to facilitate data processing

without storing it actually on HDFS. Data partitioning in Hive, is performed

at table level that improves query execution performance [54].

 The Metadata store facility introduced in the architecture of Hive enables

easier look ups for query processing and analytics [54]. HiveQL can be

enhanced with custom functions such as: UDF (scalar functions), UDAF

(aggregation functions) and UDTF (table functions) [55].

 Scalability: It achieves scalability by dynamically adding more machines to

the Hadoop node cluster and Hive has been made fault-tolerant to recover

from node failures [55].

ii. Disadvantages of Apache Hive

 It does not work for OLTP, hence not suited for real-time queries [53].

 Hive is incapable of making updates and delete at row-level. Also, a single

record insertion is not supported by Hive; rather it is loaded from a file in

batch using LOAD command [54].

 Correlated sub queries cannot be executed in Hive as well as access control

has not been implemented in Hive [54].

2.2.3. Neo4j

Neo4j is a graph database that is available as open source as well as commercial

licensed version. It stores data modeled as a graph which is a collection of nodes (with an

Id) and relationships among them represented as edges in the graph. These nodes or edges

store some properties represented as key/value pairs. Neo4j is an embedded, fully

transactional, a disk-based Java persistence engine.

i. Advantages of Neo4j

 Massive scalability: Neo4j can easily handle large graphs containing nodes /

relationships / properties of order of billions using even a single machine. Its

computation can run in parallel on multiple processors via read threads [54].

 Schema-Free Database: The schema free architecture provides for an

efficient storage solution for semi structured information [55]. Since, nodes

do not have fixed set of properties hence; it facilitates easy schema-changes.

 High Performance: Unlike RDBMSs, Neo4j overcomes the performance

degradation problem with several joins by performing graph traversal that

works at the same speed no matters how much data constitutes it [55-56].

Neo4j enables 2 million read/per second for the relationship. Calculations of

shortest-paths scale far better than RDBMS [57]. Neo4j outperforms

relational data stores with greater than 1000 times performance gain in many

examples of deep query analytics [58].

 Neo4j exhibits support for ACID transaction properties that facilitates

rollbacks and recovery from transactional failures [57].

 No O/R (object-relational) Mismatch: Neo4j naturally maps a graph

structure to some Object Oriented language such as Java or Ruby and hence,

does not need any complex O/R mapping tool [58].

ii. Disadvantages of Neo4j

 Single Point Failure: Neo4j has a Master-Slave model for replication as

depicted in Figure 10(a) and 10(b) where all write operations are handled by

the master and changes performed are reflected to the read only slaves. At

master level, there can be a single point failure [57].

 Slow Online Write Transaction Speed: While committing in Neo4j, data is

made permanent on disk that requires disk writes at each commit hence write

speed is limited by the single server hardware's I/O capacity.

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

56 Copyright ⓒ 2016 SERSC

(a) When Master is Written (b) When a Slave is Written

Figure 10. Replication Model of Neo4j [64]

2.2.4. Apache Cassandra

Apache Cassandra is basically an open source column store peer to peer architecture

distributed database [61]. It provides high end scalability and effective data replication

that facilitates the fault tolerant feature and high availability. Despite of complex

administering and data management than some other NoSQL alternatives, it has

outperformed many of them [59] with its tremendous capabilities such as near real time

interaction with users and streaming data analytics, etc. Some of the features [60-62]

listed below.

i. Advantages of Apache Cassandra

 High Scalability: Cassandra provides two kinds of scalability. One is the

data scalability. Second is throughput/performance scalability that enables

response times in sub-seconds that scales linearly i.e. (two nodes double the

throughput, four quadruple the throughput, and so on) [60].

 Very High Throughput for Write Operations: Provides very high throughput

for write operations whereas considerably well throughput for read

operations too [61]. Cassandra performs 'Per-Partition Ordering' specified

while creating a table as sorting million rows is faster during development

than sorting billions during production [63].

 Fault Tolerance and High Availability: It is achieved by the absence of

single point failure [60] since it does not work on master/slave architecture.

Data replication is done to several nodes in the data cluster centers [60],

which improve the availability.

 Transaction Support: It delivers the ―AID‖ (Atomicity, Isolation, Durability)

through 'commit logs' to track each write to the database. It achieves

durability through built-in redundancies [61].

