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Abstract 

Twin support vector machine (TWSVM) was initially designed for binary classification. 

However, real-world problems often require the discrimination more than two categories. 

To tackle multi-class classification problem, in this paper, a multiple least squares twin 

support vector machine is proposed. Our Multi-LSTSVM solves K quadratic 

programming problems (QPPs) to obtain K hyperplanes, each problem is similar to 

binary LSTSVM. Comparison against the Multi-LSSVM, Multi-GEPSVM, Multi-TWSVM 

and our Multi-LSTSVM on both UCI datasets and ORL, YALE face datasets illustrate the 

effectiveness of the proposed method.  
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1. Introduction 

Support vector machine (SVM) was originally introduced by Vapnik and his co-

workers in the early 1990s [1-2] for binary classification and regression. SVM has already 

been widely applied to a variety of real-world problems ranging from image classification 

[3], text categorization [4] and bioinformatics [5], etc. However, one of the main 

challenges for SVM is the high computational complexity of quadratic programming 

problem (QPP) [6]. This drawback restricts the application of SVM to large-scale 

problems. Recently, nonparallel support vector machines have attracted widely attentions, 

and many nonparallel hyperplane classifiers were proposed for binary classification. For 

example, in 2006, Mangasarian and Wild [7] proposed the first nonparallel hyperplane 

classifier termed as generalized eigenvalue proximal support vector machine (GEPSVM), 

which seeks two nonparallel hyperplanes such that each hyperplane is close to one of the 

two classes and is as far as possible from the other class. From another aspect, Jayadeva et 

al. [8] proposed a twin support vector machine (TWSVM) which also aims at seeking two 

nonparallel hyperplanes such that each hyperplane is close to one of the two classes and 

depart from the other simultaneously. The idea of solving two smaller-sized QPPs rather 

than a single larger-sized QPP in SVM makes the learning of TWSVM four times faster 

than SVM. From then on, some of extensions of TWSVM have been widely investigated 

[9-15], e.g. TBSVM [9], PTSVM [10], TPMSVM [11], Robust TWSVM [12], RPTSVM 

[13], NHSVM [14] and NPSVM [15]. To improve the learning speed of TWSVM, after 

combining the spirit of TWSVM [8] and LSSVM [17], least squares twin support vector 

machine (LSTSVM) [16] has been proposed as a way to replace the QPPs in TWSVM 

with a linear system by using a squared loss function instead of the hinge one. Inspired by 

LSTSVM, linear LSPTSVM [18] and nonlinear LSPTSVM [19] have been introduced as 

a least squares version of PTSVM [10].  

SVM and TWSVM are originally designed for binary classification problems. However, 

multi-class classification problem is often encountered in practical scenarios. Therefore, 

how to effectively extend classical SVM and TWSVM to multi-class classification 
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problems are still ongoing research issues. In the SVM and TWSVM framework, the 

following models are widely investigated: One-Versus-Rest SVMs (OVR-SVMs) [20], 

One-Versus-One SVMs (OVO-SVMs) [21], Error-correcting-output code SVMs (ECOC 

SVMs) [22] and Directed acyclic graph SVMs (DAGSVMs) [23]. Based on “one-versus-

one-versus-rest” strategy, another form of multi-class classification algorithms such as K-

SVCR [24], Twin-KSVR [25] and LST-KSVC [26] were proposed. In addition, Suykens 

and Vandewalle [27] extended the LSSVM methodology to the multi-class case. 

However, the speed in learning a model and the method for dealing with the potential 

unbalance of samples in different classes are still two critical problems for multi-class 

classification problems in SVMs. Furthermore, LSTSVM overcomes the sample 

unbalance problem in two classes by choosing two different penalty variables for different 

classes and faster in learning a model by solving system of linear equations. 

Based on the above analysis, in this paper, we aim to extend the LSTSVM to multi-

class classification problem, named Multi-LSTSVM. Moreover, regularization terms are 

added to control the complexity for finding proper hyperplanes and to make sure each 

hyperplane is closer to its own class and is as far as possible from the other class. 

Experimental results obtained on both UCI datasets and ORL, YALE face datasets 

illustrate the superiority of our Multi-LSTSVM over LSSVM, GEPSVM and TWSVM, 

which will be referred to as Multi-LSSVM, Multi-GEPSVM and Multi-TWSVM in the 

following when dealing with multi-class classification, respectively.  

