
International Journal of Database Theory and Application

Vol.8, No.5 (2015), pp.241-254

http://dx.doi.org/10.14257/ijdta.2015.8.5.21

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Optimization Scheme for Small Files Storage Based on Hadoop

Distributed File System

Yingchi Mao
1, 2

, Bicong Jia
1
, Wei Min

1
 and Jiulong Wang

1

1
College of Computer and Information Engineering, Hohai University, Nanjing,

211100, China
2
Huaian Research Institute of Hohai University, Huaian, China

{maoyingchi, hhuwangjl}@gmail.com, 13291275972@163.com,

1578922962@qq.com

Abstract

Hadoop Distributed File System (HDFS) becomes a representative cloud platform,

benefiting from its reliable, scalable and low-cost storage capability. However, HDFS

does not present good storage and access performance when processing a huge number

of small files, because massive small files bring heavy burden on NameNode of HDFS.

Meanwhile, HDFS does not provide any optimization solution for storing and accessing

small files, as well as no prefetching mechanism to reduce I/O operations. This paper

proposes an optimized scheme, Structured Index File Merging-SIFM, using two level file

indexes, the structured metadata storage, and prefetching and caching strategy, to reduce

the I/O operations and improve the access efficiency. Extensive experiments demonstrate

that the proposed SIFM can effectively achieve better performance in the terms of the

storing and accessing for a large number of small files on HDFS, compared with native

HDFS and HAR.

Keywords: Small file storage, HDFS, Structured index files storage, Chord,

prefetching

1. Introduction

With the rapid development of Internet, the amount of data growing exponentially,

there have been appeared many large server architecture such as data centers and cloud

computing. In the field of large data storing and processing, the Google’s GFS provide an

effective way to handling large files [1]. Hadoop is composed of one NameNode and

some DataNodes as architecture components. NameNode stores all the metadata in main

memory. A large number of small files have an important impact on the metadata

performance of HDFS and become the bottleneck for handling metadata requests of

massive small files.

Hadoop Distributed File System (HDFS) is designed for storing the large files, and

therefore it suffers performance efficiency in dealing with small files [2]. In fact, there are

many systems storing huge amounts of small files in the different application areas, such

as energy, climatology, biology, social networks, e-Business, and e-Learning [3-4]. For

example, over 13 million files were stored in the computing center for the energy

research. 99% and 43% of files in that computer center were less than 64MB and 64KB,

respectively [5-7]. Therefore, HDFS faces a great challenge when storing and accessing a

large number of small files. The reason is that the huge number of files occupies the

memory of NameNode, and no optimization scheme is provided to improve the access

efficiency.

To improve the access performance on HDFS, the efficiency problem of reading and

writing a large number of small files is analyzed. Based on the analysis of small files, an

optimized scheme, Structured Index File Merging (SIFM), is proposed for HDFS to

mailto:13291275972@163.com
mailto:1578922962@qq.com

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

242 Copyright ⓒ 2015 SERSC

reduce the memory consumption of NameNode and to improve the reading efficiency of

small files. In SIFM, the correlations between small files and directory structure of data

are comprehensively considered to assist the small files to be merged into large files and

generate the index files. Distributed storage architecture is used in index files

management. In addition, SIFM adopts the data prefetching and caching strategies to

improve the access performance.

The main contributions of this paper can be summarized as follows:

(1) The efficiency problem of storage and access a large number of small files on

HDFS is analyzed;

(2) An optimized scheme is proposed for HDFS to reduce the memory consumption of

NameNode and to improve the access performance of huge number of small files;

(3) Extensive experiments verify the storage and access efficiency by comparing with

native HDFS and HAR.

The rest of this paper is organized as follows. Section 2 discusses the related work.

Then, Section 3 addresses the analysis of small file access on HDFS. Section 4 proposes

the optimized scheme for small files storage on HDFS, followed by its efficiency analysis

in Section 5. The experiments evaluation is presented in Section 6. Finally, the

conclusions are drawn in Section 7.

2. Related Work

HDFS is a single master and multiple slave frameworks. There is only one NameNode

as master, multiple DataNode as slaves. When storing large amount of small files,

NameNode will accept request for storage addresses and distributed storage block

frequently. This makes the single NameNode becoming the bottleneck [7]. Because there

is no optimization scheme for read/write small files in HDFS, HDFS presents poor

read/write performance when accessing a large number of small files directly [1].