 It serves streaming data analysis required in several areas like social media,

stock trading, energy systems, healthcare systems, multimedia streaming

systems etc. Also, through integration with DataStax Enterprise it achieves

built-in data security i.e. authentication, data encryption, etc. [61].

ii. Disadvantages of Apache Cassandra

 A single column value may not be larger than 2GB; in practice. The number

of cells allowed per row in one partition is maximum two billion [62-63].

Slave

Server-1

Slave

Server-2

Slave

Server-N

Neo4j Computing Environment

1

Master

Server

4a
4n

Steps:

1. Write_To_Slave-2

2. Request_To_Confirm_Write

3. Confirm_Write

4. Replication_To_Other_Slaves

 4a. Replication_To_Slave-1
 4n. Replication_To_Slave-n

2

3

Slave
Server-1

Slave
Server-2

Slave
Server-N

Neo4j Computing Environment

1

Master
Server

4a 4n

Steps:

1. Write_To_Slave-2

2. Request_To_Confirm_Write

3. Confirm_Write

4. Replication_To_Other_Slaves
 4a. Replication_To_Slave-1

 4n. Replication_To_Slave-n

2

3

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 57

 No join or sub query support: It does not offer join or sub query but very

limited support for aggregation [63]. Join operations are implemented in the

program which are expensive tasks in huge data sets [72].

 There is no in-built searching support in Cassandra architecture's. However,

it supports for secondary indexes create them automatically and users must

understand data model to create indexes in the absence of automatic

secondary index support [72].

3. Results and Discussion

The overall management of Big Data involves storing, processing and analyzing it for

various purposes, hence we can visualize the infrastructure, to handle Big Data related

tasks, as a layered architecture as shown in Figure 11.

Figure 11. Layered Architecture for Big Data Handling

Through the detail analysis of various computing and storage tools, we have found

several attributes that may give us a way to compare these tools. The various

advantages/disadvantages of these tools let us know the suitability of various tools in

various kinds of application domains.

3.1. Comparison of Computing Tools

Below is comparison Table 1, Table 2 and Table 3, consisting of various computing

tools and the key features or facilities they support.

Table 1. Computing Tools Comparison Table

Computing

Tools

Scala-

bility

Distributed

Architecture

Parallel

Computation

Fault

Tolerance

Single Point

Failure

Hadoop Yes Yes Yes High Yes- At master

nodes)

Cloudera

Impala RTQ

Yes Yes Yes Yes Yes - If any host

quits query

execution entire

query is stopped

Data Format Data Storage Layer Data Computing & Analytics

Semi -

Structured /

Unstructured

Structured

Real Time

NoSQL

Database
File Storage

System such

as HDFS etc.

Data Warehouse

Real Time

Analytics

Map Reduce

Analytics

Business

Intelligence

Analytics

End Result

Real Time

Insights

Real Time

Operations

Business

Intelligence and

Actionable

Insights

Operational

Applications

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

58 Copyright ⓒ 2016 SERSC

IBM

Netezza

Yes Yes Yes- Asymmetric

Massively Parallel

Processing

Yes-

Using

redundant

SMP hosts

At SMP server

level

Apache

Giraph

Yes Yes Yes - Bulk

Parallel

processing

Yes - by

check

points

No - Multiple

master threads

running

Table 2. Computing Tools Comparison Table

Computing

Tools

Query

Speed

Real-Time

Analytics /

Response

Time

Streaming

Query

Support

ETL

Required?

Data

Format for

Analytics

Hadoop Slow No No No Structured/

Unstructured

Cloudera

Impala RTQ

High Yes / in

seconds

No No Structured

/Unstructured

IBM

Netezza

High Yes / in

seconds

Yes No Structured

(RDBMS)

Apache

Giraph

High Yes / very

less

 No No Graph

Database

Table 3. Computing Tools Comparison Table

Computing

Tools /

Paradigm

I/O

Optimization

Optimized

Query Plans?