The rest of this paper is organized as follows. In Section 2, background knowledge is 

introduced, such as LSSVM and LSTSVM. Section 3 presents the details of our linear 

Multi-LSTSVM and its nonlinear version. Experimental results on real-world datasets are 

described in Section 4, and Section 5 contains concluding remarks.  

 

2. Background 

In this Section, we give a brief outline of LSSVM [17] and LSTSVM. [16]. 

 
2.1. Least Squares Support Vector Machine (LSSVM) 

Consider the binary classification problem with the in training set  
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Where 0C  is the penalty factor, 
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For this primal problem, LSSVM solves its Lagrangian dual problem 



 



 





m

i

ii

m

i

i

m

i

m

j

ij

jijiji

yts

C
xxKyy

1

11 1

0..

)),((
2

1
min









                          (3) 

Where ),( xxK  is the kernel function and  
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The solution of the above problem is given by the following system of linear equations 
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2.2. Least Squares Twin Support Vector Machine (LSTSVM) 

Consider the following binary classification problem. Suppose that all of the data 

points in positive class are organized as the matrix 
nm

RA


 1  and the data points in 

negative class are denoted by a matrix 
nm

RB


 2 . 

Different from LSSVM [17], linear LSTSVM [16] seeks a pair of nonparallel 

hyperplanes. 
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The primal problems of linear LSTSVM are   
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Where 0,
21
cc are the penalty factors, 

21
,   are slack variables, and 

21
, ee  are 

vectors of ones. 

On substituting the equality constraint into the objective function and we can obtain the 

unconstrained optimization problem. Then, we derive the linear equations 
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Note that the solutions to the pair of QPPs (8) and (9) can be found directly by solving 

two systems of linear equations (12) and (13), more details can be seen in reference [16]. 

Once 
11

, bw  and 
22

, bw  are obtained from (12) and (13), the two nonparallel hyperplanes 

(7) are known. A new data point 
n

Rx  is then assigned to the positive or negative class 

by 
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Where ||   is the absolute value.  
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3. Multi-LSTSVM 

In this Section, we present our multi-class classifier for a K-class classification 

problem. The proposed algorithm evaluates all training points into a “One-Versus-All” 

structure and it solves K small-sized QPPs simultaneously. For convenience, we denote 

the number of data points of the k-th class as 
k

m and define the following matrices: the 

patterns belonging to the k-th class are represented by the matrix 

KkRA
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Where m  is the total number of training samples and 
k

B  is composed of the patterns 

belonging to all classes except the k-th class. 

 

3.1. Linear Multi-LSTSVM 

Our linear Multi-LSTSVM seeks K hyperplanes, one for each class, and assigned class 

label according to which hyperplane is nearest to. In our proposed Multi-LSTSVM, the 

regularization term is added to objective function similar to references [9, 13]. Then, we 

have the following QPP 
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Where )2,1,,,2,1(,,,  iKkec
kikkk

 are regularization parameters, penalty 

parameters, slack variables and the vectors of ones, respectively.  

On substituting the equality constraint into the objective function, we get the 

unconstrained optimization problem as follows. 
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Differentiating L with respect to 
kk

bw ,  yields the following KKT conditions, 
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After combining (18) and (19), we can achieve the following equation, 
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Where 
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I  is an identity matrix. 



International Journal of Database Theory and Application 

Vol.8, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC      69 

Once  
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Where ||   is the absolute value. 

 

3.2. Nonlinear Multi-LSTSVM 

In this subSection, we extend the linear Multi-LSTSVM to the nonlinear case by kernel 

trick. The input data are mapped into a high dimensional feature space by some nonlinear 

kernel functions. Here, we consider the following kernel-generated hyperplanes. 
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Where )2,1,,,2,1(,,,  iKkec
kikkk

 are respectively regularization 

parameters, penalty parameters, slack variables and the vectors of ones. 

On substituting the equality constraint into the objective function, we get the 

unconstrained optimization problem as follows. 
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After combining (26) and (27), we can achieve the following equation, 
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Where ||   is the absolute value. 