Furthermore, HDFS does not consider the optimization on the native storage resource,

which reduce the efficiency in the local disk access [8].

In recent years, research on small file optimization for HDFS has attracted significant

attention. HAR, SequenceFile, and MapFile are typical general solutions to small file

optimization.

HAdoop Archive (HAR) packs a number of small files into large HDFS blocks so that

the original files can be accessed in parallel transparently and efficiently without

expanding the files. It contains metadata files and data files [6]. The file data is stored in

multiple part files, which are indexed for keeping the original separation of data intact.

The metadata files can record the original directory information and the file states. HAR

can reduce the memory consumption of NameNode, but it has some problems. Firstly, it

can bring extra burden on disk space when creating an archive. Secondly, there is no

mechanism to improve the access efficiency.

A SequenceFile is a flat file consisting of binary key-value pairs. It uses filename as

the key and file contents as the value. You can write a program to put small files into one

single SequenceFile, and process the small files using MapReduce operating on the

SequenceFile [2]. However, there are problems of SequenceFile. First, only APPEND

operation is supported, and no update/delete operation is used for a specific key. Second,

when querying a specific key in one SequenceFile, the whole file has to be viewed, which

results in the poor access performance.

A MapFile is another kind of SequenceFile, which is one sorted file with an index to

lookup operation by key. It includes two files, a data file and a smaller index file. All of

the sorted key-value pairs are stored in the data file. The key-location information are

stored in the index file [9]. The index file is read entirely into memory, so the index file

should be kept itself small. Different from the SequenceFile, MapFile does not search the

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

Copyright ⓒ 2015 SERSC 243

whole data file when looking up a specific key. Unfortunately, MapFile only provides the

append operation.

On the other hand, some special solutions were proposed to deal with special type files.

For example, multiple pages files are grouped into a large file, and an index file for each

book is created for digital libraries [4]. Liu et al.. merged small files into a large one and

built a hash index for each small file [1]. The large files store small data of GIS on HDFS.

Moreover, in order to handle a large number of small files in the Cloud computing

platform, some task scheduling algorithms were proposed. Huang et al.. adopted GA

model to dispatch a large number of computing tasks [17]. Lu et al.. presented workflow

scheduling algorithm considering different QoS constraints [18]. In addition, some

research works focused on the security problems for the file access in the Cloud

computing platform [16].

All of the above solutions, HAR, SequenceFile, and MapFile have the same limitation

is that file correlations are not considered when storing files. Moreover, there is no

optimization scheme provided to improve the access efficiency.

In this paper, file correlations are considered when storing and access files, structured

architecture for storing the metadata files is used to reduce the memory of NameNode,

and prefetching and caching technology is provided to improve access performance on

HDFS.

3. Analysis of Small File Problem on HDFS

This Section discusses the architecture and access mechanism of HDFS and the impact

of small files on HDFS.

3.1. Architecture and Access Mechanism of HDFS

HDFS has one single NameNode and a number of DataNodes, and uses the

master/slave architecture, as shown Figure 1. NameNode maintains the metadata of the

entire file system, including the file and block namespace, the mapping between files and

blocks, and the locations of each block’s replicas. All metadata is stored in the memory of

the NameNode. DataNodes provide block storage, serve I/O requests from clients, and

perform block operations [7].

The HDFS includes three kinds of file operations: write, read and delete. When a client

needs to store data, it sends a write request to the NameNode. The NameNode will

generate a block ID and find three DataNodes to store the data. Client sends the data to

these DataNodes according to data flow and notify the NameNode to store the metadata if

successfully write. When reading data, client sends a request to the NameNode.

NameNode will find the corresponding file in the directory tree, and locate the blocks.

From the Figure 1, we can get a pictorial view of HDFS architecture, as well as the read

and write operations.