Efficiency Latency Time

for Query

Hadoop

MapReduce

No Not Applicable Low for real time

applications (High

for batch

processing)

Not Applicable

Cloudera Impala

RTQ

Yes Yes Higher Low Latency due

to use of

dedicated

distributed query

engine

IBM Netezza Not Required Yes High Very Low- in

seconds, due to

in-memory data

base processing

and parallelism

Apache Giraph Not Required Yes – In terms

of graph query/

algorithms

High Low - In memory

computation

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 59

Based on the comparison Table 1, Table 2 and Table 3, we identified following set of

categories on which we would like to evaluate the above tools and computing paradigm in

subsequent sub-sections:

3.1.1. Distributed Computation, Scalability and Parallel Computation

As we can see from the comparison tables, all computing tools provide these facilities.

Hadoop distributes data as well as computing via transferring it to various storage nodes.

Also, it linearly scales by adding a number of nodes to computing clusters but shows a

single point failure. Cloudera Impala also quits execution of the entire query if a single

part of it stops. IBM Netezza and Apache Giraph whereas does not have single point

failure. In terms of parallel computation IBM Netezza is fastest due to hardware built

parallelism.

3.1.2. Real Time Query, Query Speed, Latency Time

The Hadoop employs MapReduce paradigm of computing which targets batch-job

processing. It does not directly support the real time query execution i.e OLTP. Hadoop

can be integrated with Apache Hive that supports HiveQL query language which supports

query firing, but still not provide OLTP tasks (such as updates and deletion at row level)

and has late response time (in minutes) due to absence of pipeline parallelism and run-

time scheduling of task assignment to distributed nodes.

All other three computing tools support the real time query execution very well and

have early response time in seconds. However, Cloudera executes queries at least 10

times faster than Hive/MapReduce. Hadoop has comparatively higher latency time as it

targets batch-job processing. The Cloudera Impala has low latency time as it uses a

dedicated distributed engine to access data. IBM Netezza and Apache Giraph also achieve

very low latency time due to in-memory database processing and computation. Apart

from these tools there are other frameworks that are dedicated only to big data stream

computing and mining [65-66] for supporting real time analytics too but they are not

discussed in this paper.

3.1.3. I/O and Query Optimization, Efficiency & Performance

Hadoop does not generate optimized query execution plans thus offers low efficiency

for queries whereas Cloudera, IBM Netezza and Giraph have provision of I/O and query

execution plans optimizations which results in higher efficiency and high performance in

query execution. In Cloudera, purely I/O bound queries achieve approximately 3-4 times,

queries of join or multiple MapReduces achieves approximately 7-45 and simple

aggregation queries achieve 20-90 times performance gain over Hive/MapReduce. Giraph

also provides high performance in terms of large scale graph processing for even trillion

of edges.

3.1.4. ETL Requirement, Cost Effectiveness, Fault Tolerance

Since Hadoop, Giraph and Cloudera RTQ are open sourced, hence are a cost effective

solution whereas IBM Netezza is proprietary to IBM, hence a costly solution for handling

BigData. Also, since Clouera and Giraph perform in memory computation they do not

require data input and data output that saves a lot of processing cost involved in I/O. None

of the tools require the ETL (Extract, Transform and Load) service, thereby they save a

major cost involved in data preprocessing. Hadoop is highly fault tolerant that is achieved

by maintaining multiple replicas of data sets, and its architecture that facilitates dealing

with frequent hardware malfunctions. Giraph achieves fault tolerance using barrier

checkpoints.

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

60 Copyright ⓒ 2016 SERSC

3.1.5. Data Format, Language Support and Application Development

Hadoop HDFS is purpose built for supporting multi-structure data unlike the relational

data bases whereas IBM Netezza deals strictly with the relational database. The Cloudera

Impala RTQ supports both structured as well as unstructured data store. Apache Giraph is

designed specially to work on graph data base such as Neo4j. Hadoop itself work on

simply MapReduce paradigm but may support a range of languages for application

development when integrated with other technologies such as Apache PIG that supports

Python, Javascript and JRuby languages. Cloudera can be successfully integrated with

various BI tools supporting various languages. IBM Netezza directly supports a wide

range of languages (C, C++, Fortran, Java, Lua, Perl, PythonR) for application

development. Apache Giraph builds applications implemented using Java libraries.

3.2. Comparison of Storage Paradigms/Tools

Below is comparison Table 4, Table 5 and Table 6, consisting of various storage tools

and the key features or facilities they support.

Table 4. Storage Tools Comparison Table

Storage

Tools

Open

Source

Distributed Scalable Data Storage Format ETL

Required?