 

4. Experimental Results 

In order to evaluate our Multi-LSTSVM, we investigate its classification accuracy and 

computational efficiency on real-world UCI benchmark datasets and ORL, YALE face 

datasets. In our implementation, we focus on the comparison between our Multi-

LSTSVM and several state-of-the-art binary classification methods being used for multi-

class classification, including Multi-LSSVM, Multi-GEPSVM and Multi-TWSVM. All 

these four methods are carried out by using the “One-Versus-All” structure and 

implemented in MATLAB R2013a on a personal computer (PC) with an Intel (R) Core 

(TM) processor (3.40GHz) and 4 GB random-access memory (RAM). We perform Multi-

LSSVM by employing LSSVM toolbox [28], and Multi-GEPSVM is implemented by 

using a MATLAB function “eig”, and QPPs in Multi-TWSVM are solved by SOR 

algorithm, which is also used to solve QPPs in references [9, 13, 15]. Our Multi-LSTSVM 

is solved by operator „\‟ in Matlab. As for parameters selecting, the standard 10-fold 

cross-validation technique is employed. In addition, the parameters for all methods, 

including penalty parameter, regularization parameter, kernel parameter etc, are selected 

from the set }2,2,,2,2{
8778




. We repeat all the experiments five times on each 

dataset and record the corresponding mean values. 

 

4.1. UCI Datasets 

In this subSection, in order to demonstrate the superiority of our Multi-LSTSVM over 

Multi-LSSVM, Multi-GEPSVM and Multi-TWSVM, we choose 9 datasets from the UCI 

machine learning repository [28]. For the linear case, in order to compare the performance 

of the proposed Multi-LSTSVM with the rest of three methods, the results of numerical 

experiments are listed in Table 1, including the mean and standard deviation of 

classification accuracies and training time. In Table 1, the best accuracy is shown by 

boldface and the shortest CPU time is shown by underline for each dataset. It is 

impressive that Multi-LSTSVM obtains better accuracy than other methods in 5 out of 9 

datasets, and takes less time than other methods in 7 out of 9. Therefore, it is evident that 

the performance of Multi-LSTSVM is comparable or better than the other three methods. 

For example, for the Dermatology dataset, the accuracy of our linear Multi-LSTSVM is 

97.21%, while Multi-LSSVM is 93.18%, Multi-GEPSVM is 93.80% and Multi-TWSVM 

is 95.36%.  

For the nonlinear case, Gaussian kernel is employed, which is defined by 
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 ,   is the kernel parameter. Table 2 displays the experimental results for 

four nonlinear methods on the above 9 UCI datasets. From Table 2, we can observe that 

in most cases, the accuracies of all the nonlinear methods are obviously better than those 

of the linear ones. As in Table 1, the best accuracy is shown by boldface and the shortest 

CPU time is shown by underline for each dataset. From Table 1 and Table 2, we can find 
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that Multi-TWSVM also gets comparable performance on classification in some case, but 

its training time is longer than our multi-LSTSVM. For example, for the Segment dataset, 

the training time of our linear Multi-LSTSVM is 0.0127 second, while Multi-TWSVM is 

21.3856 second, and the training time of our nonlinear Multi-LSTSVM is 6.0102 second, 

while Multi-TWSVM is 26.55 second. Thus, our method is more suitable for large-scale 

dataset classification problems. 

Table 1. Performance Comparison on Multi-Class Classification Accuracies 
Using Linear Kernel 

Datasets 

Multi-LSSVM Multi-GEPSVM Multi-TWSVM Multi-LSTSVM 

Acc+Std(%) 

Time（s） 

Acc+Std(%) 

Time（s） 

Acc+Std(%) 

Time（s） 

Acc+Std(%) 