HDFS
Client

HDFS
Client

HDFS
Client

NameNodeNameNode

DataNodeDataNode DataNodeDataNode DataNodeDataNode

File Name

File Metadata
Control Command

Block Report

ID of Block

Block

Command StreamCommand StreamBlock ReplicaBlock Replica Data StreamData Stream

Figure 1. The Architecture of HDFS [15]

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

244 Copyright ⓒ 2015 SERSC

In HDFS, files are divided into several fixed-sized blocks. The default size of each

block is 64MB [10]. Each block has three replicas in the separated machines for fault

tolerance.

3.2. Impact on HDFS

Because HDFS block size by default is 64MB, any file smaller than this is considered

as a small file. When small files are stored on HDFS, disk utilization is not a bottleneck. It

is reported that a small file stored on HDFS does not occupy any more disk space than is

required to store its contents [2].

There are two main reasons to result in the poor performance of small files. Firstly,

every file, directory and block in HDFS is represented as an object in the memory of

NameNode. The metadata of a file and a block with three replicas occupy 250 and 368

bytes of memory, respectively. Thus, 10 million files occupy about 3 GB of memory, if

each file using a block. Scaling up much beyond this level is a problem with current

hardware [11]. Therefore, large amount of memory of NameNode is consumed by the

metadata of a large number of small files. Secondly, HDFS is not geared up to efficiently

accessing small files. It is primarily designed for streaming access of large files.

Obviously, reading small files normally require a large number of seek operations from

DataNode to DataNode to search amd retrieve a requested file block. All of seek

operations is an inefficient data access pattern. The larger the number of small files, the

longer it takes. Moreover, HDFS currently does not provide prefetching and caching

mechanism to reduce I/O latency.

4. Optimization Scheme -- SIFM

In this paper, we proposed an optimization scheme, Structured Index File Merging –

SIFM, to improve the storage and access efficiency for small files in HDFS. The core

ideas of SIFM include: (1) File correlations are considered when merging files, which

reduces the seek time and delay in reading files. (2) Structured distributed architecture for

storing the metadata files is applied to reduce the seek operations of requested files. (3)

Considering the access locality in the inter-block on DataNodes, prefetching and caching

strategy is used to reduce the access time when reading huge numbers of small files.

According to the file merging strategy, a file is filtered to the file merged module. If

the file is a small file, it is uploaded to HDFS, and is merged into a big file. Meanwhile,

the metadata file is created and the structured merging index file is builit for the merged

file. Then the merged file is loaded to the DataNode. For metadata, the structured P2P

architecture, Chord, is adopted to store and manage the metadata in NameNode. In

addition, the prefetching and caching strategy is used to cache the metadata and index file,

and then obtain the small files. When the structured index file is read, based on the offset

and length, the requested small file can be seek in HDFS block and return to the client.

Using these strategies, SIFM can greatly reduce the communication cost and improve the

I/O performance when reading files. The procedure of SIFM scheme is illustrated in

Figure 2.

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

Copyright ⓒ 2015 SERSC 245

Figure 2. The Procedure of SIFM Scheme

4.1. File Merging Strategy

File merging strategy includes three parts: file filtering criteria, structured index file

creation, and file merging operation.

4.1.1. File Filtering Criteria

To effectively deal with the small files in HDFS, the first important issue is to identify

the cut-off point between large and small files.

Many applications consist of a large number of small files. For example, in the field of

climatology some applications consist of 450,000 files with an average of 61MB [12]. In

biology, the human genome generates up to 30 million files averaging 190KB [13]. Sloan

Digital Sky Survey hosted 20 million images with average size of less than 1MB [14].

Although Dong et al. discussed the cut-off point between large and small files, they just

presented the experimental analytical results. According to the fact from the real

applications, we treat the size of files smaller than 1 MB as small files. When storing a

small file, according to the small file filtering criteria, the client checks whether the size

of file is larger than 1MB. If it is a large file, it will be stored using the native HDFS

method. If it is a small file, the proposed file merging operation will be executed.

4.1.2. Structured Index File Creation

NameNode only maintains the metadata of the merged files and the relevant index files

are created for each original small file to indicate its offset and length in a merged file. In

SIFM, a structured index file is built for each merged file and is loaded in the memory of

NameNode. A structured index file is composed of two index sets, small file index and

merged file index. Since the memory consumed by each index file is much smaller than

that of the metadata of a file, the structured index file can still reduce the memory

occupation of NameNode.