HBase Yes Yes Yes Structured i.e. Tabular but

not exactly row-oriented

Relational Table

Yes

Apache

Hive

Yes Yes Yes -

Good

Structured/ Unstructured

Yes - Hence a

bit higher

latency in

minutes

Neo4j Yes Yes Yes Non-relational

i.e. graph database

(schema less)

No

Apache

Cassandra

Yes Yes Yes -vast Structured / Semi-

structured / unstructured

(schema less)

No

Table 5. Storage Tools Comparison Table

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 61

Table 6. Storage Tools Comparison Table

Storage

Tools

Failover

Recovery

Fault

Tolerance

Meta

Data

Store

Language

Interface

Support

Access

Control

HBase
Long time at

node level

failure whereas

10 to 15

minutes at

Region Server

level

Yes Yes Less - Java

Centric, Non-java

clients are

supported through

REST and Thrift

gateways

Yes

Apache

Hive

Yes - supports

node level

recovery

Yes -

replication

mechanism to

have synced

with

metastore

Yes Clojure, Go,

Groovy, Java

JavaScript, Perl,

PHP, Python,

JRuby, Scala

No in-built

security

provisions

Neo4j Yes -

Select the new

master

Yes -

Supported by

ACID

Transaction

system

Yes -

Optional

schema

Java, PHP, .Net,

Python, Clojure,

Ruby, Scala, etc.

Yes

Apache

Cassandra

Yes -

Optimized for

the Recovery

performance

Yes -

Optional

Yes -Due

to flexible

schema

support

Java, Python,

Node.JS, etc.

Yes -

Provided by

the DataStax

Enterprise

Based on the comparison tables, storage tools can be categorized and evaluated based

on following subsets of characteristics that provides some insights of applicability of

various tools in different application domains:

3.2.1. Distributed, Scalability and Data Format Flexibility

All storage tools provide distributed data storage and querying facility and scalable in

nature. HBase can be easily scaled-up with new records up to millions of rows and

billions of columns. HBase and Hive run on Hadoop data node clusters, hence exploits its

scalable property to further expand the database through data partitioning over multiple

cluster data nodes. Neo4j is also scaled up by simply adding new nodes if required and

can model 232 billion nodes. Neo4j supports scalability in terms of parallel readings on

multiple nodes. Cassandra is highly scalable NoSQL database whose throughput and

query response scales linearly with machine nodes.

HBase has tabular data structure format, but it is wide-column and key-value-based

data store capable of supporting a huge number of columns and flexible schema

architecture. Hive also supports the unstructured database whereas Cassandra supports a

full range of structured and unstructured data formats and the dynamic changes in data

structure can be accommodated easily. Neo4j is extremely flexible schema less database

solutions that solves graph modeled problems.

3.2.2. Availability, Fault Tolerance, Fault Recovery

The HBase and Hive run on Hadoops master/slave architecture of nodes that cause a

single point failure at the master level failure. In HBase, RegionServer that manages the

partitioned data into a cluster region becomes single-point-failure. Similarly, Neo4j's

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

62 Copyright ⓒ 2016 SERSC

write-master is single point failure. All these are fault tolerant but HBase and Hive offers

a bit low availability. Neo4j has a much better availability whereas Cassandra is highly

available due to the absence of master/slave paradigm.

3.2.3. Real Time and Streaming Query Support, Query Performance

HBase is optimized for read operations and hence not much efficient for writes. On the

other hand, Hive does not suit for OLTP due to absence of row level updates and deletes.

Neo4j supports real time queries, but in the form of graph traversals. Cassandra supports

OLTP very well on a full range of data formats. For stream query analysis, Cassandra is

the best solution. The HBase stores data in MapFiles (that are indexed Sequence Files)

thus becomes a suitable choice for streaming analysis of a MapReduce kind of style that

involves occasional random look ups. The performance of query in Hive is increased

through meta-store, data partitioning and external level table support that is not required

to be pushed on HDFS. Neo4j overcomes the performance degradation problem in

traditional RDBMS queries with several joins because a graph traversal is performed

which works at the same speed, no matter how much data constitutes it. Cassandra

provides very high throughput for write operation queries.