Time（s） 

Iris 

150*4*3 
73.07±1.38 

T=0.0134 

97.60±0.37 

T=0.0015 

94.53±0.30 

T=0.0216 

93.20±0.30 

T=0.0033 

Glass 

214*9*6 
37.76±1.21 

T=0.0279 

45.70±0.21 

T=0.0029 

58.88±0.99 

T=0.2980 

59.44±0.77 

T=0.0029 

Wine 

178*13*3 
97.98±0.31 

T=0.0186 

93.03±0.75 

T=0.0016 

98.88±0.40 

T=0.0438 

99.66±0.31 

T=0.0016 

Zoo 

101*16*7 
91.49±1.33 

T=0.0275 

83.96±4.92 

T=0.0039 

98.85±1.08 

T=0.0103 

96.33±1.13 

T=0.0039 

Vehicle 

846*18*4 
62.20±0.45 

T=0.1517 

62.48±0.52 

T=0.0043 

77.71±0.43 

T=1.7413 

78.42±0.20 

T=0.0040 

Dermatology 

358*34*6 
93.18±0.32 

T=0.0541 

93.80±0.78 

T=0.0095 

95.36±0.75 

T=0.1141 

97.21±0.20 

T=0.0049 

Seeds 

210*7*3 
94.95±0.54 

T=0.0174 

89.43±0.62 

T=0.0014 

95.24±0.34 

T=0.0398 

93.81±0.48 

T=0.0014 

Balance 

625*4*3 
84.48±0.04 

T=0.0611 

91.65±0.07 

T=0.0019 

87.46±0.65 

T=0.2954 

87.14±0.46 

T=0.0020 

Segment 

2310*18*7 
73.20±0.16 

T=2.5432 

72.52±0.13 

T=0.0131 

69.98±0.67 

T=21.3856 

73.81±0.19 

T=0.0127 

 

4.2. Image Classification 

In order to further validate the performance of our proposed Multi-LSTSVM, two 

popular databases ORL and YALE are selected for evaluation. In our experiments, we use 

the data provided by Deng Cai [http://www.cad.zju.edu.cn/home/dengcai/Data/ 

FaceData.html]. For ORL database, PCA is exploited to reduce the dimensionality of 

features into 50, 60, …, 110,120. For YALE database, feature dimensionality is reduced 

to 30, 40, …, 90, 100 by PCA. The optimal parameters are selected by 10-fold cross 

validation method. The classification accuracy and training time of different methods with 

linear kernel and nonlinear kernel are reported in Table 3 to Table 6. The best accuracy is 

shown by boldface and the shortest CPU time is shown by underline for each dataset.  

From Table 3, Table 4 and Table 6, we can find that our Multi-LSTSVM not only gets 

the best accuracy but also takes the least CPU time in all cases. In Table 5, our Multi-

LSTSVM also obtains comparable performance on classification in most cases, although 

its CPU time is more than Multi-LSSVM. To get an intuitive view of the superiority of 

our proposed method on ORL database using nonlinear kernel, Figure1 and Figure2 are 

plotted. Figure1 shows the recognition rates of different methods versus the dimensions 

and Figure2 depicts the CPU time of different methods. The results of Figure 1 and Figure 

2 further verify the conclusion above. 

 

http://www.cad.zju.edu.cn/
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Table 2. Performance Comparison on Multi-Class Classification Accuracies 
Using Nonlinear Kernel 

Datasets 

Multi-LSSVM Multi-GEPSVM Multi-TWSVM Multi-LSTSVM 

Acc+Std(%) 

Time（s） 

Acc+Std(%) 

Time（s） 

Acc+Std(%) 

Time（s） 

Acc+Std(%) 