NameNode only maintains the metadata of the merged files and the relevant index files

are created for each original small file to indicate its offset and length in a merged file. In

SIFM, a structured index file is built for each merged file and is loaded in the memory of

NameNode. A structured index file is composed of two index sets, small file index and

merged file index. Since the memory consumed by each index file is much smaller than

that of the metadata of a file, the structured index file can still reduce the memory

occupation of NameNode.

Small files File Filtering

File merging
Structured
Index file

NameNode

Metadata

Index file

Hadoop

Prefetching and caching

Writing fi les

Write index

Small
files

Index and file
cache

Reading files

File name
Read file

Merged files
Write metadata Client

DataNode

Block

Block

Block

DataNode

Block

Block

DataNode

Block

Block

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

246 Copyright ⓒ 2015 SERSC

SF_id SF_name SF_length SF_Flag

Figure 3. The Index Structure of a Small File

(1) A small file index is used to indicate the ID, name, and length of a small file.

SF_Flag indicates its validation. Since the most frequent operations on small files index is

queries by file ids, indexes are sorted by file ID. The structure of small file index is shown

in Figure 3.

(2) Merged file index is built for each merge file, which indicates the offset and length

for each original small file in it. Beside them, because a merged file may occupy multiple

blocks, the merged file index indicates the block ID where the merged file is stored, the

ID of the merged file, the name of the merged file. Similarly, MF_Flag indicates the

validation of the merged file. The structure of a merged file index is shown in Figure 4.

Using the merged file index can be convenient to analyze the location of a small file in the

read process.

Block_id MF_id MF_name offset SF_length MF_Flag

Figure 4. The Index Structure of s Merged File

4.1.3. File Merging Operation

File merging operations are carried out in HDFS clients, which merge related small

files into a large merged file. NameNode only maintains the metadata of merged files and

does not store the original small files, thus file merging can reduce the number of files

that need to be managed by NameNode. When writing a small file, if it is a small file, the

proposed file merging operation will be carried out. Otherwise, it will use the native

HDFS method. The details of file merging operations are as follows:

Step 1: Preparation. The number of small files is computed and the size of the small

file is also calculated. The small index files will be created in Step 2.

Step 2: Creation the structured index file. If the size of current small file is less than the

available size of one HDFS block, the small file index is created and the SF_Flag is set to

TRUE. The offset and length of the small file are calculated, and the merged file index is

updated. If current HDFS block cannot provide enough space to store the small file, the

remaining small space in HDFS block will be abandoned. The small file will be written

from the first place to the next new HDFS block. Meanwhile, the small file index is

created, and the merged file index is created based on the offset and length of the small

file.

Step 3: Small file merging. According to the offset and length of each file in the

merged file, files are merged into the merged big file in turn.

4.2. Metadata Files Storage

In HDFS, metadata of small files stores the mapping information from the small file to

the merged file. To reduce the memory consumption of NameNode, and improve the

access performance on HDFS, it needs to optimize the metadata management. In SIFM,

the structured P2P architecture, Chord, is adopted to store and manage the metadata file.

Figure 5. The Metadata Structure of a Small File

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

Copyright ⓒ 2015 SERSC 247

The metadata structure of a small file is illustrated in Figure 5. Metadata of small files

are stored in NameNode with the key-value pairs. For the metadata, SF_id is the only one

identifier based on the filename and directory, which is as key stored in NameNode.

SF_name and MF_name denote the name of original small file and the merged file,

respectively. The offset represents the offset of small file in the HDFS block. MF_length

indicates the length of the merged file. MF_Flag indicates the validation of the merged

file. The value of SF_name, MF_name, offset, MF_length, MF_Flag are created via the

SHA-1 algorithm. Based on the created hash value, the corresponding metadata can be

stored in the node of cluster. Due to the small size of metadata, there is no much burden

about memory consumption on NameNode. When reading one small file, utilizing the

Chord routing mechanism, NameNode can quickly locate the metadata in NameNode, and

seek the corresponding small file based on the mapping information in the metadata.