3.2.4. Open Source, Access Control, Language Support

All storage tools discussed in this paper are open source, hence free available and cost

effective. Out of them, Cassandra and Neo4j does not have a requirement of ETL services

that causes no extra processing cost overhead and become the cheapest choices among

them. HBase, Neo4j and Apache Cassandra fully support an access control mechanism

that provides security, authorized access and modification to the database whereas Hive

does not provide such efficient control. HBase is java centric hence directly supports

lesser languages but through REST and Thrift Gateways interface support languages.

Neo4j supports several languages through various Neo4j language clients and REST APIs

whereas Cassandra supports all key languages that are required to develop a variety of

applications without need of any intermediate gateways.

4. Conclusion

This survey aims to find some available computing and storage paradigms and tools

that are being used in current scenario to address challenges of Big Data processing. We

have categorized the survey into two streams. One stream contains study and survey of

existing computing paradigms and tools used to perform computation on Big Data and the

other stream gives a detailed survey of storage mechanisms and tools available today. In

this reference, we focused on Apache Hadoop, Cloudera Impala and Enterprise RTQ,

IBM Netezza and Apache Giraph as computing tools and HBase, Hive, Neo4j and Apache

Cassandra as storage tools. Based on deep and detailed analysis of their features, relative

advantages and disadvantages we have made a critical comparison among these tools. The

comparison is made on the most striking attributes that one looks for before choosing

these tools for its application domain to handle Big Data. We have discussed various

issues associated with various tools and compared them accordingly and gave critical

review on the suitability and applicability of different storage and computing tools with

respect to a variety of situations, domains, users and requirements. We found that Hadoop

is an economic choice in many ways, but if some company or enterprise has no issue with

spending money at all then high-end IBM Netezza AMPP is a better choice. Also, the

world wide adoption of Hadoop has caused significant rise in the NoSQL databases that

could be easily integrated with Hadoop. In this reference the HBase has supports a wide

range of a community of users, multiple commercial vendors and developers and

provision for cloud storage through Amazon Web Services (AWS). Also, it has shown a

strong integration with Hadoop using Apache Hive. Due to strong consistency and easier

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 63

application development, it is a good choice from developer point of view. Due to very

high latency (in minutes), Hive is not a good solution for real time query applications

and/or OLTP applications that require frequent write operations. Graphs are best suited

for modeling real world situations such as computer networks, social networks,

geographic pathways that calculate the shortest paths in graphs, etc. Hence, Neo4j and

Giraph are the best choices for storage and computation respectively, to model such

vertex-edge scenarios.

References

[1] S. Agarwal, Divya and G. N. Pandey, ―SVM based context awareness using body area sensor network

for pervasive healthcare monitoring‖, IITM, ACM, New York, (2010), pp. 271-278.

[2] M. R. Wigan and R. Clarke, ―Big Data’s Big Unintended Consequences‖, IEEE Computer Society,

DOI:http://dx.doi.org/10.1109/MC.2013.195, vol. 46, no. 6, (2013), pp. 46-53.

[3] M. Kendrick, ―Big Data, Big Challenges, Big Opportunities: 2012 IOUG Big Data Strategies Survey‖,

http://www.ioug.org/p/cm/ld/fid=91, (Retrieved on September 2, 2015), (2012).

[4] N. Wallis, ―Big Data in Canada: Challenging Complacency for Competitive Advantage‖, in: T. White

(Eds.), Hadoop: The Definitive Guide, third ed., O’Reilly Media, Yahoo Press, (2012).

[5] J. Constine, ―How Big Is Facebooks Data? 2.5 Billion Pieces Of Content And 500+Terabytes Ingested

Every Day‖, http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-billion-pieces-of-

content-and-500-terabytes-ingested-every-day, (Retrieved on September 2, 2015), (2012).

[6] D. Tam, ―Facebook processes more than 500 TB of data daily‖, http://news.cnet.com/ 8301-1023_3-

57498531-93/facebook-processes-more-than-500-tb-of-data-daily, (Retrieved on September 3, 2015),

August (2012).

[7] IBM, ―What is big data?‖ http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html,

(Retrieved on September 3, 2015), (2013).

[8] D. Tomar and S. Agarwal, ―Predictive Model for diabetic patients using Hybrid Twin Support Vector

Machine‖, Proceedings of 5th International Conferences on advances in communication Network and

Computing, (2014).