Time（s） 

Iris 

150*4*3 
96.53±0.56 

T=0.0142 

96.27±0.37 

T=0.0462 

97.33±0.67 

T=0.0255 

98.00±0.47 

T=0.0066 

Glass 

214*9*6 
63.55±1.58 

T=0.0285 

56.26±1.77 

T=0.2458 

68.60±0.61 

T=0.2688 

69.35±1.17 

T=0.0241 

Wine 

178*13*3 
97.53±0.75 

T=0.0206 

94.94±0.03 

T=0.0821 

98.99±0.25 

T=0.0223 

99.89±0.25 

T=0.0083 

Zoo 

101*16*7 
94.65±0.89 

T=0.0266 

93.47±1.50 

T=0.0497 

96.04±0.16 

T=0.0162 

95.84±0.44 

T=0.0098 

Vehicle 

846*18*4 
77.35±0.52 

T=0.1793 

.52.05±1.15 

T=18.1021 

85.70±0.55 

T=1.9659 

85.63±0.49 

T=0.3076 

Dermatology 

358*34*6 
96.26±0.47 

T=0.0530 

96.09±0.34 

T=1.2260 

93.69±0.58 

T=0.0842 

93.35±0.36 

T=0.0618 

Seeds 

210*7*3 
94.29±0.48 

T=0.0188 

92.86±0.34 

T=0.1370 

96.38±0.26 

T=0.0388 

96.57±0.71 

T=0.0114 

Balance 

625*4*3 
88.77±0.21 

T=0.0719 

92.16±2.03 

T=7.0802 

99.10±0.14 

T=0.2598 

92.22±0.37 

T=0.1159 

Segment 

2310*18*7 
94.20±0.12 

T=2.7592 

95.26±0.14 

T=87.2531 

96.49±0.16 

T=26.5500 

96.77±0.13 

T=6.0102 

Table 3. Performance Comparison on ORL Database Using Linear Kernel 

Dataset 

Multi-LSSVM Multi-GEPSVM Multi-TWSVM Multi-LSTSVM 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

ORL 

400*50 

49.75±1.33 

T=0.2761 

92.25±0.64 

T=0.1058 

89.45±1.04 

T=0.2445 

94.10±0.34 

T=0.0442 

ORL 

400*60 

57.25±1.38 

T=0.2848 

91.95±1.05 

T=0.1434 

90.55±0.65 

T=0.2475 

93.80±0.84 

T=0.0484 

ORL 

400*70 

62.70±0.54 

T=0.3018 

91.55±0.96 

T=0.2033 

90.90±0.70 

T=0.2537 

93.00±0.73 

T=0.0534 

ORL 

400*80 

67.60±0.96 

T=0.2885 

91.75±0.92 

T=0.2454 

91.10±1.18 

T=0.2619 

94.30±0.51 

T=0.0580 

ORL 

400*90 

70.75±0.50 

T=0.3066 

91.50±0.73 

T=0.3118 

91.20±1.08 

T=0.2701 

94.00±0.81 

T=0.0662 

ORL 

400*100 

74.45±0.45 

T=0.2982 

89.70±0.96 

T=0.3923 

91.05±1.60 

T=0.2849 

93.95±1.01 

T=0.0750 

ORL 

400*110 

77.45±1.14 

T=0.3261 

88.55±1.04 

T=0.4916 

90.55±0.84 

T=0.2958 

93.05±0.69 

T=0.0841 

ORL 

400*120 

79.60±1.65 

T=0.3067 

87.80±1.61 

T=0.5937 

90.30±1.08 

T=0.3088 

92.55±0.65 

T=0.0905 
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Table 4. Performance Comparison on YALE Database Using Linear Kernel 

Dataset 

Multi-LSSVM Multi-GEPSVM Multi-TWSVM Multi-LSTSVM 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Yale 

165*30 

47.27±2.06 

T=0.0575 

71.64±0.51 

T=0.0167 

50.79±1.84 

T=0.0324 

72.97±3.05 

T=0.0092 

Yale 

165*40 

53.09±2.52 

T=0.0618 

73.45±0.66 

T=0.0229 

64.85±1.05 

T=0.0323 

77.82±1.95 

T=0.0118 

Yale 

165*50 

61.45±0.92 

T=0.0666 

73.45±2.59 

T=0.0326 

65.09±0.92 

T=0.0341 

79.03±1.85 

T=0.0130 

Yale 

165*60 

61.82±3.64 

T=0.0761 

68.73±1.01 

T=0.0464 

64.73±1.57 

T=0.0359 

77.33±0.92 

T=0.0135 

Yale 

165*70 

62.55±1.74 

T=0.0809 

68.85±1.95 

T=0.0720 

65.21±1.64 

T=0.0367 

79.52±3.47 

T=0.0144 

Yale 

165*80 

60.12±1.89 

T=0.0860 

63.52±2.51 

T=0.0906 

60.36±1.10 

T=0.0366 

76.48±1.63 

T=0.0165 

Yale 

165*90 

57.33±1.58 

T=0.0957 

56.36±2.31 

T=0.1178 

56.61±2.70 

T=0.0388 

72.85±1.68 

T=0.0208 

Yale 

165*100 

53.94±1.21 

T=0.0948 

52.00±2.66 

T=0.1475 

52.24±2.07 

T=0.0405 

67.76±2.48 

T=0.0181 

Table 5. Performance Comparison on ORL Database Using Nonlinear Kernel 

Dataset 

Multi-LSSVM Multi-GEPSVM Multi-TWSVM Multi-LSTSVM 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