4.3. Prefetching and Caching Files

In general, Prefetching and caching schemes are widely adopted for improving the

access efficiency [1]. Prefetching can avoid disk I/O cost and reduce the response time by

considering the access locality and fetching data into cache before they are requested. In

SIFM, three prefetching strategies are used to improve the access performance: metadata

caching, index file fetching, and the merged data file fetching. These strategies are similar

to the three-level prefetching and caching strategy in [15].

Firstly, when a client requests a small file, the small file get the metadata of the merged

big file from NameNode via the metadata mapping file. If the metadata of the big file is in

the local memory, the client can directly access it. Thus it can reduce the I/O cost between

NameNode and the original small file. Secondly, based on the obtained metadata, the

client can know the connected block and access the requested file. If the index file has

been buffered from DataNode, accessing the small file belonging to the same big file can

reduce the I/O operations. Thirdly, when the requested small file has been returned to the

client, the related files can be cached based on their locality in a merged big file.

Therefore, exploiting access locality and caching the correlated files in a merged file from

DataNode can reduce the computational cost and keep high access efficiency.

5. Efficiency Analysis

To illustrate the read/write efficiency of the proposed optimization scheme, SIFM, this

Section will present the efficiency analysis.

Suppose that there are N small files with lengths, denoted as 1L , 2L , …, and NL . The

N small files are merged into K big files, 1M , 2M , …, and KM , whose lengths are

denoted as 1ML , 2ML , …, and KML , respectively.

5.1. Writing Efficiency Analysis

As described in Section 3.2, the metadata of a file and a block with three replicas

occupy 250 and 368 bytes of memory, respectively. If there is no data file, NameNode

consumes the number of memory bytes denotes as  . The block mapping of a block

consumes the number of memory bytes denotes as  . The size of a block in HDFS is

denoted as H D F SB .

Because the index file is stored in the memory of NameNode, the length of the

index file is denoted as  . Then, the number of memory bytes consumed by

NameNode is derived as

1

2 5 0 (3 6 8 +)

K
M i

n a m en o d e

H D F Si

L
M K N

B
  



 
      

 
 

 (1)

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

248 Copyright ⓒ 2015 SERSC

where
1

K
M i

H D F Si

L

B

 

 
 

 denotes the number of blocks in HDFS.

According to Eq. (1), in SIFM, the memory consumption of NameNode is related to

the number of small files. The smaller file, the more occupied memory of NameNode.

Moreover, the number of blocks,
1

K
M i

H D F Si

L

B

 

 
 

 is much smaller than
1

N
i

H D F Si

L

B

 

 
 

 , therefore,

SIFM can relieve the memory consumption of NameNode and reduce the number of files

and blocks.

5.2. Reading Efficiency Analysis

When reading a file from HDFS, the accessing time includes the following parts.

(1) A client sends command to NameNode. The time cost is denoted as sen dT ; (2)

NameNode seeks the metadata of the requested file. The time cost is denoted as

m etada taT ; (3) The time cost for the metadata returned to the client is denoted as

returnT ; (4) The client sends a read command to the corresponding DataNode. The

time is denoted as rea dT ; (5) The DataNode obtains the requested file from disk. The

time is denoted as d a taT ; (6) The file is returned to the client via the network. The

time is denoted as n etw o rkT ; (7) The index file is read from NameNode. The time is

denoted as in d exT . For all of the consumed time, sen dT , r e t u r nT , and m etada taT are

considered as constants. n etw o rkT is relevant with the size of file.

In HDFS, the total accessing time for the requested file is derived as:

_ _ _ _ _

1

() (()

N

to ta l D H F S se n d re tu rn re a d m e ta d a ta i in d e x i d a ta i n e tw o rk i

i

T N T T T T T T T



       (2)

In SIFM, utilizing the metadata and index caching approach, the metadata and

index file of the merged big file need to be located from the memory of NameNode

only when the first requested small file is read. Thus, the metadata and index file

can be directly read from cache without considering the searching time for metadata

and the index file. In addition, the data file prefetching method is also applied in

SIFM. Suppose that parts of the original small files p are directly get from cache,

therefore, the total accessing time for the requested file in SIFM is derived as:

_ _ _ _ _

1 1

() () () ()

N pK

to ta l S IF M se n d re tu rn re a d m e ta d a ta j in d e x j d a ta j n e tw o rk j

j j

T K T T N p T T T T T



 

         (3)

Obviously, the accessing performance is related with the accuracy of file locality

predictions. High concurrency and low accuracy will deteriorate the access

efficiency. High accuracy can greatly improve the access performance.