[9] B. R. Prasad and S. Agarwal, ―Modeling risk prediction of diabetes—A preventive measure‖,

Proceedings of 9th IEEE International Conference on Industrial and Information Systems (ICIIS’ 14),

(2014), pp. 1-6.

[10] D. Tomar, B. R. Prasad and S. Agarwal, ―An efficient Parkinson disease diagnosis system based on

Least Squares Twin Support Vector Machine and Particle Swarm Optimization‖, Proceedings of 9th

IEEE International Conference on Industrial and Information Systems, (2014), pp. 1-6.

[11] D. Tomar, and S. Agarwal, ―A survey on Data Mining approaches for Healthcare‖, International Journal

of Bio-Science and Bio-Technology, vol. 5, no. 5, (2013), pp. 241-266.

[12] S. Agarwal, Divya and Siddhant, ―Prediction of Software Defects using Twin Support Vector Machine‖,

Proceedings of 2nd IEEE International conference on Information Systems & computer Networks

(ISCON), (2014), pp. 128-132.

[13] J. Venner, ―Pro Hadoop‖, a press, (2009).

[14] T. White,‖ Hadoop: The Definitive Guide‖, third ed., O'Reilly Media, Yahoo Press, (2012).

[15] S. Ketu, B. R. Prasad and S. Agarwal, ―Effect of Corpus Size Selection on Performance of Map-Reduce

Based Distributed K-Means for Big Textual Data Clustering‖, In Proceedings of the Sixth International

Conference on Computer and Communication Technology 2015, pp. 256-260. ACM, (2015).

[16] W. Tantisiriroj, S. Patil and G Gibson, ―Data-intensive File Systems for Internet Services‖, A Rose by

Any Other Name (CMU-PDL-08-114). Research Centers and Institutes at Research Showcase,

http://repository.cmu.edu/pdl/9. Technical report, Carnegie Mellon University, (2008).

[17] M. K. McKusick and S. Quinlan, ―GFS: Evolution on Fast-forward‖, ACM Queue, New York, vol. 7,

no. 7, (2009).

[18] K. Shvachko, H. Kuang, S. Radia and R Chansler, ―The Hadoop Distributed File System‖, Proceedings

of IEEE Conference, 978-1-4244-7153-9/10, (2010).

[19] J. Dean and S. Ghemawat, ―Mapreduce: Simplified data processing on large clusters‖, commun. ACM,

vol. 51, no. 1, (2008), pp. 107–113.

[20] J. Dean and S. Ghemawat, ―Mapreduce: A flexible data processing tool‖, commun. ACM, vol. 53, no. 1,

(2010), pp. 72–77.

[21] J. Shafer, S. Rixner and A. L. Cox, ―The Hadoop Distributed File system: Balancing Portability and

Performance‖, Proceedings of IEEE Conference, 978-1-4244-6022-9/10, (2010).

[22] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares and X. Qin, ―Improving

MapReduce Performance through Data Placement in Heterogeneous Hadoop Clusters, in: Parallel &

Distributed Processing‖, Workshops and PhD Forum, IEEE, 978-1-4244-6534-7/10, (2010).

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

64 Copyright ⓒ 2016 SERSC

[23] T. Gunarathne, T. Wu, J. Qiu and G. Fox, ―MapReduce in the Clouds for Science‖, Proceedings of 2nd

IEEE International Conference on Cloud Computing Technology and Science.

DOI:http://dx.doi.org/10.1109/CloudCom.2010.107, (2010).

[24] R. Chansler, H. Kuang, S. Radia, K. Shvachko and S. Srinivas, ―The Hadoop Distributed File System‖,

http://www.aosabook.org/en/hdfs.html, (Retrieved on September 4, 2015), (2014).

[25] Amazon, Amazon EMR, http://aws.amazon.com/elasticmapreduce, (Retrieved on September 6, 2015),

(2010).

[26] H. Liu and D. Orban, ―Cloud MapReduce: a MapReduce Implementation on top of a Cloud Operating

System‖, Proceedings of IEEE International Symposium on Cluster Computing and the Grid, Newport

Beach, CA, (2011).

[27] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden and M. Stonebraker, ―A

comparison of approaches to large-scale data analysis‖, Proceedings of ACM SIGMOD International

Conference on Management of data, ACM, (2009), pp. 165–178.