ORL 

400*50 
87.45±0.99 

T=0.2744 

94.25±0.54 

T=13.2292 

92.40±0.91 

T=0.8848 

94.55±0.93 

T=0.5229 

ORL 

400*60 
87.50±1.21 

T=0.3017 

94..80±0.37 

T=12.5873 

92.20±0.86 

T=0.9281 

92.60±0.55 

T=0.5344 
ORL 

400*70 
85.75±1.10 

T=0.3001 

93.50±0.64 

T=12.4386 

91.15±0.70 

T=0.9375 

91.75±0.90 

T=0.5571 

ORL 

400*80 
86.65±0.95 

T=0.2726 

93.25±0.73 

T=13.9634 

92.30±1.18 

T=0.9405 

92.90±0.22 

T=0.5507 

ORL 

400*90 
85.30±0.37 

T=0.2795 

92.35±0.84 

T=12.6064 

90.70±1.27 

T=0.9491 

92.40±0.98 

T=0.5373 

ORL 

400*100 
83.65±0.88 

T=0.3174 

89.05±0.97 

T=11.8288 

90.00±0.64 

T=1.0141 

92.05±0.27 

T=0.5503 

ORL 

400*110 
82.45±1.08 

T=0.3225 

87.95±1.18 

T=11.6987 

88.40±1.55 

T=0.9663 

91.10±0.38 

T=0.6031 

ORL 

400*120 
81.15±1.14 

T=0.3284 

87.20±0.65 

T=10.1980 

89.25±1.25 

T=0.9532 

91.35±1.08 

T=0.5825 
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Table 6. Performance Comparison on YALE Database Using Nonlinear 
Kernel 

Dataset 

Multi-LSSVM Multi-GEPSVM Multi-TWSVM Multi-LSTSVM 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Acc±Std(%) 

Time(s) 

Yale 

165*30 
65.70±2.04 

T=0.0626 

60.36±1.64 

T=0.4160 

64.61±2.29 

T=0.0621 

73.82±1.57 

T=0.0424 

Yale 

165*40 
65.94±1.00 

T=0.0691 

61.33±3.13 

T=0.3801 

71.15±2.08 

T=0.0634 

76.12±1.10 

T=0.0410 
Yale 

165*50 
65.09±1.58 

T=0.0725 

50.79±1.38 

T=0.3530 

67.64±2.52 

T=0.0620 

76.73±0.69 

T=0.0419 

Yale 

165*60 
64.24±2.06 

T=0.0824 

48.36±1.45 

T=0.3382 

66.06±1.66 

T=0.0627 

78.06±1.08 

T=0.0419 

Yale 

165*70 
62.30±1.79 

T=0.0868 

44.97±1.38 

T=0.3079 

63.27±1.52 

T=0.0628 

79.52±1.45 

T=0.0427 

Yale 

165*80 
60.48±1.57 

T=0.0895 

42.30±0.66 

T=0.2943 

59.03±1.33 

T=0.0641 

77.09±2.51 

T=0.0433 

Yale 

165*90 
53.70±1.26 

T=0.0935 

32.97±0.69 

T=0.2895 

54.42±2.24 

T=0.1051 

72.97±1.95 

T=0.0437 

Yale 

165*100 
48.73±2.41 

T=0.1018 

29.64±2.29 

T=0.2829 

47.76±2.69 

T=0.0784 

67.03±3.11 

T=0.0445 
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Figure 1. Recognition Rates of Different Methods versus the Dimensions on 
ORL Database Using Nonlinear Kernel 
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Figure 2. The CPU Times of Different Methods on ORL Database Using 
Nonlinear Kernel 
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5. Conclusions 

In this paper, we extend least squares twin support vector machine (LSTSVM) to 

multi-class classification problem, termed as Multi-LSTSVM. Multi-LSTSVM solves K 

QPPs such that the k-th QPP aims at making sure the k-th hyperplane is closer to its own 

class and is as far as possible from the other class. Experimental results obtained on real-

world UCI datasets, ORL and YALE face datasets illustrate that our proposed Multi-

LSTSVM has comparable or better performance. Therefore, one more direction of future 

work is to apply our Multi-LSTSVM to other practical problems such as text 

categorization, image analysis and speaker recognition and so on. 
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