6. Experiment Evaluation

In this Section, we evaluate the reading and writing efficiencies for the small files

with the proposed optimization scheme in this paper. We also compare it with the

native

6.1. Experimental Settings

The experimental platform is established on a cluster with five nodes. One node, which

is HP server with 4 Intel Xeon CPU (2.6 GHz), 8GB memory and 800 GB memory, acts

as NameNode. The other four nodes, which are DELL PC with 2 Intel CPU (2.6 GHz),

2GB memory and 500 GB disk, act as DataNodes. All of the nodes are interconnected

with 100Mbps Ethernet network.

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

Copyright ⓒ 2015 SERSC 249

For each node, the operation system, Fedora 10, Hadoop 0.20.2 and Java 1.7.0 are

installed. The number of replicas is set to 3 and HDFS block size is 64MB by default,

respectively. The configurations of experiment are shown in Table 1.

Table 1. The Configurations of Experiment on HDFS

NodeType CPU RAM Disk

NameNode 4 Intel Xeon CPU (2.6 GHz) 8GB 800 GB

DataNode01 2 Intel CPU (2.6 GHz) 2GB 500 GB

DataNode02 2 Intel CPU (2.6 GHz) 2GB 500 GB

DataNode03 2 Intel CPU (2.6 GHz) 2GB 500 GB

DataNode04 2 Intel CPU (2.6 GHz) 2GB 500 GB

6.2. Experimental Methodology

Experiments include two aspects: writing efficiency and reading efficiency for a

large number of small files.

For HAR, all files of a merged file are stored as an HAR file. Because creating a

merged HAR file can result in a copy of each original HAR file, the original files

are deleted after storing. To compare the writing and reading efficiency of the

optimized scheme, native HDFS and HAR, we evaluate them in terms of the

memory overhead and time-cost for writing and reading small files.

Figure 6. The Distribution of File Size

Figure 7. Comparison under Time for File Storage

To evaluate the writing and reading efficiency of the proposed scheme, 80,000

files are selected as the dataset. The distribution of file sizes is shown in Figure 6.

The file sizes in the dataset range from 4kB to 1MB, and files whose size is less

than 32kB account for 95% of the total files. All files of dataset are small files. In

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

250 Copyright ⓒ 2015 SERSC

order to accurately evaluate the writing and reading performance for a large number

of small files, all of the statistics are averaged over 20 runs for high confidence.

6.3. Experimental Results

(1) Writing efficiency

In the storage/writing operation, we evaluate the storage time and memories usage

while uploading 1,000, 5,000, 10,000, 20,000, 40,000, and 80,000 small files,

respectively, to an empty HDFS.

Figure 7 shows that the time consumption for storage increases as the number of files

increase. For native HDFS, HAR, and SIFM, when writing 1,000 small files, the storage

time are 450s, 313s, and 151s, respectively. For 80,000 files, the time is 3530s, 3051s, and

1034s, respectively. SIFM greatly outperforms native HDFS and HAR. The reason is that

SIFM adopts the merging scheme to reduce the I/O operation between NameNode and

DataNodes when writing a large number of small files.

(2) Memory usage

For native HDFS, HAR and SIFM, the occupied memories of NameNode are measured

when storing a lot of small files. The results are shown in Figure 8. As expected, due to

their file archiving and merging facilities, SIFM can consume less memories of

NameNode than native HDFS and HAR. When storing 80,000 small files, the storage

efficiency increases up to 42% and 26%, respectively. Because SIFM can effectively

reduce the number of stored files by merging scheme as well as optimizing the structured

index file, SIFM can consume the less memories usage.

Figure 8. Memory Usage of NameNode

Figure 9. Memory Usage of DataNode

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

Copyright ⓒ 2015 SERSC 251

In addition, SIFM also has advantage on the memories usage of DataNode, as

illustrated in Figure 9. Because of its structured index file strategy, SIFM consumes little

more memory compared with HAR, and much less memory than native HDFS. Although

SIFM generates the extra overhead on the DataNode, the whole performance of SIFM is

better than that of HAR.