[28] V. Kumar and Vavilapalli, ―Apache Hadoop YARN: Yet Another Resource Negotiator‖, Proceedings of

ACM Symposium on Cloud Computing, ACM, 978-1-4503-2428-1, (2013).

[29] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi and J. Erickson, ―Impala: A

modern, open-source SQL engine for Hadoop‖, Proceedings of the Conference on Innovative Data

Systems Research, (2015).

[30] J. Russell, ―Cloudera Impala‖, O'Reilly Media, Inc., (2013).

[31] P. Francisco, ―The Netezza data appliance architecture: A platform for high performance data

warehousing and analytics‖, IBM Redbooks, (2011).

[32] L. Dignan, ―Netezza's Twin Fin fuels profit surge‖, ZDNet Blog, http://www.zdnet.com/

blog/btl/netezzas-twinfin-fuels-profit-surge/38539, (Retrieved on September 13, 2015), (2010).

[33] Large Scale Data Management Experts, ―Concurrency & Workload Management in Netezza‖, in:

Winter Corporation White Paper, WINTER CORPORATION, Cambridge MA, (2009).

[34] E. Lai, ―Netezza launches Skimmer data appliance, teases two more‖, http://www.

computerworld.com/s/article/9147719/Netezza_launches_Skimmer_data, (Retrieved on September 15,

2015), (2010).

[35] M. Singh and B. Leonhardi, ―Introduction to the ibm netezza warehouse appliance‖, Proceedings of the

2011 Conference of the Center for Advanced Studies on Collaborative Research, IBM Corp., (2011), pp.

385-386.

[36] T. Salomie, I. E. Subasu, J. Giceva and G. Alonso, ―Database engines on multicores, why parallelize

when you can distribute?", Proceedings of the 6th conference on Computer systems, ACM, (2011), pp.

17-30.

[37] IBM-Corporation, IBM Netezza Analytics Release Notes, http://delivery04.dhe.ibm.com/sar/

CMA/IMA/032ig/0/IBM_Netezza_Analytics_Release_Notes.pdf., Release 1.2.4, (Retrieved on

September 20, 2015), (2011).

[38] A. Ching and K. Christian, ―Apache Giraph‖, (2013).

[39] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser and G. Czajkowski, Pregel,

―A system for large scale graph processing‖, Proceedings of ACM SIGMOD International Conference

on Management of data, ACM, New York, NY, USA, (2010), pp.135-146.

[40] L. G. Valiant, ―A bridging model for parallel computation‖, commun. ACM, vol. 33, no. 8, (1990), pp.

103-111.

[41] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda and J. McPherson, ―From think like a vertex to think

like a Graph‖, Proceedings of the VLDB Endowment, vol. 7, no. 3, (2013), pp. 193-204.

[42] ―Apache Giraph, Introduction to Giraph‖, http://giraph. apache.org/intro.html, (Retrieved on Sep 22,

2015), (2014).

[43] C. Martella, ―Apache Giraph: Distributed Graph Processing in the Cloud‖, FOSDEM, (2012).

[44] H. Kristen, ―An Introduction to Apache Giraph‖, (Safari books online), http://blog.

safaribooksonline.com/2014/02/10/intro-apache-giraph, (Retrieved on September 23, 2015), (2014).

[45] A. Marcus, ―The NoSQL Ecosystem‖, the Architecture of Open Source Applications, (2011), pp. 185-

205.

[46] L. George, ―HBase: The Definitive Guide‖, first ed., O'Reilly Media, 9781449396107, (2011).

[47] C. Li, ―Transforming relational database into HBase: A case study‖, Proceedings of IEEE International

Conference on Software Engineering and Service Sciences (ICSESS), (2010), pp. 683,687.

[48] ―Apache HBase, Welcome to Apache HBase‖, https://hbase.apache.org/index.html, (Retrieved on Sep

26, 2015), (2013).

[49] M. N. Vora, ―Hadoop-HBase for large-scale data‖, Proceedings of International Conference on

Computer Science and Network Technology (ICCSNT), IEEE, vol. 1, (2011), pp. 601-605.

[50] L. Francke, ―Hive HBase Integration‖, https://cwiki.apache.org/confluence/display/Hive/HBase

Integration, (Retrieved on September 27, 2015), (2012).