(3) File reading efficiency

To evaluate the small file reading performance, different number of small files is

randomly selected. The file types contain random files and sequence files. So, randomly

download 100, 500. 1000, 2000, 5000, and 8000 files from all of the small files,

respectively, we evaluate the total download time for these selected small files.

Figure 10. Reading Time for Random Files

Figure 11. Access Time for Sequence Files

Figure 10 and Figure 11 illustrate the reading time by applying SIFM, native HDFS,

HAR and SequenceFile for a large number of random files and sequence files,

respectively. From the results in Figure 10 and 11, when reading 8000 random files, the

SIFM scheme can reduce the reading time by 47%, 52%, and 33%, compared with native

HDFS, HAR, and SequenceFile, respectively. Moreover, with the increase in the number

of files, varying from 100 to 8000, the reading time of all of the schemes also increases.

The reason is that the increase of the number of files can increase the number of seek

operations on DataNodes, which can result in the higher reading latency. In addition,

reading random files and sequence files, the access time of the proposed SIFM scheme

has some differences. For SIFM, reading random files has better access efficiency than

reading sequence files. Reading sequence files can reduce the number of I/O operations

between NameNode and DataNodes, which leads to the improvement of reading

performance.

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

252 Copyright ⓒ 2015 SERSC

(4) Concurrent reading efficiency

In order to evaluate the concurrent efficiency, we adopt the multithreads to simulate the

concurrent clients in the experiments. During the experiments, we simulate 1, 2, 4 and 8

clients to send requests to access 8000 sequence small files with different schemes. The

experiment results are shown in Figure 12. When client’s number is 1, the reading time of

native HDFS is 146s, SIFM can reduces the reading time by up to 76%, which is

benefited from the prefetching and caching strategy. On the contrary, the reading time of

HAR is 710s, which is about 116% compared with that of native HDFS. Similarity, when

the number of concurrent client is 2, 4, and 8, respectively, the reductions of the reading

time with SIFM are 80%, 78%, and 79%. On the other hand, for HAR, the reading time

increase 18%, 20%, and 19%, respectively.

Figure 12. Access Time of different Schemes when Reading 8000 Sequence
Small Files

7. Conclusion

HDFS is designed to store large files and suffers performance penalty while writing

and reading large amount of small files. In this paper, the optimized scheme, SIFM is

proposed to effectively improve the storage performance, which outperforms HAR and

SequenceFile. As for the reading efficiency, SIFM can reduce the access time by 50-80%.

The improvement on access efficiency benefits from three aspects: (1) File correlations

are considered when merging files, which reduce the seek time and delay in reading files.

(2) Structured distributed architecture for storing the metadata files is applied to reduce

the seek operations of requested files. (3) Considering the access locality in inter-block on

DataNodes, prefetching and caching strategy is used to reduce the access time when

reading huge number of small files.

Acknowledgments

This research is partially supported by the National Key Technology Research and

Development Program of the Ministry of Science and Technology of China under Grant

No. 2013BAB06B04; Key Technology Project of China Huaneng Group under Grant

No.HNKJ13-H17-04; National Science Foundation of China under Grant No. 60903018,

61272543; Nature Science Fund of Jiangsu Province under Grant No. BK2012584, Key

Laboratory of Geo-informatics of State Bureau of Surveying and Mapping 201005.

References

[1] X. Liu, J. Han, Y. Zhong, C. Han and X. He, “Implementing WebGIS on Hadoop: A Case Study of

Improving Small File I/O Performance on HDFS”, Proceedings of IEEE International Conference on

Cluster Computing, New Orleans, USA, August 31 - September 4, (2009).

[2] T. White,” Hadoop: the definitive guide”, Yahoo Press, (2010).

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

Copyright ⓒ 2015 SERSC 253

[3] E. Neilsen, “The Sloan digital sky survey data archive server”, Computing in Science & Engineering,

vol. 10, no. 1, (2008), pp.13-17.