[51] T. White, ―The Small Files Problem‖, http://blog.cloudera.com/blog/2009/02/the-small-files-problem,

(Retrieved on September 27, 2015), (2009).

http://www.aosabook.org/en/intro1.html#chansler-robert
http://www.aosabook.org/en/intro1.html#kuang-hairong
http://www.aosabook.org/en/intro1.html#radia-sanjay

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 65

[52] H. Doug, ―Big Data Debate: Will HBase Dominate NoSQL?‖, http://www.informationweek.com/big-

data/software-platforms/big-data-debate-will-hbase-dominate-nosql/d/d-id/1111048?, (Retrieved on Sep

28, 2015), (2013).

[53] L. Francke, ―Hive HBase Integration‖, https://cwiki.apache.org/confluence/display/Hive, (Retrieved on

September 28, 2015), (2012).

[54] B. Singhvi, ―Apache Hive Review‖, http://www.gise.cse.iitb.ac.in/wiki/images/2/26/Hive.pdf,

(Retrieved on September 28, 2015), (2012).

[55] ―Neo Technology, Advantages of a Graph Database‖, http://neo4j.rubyforge.org/guides/why

_graph_db.html, (Retrieved on September 29, 2015), (2014).

[56] M. Hunger, ―Neo4j: Java-based NoSQL Graph Database‖, http://www.infoq.com/news/2010 /02/neo4j-

10, (Retrieved on September 29, 2015), (2010).

[57] R. Sasirekha, ―Neo4j, the Graph Database for high performance traversals‖,

http://itknowledgeexchange.techtarget.com/enterprise-IT-tech-trends/neo4j-the-graph-database,

(Retrieved on September 30, 2015), (2010).

[58] E. Eifrem, ―Neo4j - The Benefits of Graph Databases‖, http://www.oscon.com/oscon2009/public/

schedule/detail, (Retrieved on September 30, 2015), (2009).

[59] K. Jeff, ―Cassandra Continues to Win Real-Time Big Data Converts‖,

http://wikibon.org/wiki/v/Cassandra_Continues_to_Win_Real-Time_Big_Data_Converts, (Retrieved on

September 31, 2015), (2012).

[60] A. Lakshman and P. Malik, ―Welcome to Apache Cassandra‖, http://cassandra.apache.org, (Retrieved

on September 30, 2015), (2011).

[61] DataStax Corporation, ―Introduction to Cassandra -A White Paper‖, (2013).

[62] T. B. George and C. Bucur, ―A comparison between several NoSQL databases with comments and

notes‖, Proceedings of 10th IEEE Roedunet International Conference (RoEduNet), (2011), pp. 1-5.

[63] G. Kunz, ―Cassandra Limitations‖, http://wiki.apache.org/cassandra/CassandraLimitations, (Retrieved

on September 1, 2015), (2013).

[64] J. Webber, http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha (Retrieved on

September 20, 2015), (2011).

[65] B. R. Prasad and S. Agarwal, ―Handling Big Data Stream Analytics using SAMOA Framework - A

Practical Experience‖, Int. J. Database Theory and Application, vol. 7, no. 4, (2014), pp. 197-208,

(2011).

[66] A. Murdopo, A. Severien, G. D. F. Morales and A. Bifet, ―SAMOA: Developer's Guide‖, Yahoo Labs,

(2013).

Authors

Bakshi Rohit Prasad, He is a research scholar in Information

Technology Division of Indian Institute of Information

Technology (IIIT), Allahabad, India His primary research

interests are Data Mining, Machine Learning, Big Data

Computing and Algorithms along with their applications in

several domains.

Sonali Agarwal, She is working as an Assistant Professor in

the Information Technology Division of Indian Institute of

Information Technology (IIIT), Allahabad, India. Her primary

research interests are in the areas of Data Mining, Data

Warehousing, E-Governance and Software Engineering. Her

current focus in the last few years is on the research issues in Big

Data Computing and its application.

http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha%20(Retrieved%20on%20September%2020,%202015)
http://jimwebber.org/2011/02/scaling-neo4j-with-cache-sharding-and-neo4j-ha%20(Retrieved%20on%20September%2020,%202015)

International Journal of Database Theory and Application

Vol.9, No.1 (2016)

66 Copyright ⓒ 2016 SERSC