[4] C. Shen, W. Lu, J. Wu and B. Wei, “A digital library architecture supporting massive small files and

efficient replica maintenance”, Proceedings of the 10th annual joint conference on digital libraries,

ACM Press, QLD, Australia, June 21-25, (2010), pp.391-394

[5] Petascale Data Storage Institue, “NERSC file system statistics,” World Wide Web electronic publication,

Available: http://pdsi.nersc.gov/filesystem.htm, (2007).

[6] G. Mackey, S. Sehrish and J. Wang, “Improving metadata management for small files in HDFS”,

Proceedings of IEEE International Conference on Cluster computing, New Orleans, USA, August 31 -

September 4, (2009).

[7] Shafer J., Rixner S. and Cox A., “The Hadoop Distributed File System: Balancing Portability and

Performance”, Proceedings of 2010 IEEE International Symposium on Performance Analysis of

Systems & Software, White Plains, NY, USA, March 28-30, (2010), pp. 122-133

[8] J. Venner, “Pro Hadoop”, Springer Press, (2009).

[9] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The Hadoop Distributed File System”, Proceedings

of the 26th IEEE Symposium on Massive Storage Systems and Technologies, Incline Village, NV, USA,

May 3-7, (2010).

[10] “The Hadoop Distributed File System: Architecture and Design”, available:

http://hadoop.apache.org/common/docs/r0.20.1/hdfsdesign.html, (2010).

[11] “The major issues identified: The small files problem”, available:

http://www.cloudera.com/blog/2009/02/02/the-small-files-problem, (2010).

[12] A. Chervenak, J. M. Schopf, L. Pearlman, M.-H. Su, S. Bharathi, L. Cinquini, M. D’Arcy, N. Miller and

D. Bernholdt, “Monitoring the Earth System Grid with MDS4”, Proceedings of the Second IEEE

International Conference on e-Science and Grid Computing. Washington: IEEE Computer Society,

(2006).

[13] J. K. Bonfield and R. Staden, “ZTR: A new format for DNA sequence trace data”, Bioinformatics, vol.

18, no. 1, (2002), pp. 3–10.

[14] E. H. Neilsen Jr., “The Sloan Digital Sky Survey data archive server”, Computing in Science and

Engineering, vol. 10, no. 1, (2008), pp.13–17.

[15] B. Dong, “An Optimized Approach for Storing and Accessing Small Files on Cloud Storage”, Journal of

Network and Computer Applications, vol. 35, (2012), pp. 1847-1862.

[16] A. Mohammed, “A survey on Data Security Issues in Cloud Computing: From Single to Multi-Clouds”,

Journal of Software, vol. 8, no. 5, (2013), pp.1068-1078.

[17] J. Huang, “The Workflow Task Scheduling Algorithm Based on the GA Model in the Cloud Computing

Environment”, Journal of Software, vol. 9, no. 4, (2014), pp.873-880.

[18] G. Lu, “QoS Constraint Based Workflow Scheduling for Cloud Computing Services”, Journal of

Software, vol. 9, no. 4, (2014), pp. 926-930.

Authors

Yingchi Mao, is an associate professor at College of Computer

and Information Engineering of Hohai University, China. She

received her B.Sc. and M.Sc. degrees in computer science and

technology from Hohai University in 1999 and 2003,

respectively. She received her Ph.D. degree in computer science

and technology from Nanjing University, China in 2007. Her

research areas include distributed data management, distributed

computing system.

Bicong Jia, is a master candidate at College of Computer and

Information, Hohai University, China. He was received his B. Sc

degree in Information Science from Yancheng Normal Institute

in 2014. His research interests include big data analysis and

management.

http://pdsi.nersc.gov/filesystem.htm
http://hadoop.apache.org/common/docs/r0.20.1/hdfsdesign.html
http://www.cloudera.com/blog/2009/02/02/the-small-files-problem

International Journal of Database Theory and Application

Vol.8, No.5 (2015)

254 Copyright ⓒ 2015 SERSC

Wei Min, is a master candidate at College of Computer and

Information, Hohai University, China. He was received his B.Sc.

degree in computer science and technology from Southeast

University Chengxian College in 2011. His research interests include

data storage, cloud computing and big data.

Jiulong Wang, is a master candidate at College of Computer and

Information, Hohai University, China. He was received his B. Sc

degree in Computer Science from Hohai University in 2013. His

research interests include distributed data management, big data

index scheme.

