
International Journal of Database Theory and Application

Vol.8, No.4 (2015), pp.59-70

http://dx.doi.org/10.14257/ijdta.2015.8.4.07

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Efficient Pairwise Document Similarity Computation in Big

Datasets

1
Papias Niyigena,

1
Zhang Zuping*,

2
Weiqi Li and

1
Jun Long

1
School of Information Science and Engineering, Central South University,

Changsha, 410083, China
2
School of Electronic and Information Engineering, Xi’an Jiaotong University

Xian, 710049, China

papiasni@yahoo.fr, * zpzhang@csu.edu.cn, liweiqi@stu.xjtu.edu.cn,

jlong@csu.edu.cn

Abstract

Document similarity is a common task to a variety of problems such as clustering,

unsupervised learning and text retrieval. It has been seen that document with the very

similar content provides little or no new information to the user. This work tackles this

problem focusing on detecting near duplicates documents in large corpora. In this paper,

we are presenting a new method to compute pairwise document similarity in a corpus

which will reduce the time execution and save space execution resources. Our method

group shingles of all documents of a corpus in a relation, with an advantage of efficiently

manage up to millions of records and ease counting and aggregating. Three algorithms

are introduced to reduce the candidates shingles to be compared: one creates the relation

of shingles to be considered, the second one creates the set of triples and the third one

gives the similarity of documents by efficiently counting the shared shingles between

documents. The experiment results show that our method reduces the number of

candidates pairs to be compared from which reduce also the execution time and space

compared with existing algorithms which consider the computation of all pairs

candidates.

Keywords: Pairwise similarity, Performance, Shingles, Document similarity Algorithm

1. Introduction

The resemblances of different documents have been a critical issue for long time.

Nowadays communication technology, especially the use of the internet, has given

facilities to easily access different source of documents. An explosive growth of data on

the internet brings challenges due to the excessive cost in storage and processing. The

need of copying a part of documents or articles of a paper or simply get its duplicate is

very common in academia for example students or researcher to get more publication, in

magazines and newspapers; and in project sponsorship organization where two people

may want to get a fund to the same project. There is a need to know if the document in

consideration has a resemblance to other existing documents, knowing that documents

with very similar content provide little or no new information to the user. The

computation of pairwise document similarity is to sort out, in a corpus, all documents

compared one to another and give the similar document by comparing one document to

the rest of the documents in the corpus. It is often both impractical and extremely tedious

and expensive to evaluate the pairwise similarity of documents given the high number of

documents to be compared to. The problem of computing pairwise documents similarity

in the corpus is particularly challenging because of a potentially high cost of computation

which may be required in such a process [1, 17]. For large document collections and

query sets, this can quickly become impractical. The importance of document similarity

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

58 Copyright ⓒ 2015 SERSC

is recognized in many publications especially nowadays where access to information is

nearly unrestricted and a culture for sharing without attribution is a recognized problem

[5, 14].

To tackle the problem of pairwise computation, we represent documents in a corpus by

a matrix M×N where M is the Universal set of all shingles; N is the set of all documents.

In this matrix, rows represent shingles (elements), and columns represent documents

(sets). A given cell in the matrix has the value 1 if the shingle in the row M belongs to the

document of the column N, and value 0 otherwise. This will result in a sparse matrix

where we will have more zeros than ones.

Given the number of available documents to compare, it becomes a complex task to

manually specify the resemblance of one document to the rest of other documents in the

corpus. The approach of learning-based has been proved to perform well as this task is to

classify each pair and determine if either they match or not match. This approach comes

with a cost because the high effectiveness of learning-based approaches comes with poor

efficiency [10]. Our goal is to significantly reduce the computational time without

compromising on the quality of retrieved documents.

The similarity between two documents is a number between 0 and 1 where if the

number is close to 1, the documents are roughly the same. If we consider resemblance of

documents by considering the documents like set of string [17], the similarity of two

documents A and B will be given by Jaccard similarity, expressed by the following

formula 1:

 Sim(A, B) =
|A ∩B|

|A ∪B |
 (1)

Formula 1 describes shingles in common compared with all shingles in A and B.

A key process of document similarity system is the similarity computation. To deal

with a large number of calculations, most of the previous works employed some type of

sampling or hashing strategies to reduce complexity and save storage space, but their

accuracy may be affected in some scenarios. For example, the minwise hashing algorithm

may not generate good results when the resemblance between two documents is close to

0.5 [2]

We propose a new aspect to improve the detection of similar or near similar documents

by reducing the computation time for big datasets. To achieve this objective, we combine

fast retrieval data structure and use an efficient shingling manipulation algorithm which

can be used in searching process. The method we are proposing uses shingling to

represent documents and reduces the number of candidates pairs by heuristically limit the

files to compare if their comparison doesn't give any contribution to the comparison

performed before.

Hashing is commonly the technique used in Natural Language Processing (NLP) and

information Retrieval (IR) tasks that are used in order to achieve faster word retrieval.

The problem of computing pairwise document similarity can be succinctly defined as

follows: for every document d in collection C, compute the top k documents for similar

documents according to a particular term weighting model.

It was observed that the introduction of special structure based on the hashing

technique, known as shingling or chunks can substantially improve the efficiency of

deciding about the level of similarity of two documents by observing the number of

common shingles. According to Alzahrani survey on plagiarism detection methods [3],

common plagiarism detection techniques rely on character based method to compare the

suspected document with the original document. Identical string can be detected exactly

or partially using character matching approach. Chim et al. [6] consider text comparison

based on word n-grams, where the suspected text is split into two set of trigrams to be

compared. A number of common trigrams are considered in order to detect potential

plagiarism cases. Mishra et al [7] introduced a plagiarism detection system from Stanford

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 59

Digital Library project named COPS which detects documents overlap relying on string

matching and sentences.

There were other methods used to detect document resemblance or near document

similarity. The cluster-based method is one of the information retrieval techniques that

are used in many fields such as text summarization [7], text classification, and plagiarism

detection [8]. Zini et al. have shown the similarity of documents using a cluster-based

method [9]. He mentioned that the fingerprinting techniques mostly rely on the use of k-

grams since the process of fingerprinting divides the document into grams of k-length, the

fingerprinting of two documents can be composed in order to detect plagiarism.

Fingerprinting was used for document clustering to summarize a collection of documents

and build a fingerprint model for it [9].

Charikar proposed a locality sensitive hashing scheme for comparing documents as

expressed in [11]. He proposed an improvement to the algorithm based on sequence

matching, which determines the location of duplicates parts in documents. Algorithms

based on shingling are commonly utilized to identify duplicates or near duplicates

because of their abilities to perform clustering tasks in linear computational complexity

[11].

Through this literature review, we show that efforts have been made to detect the

similarity between text documents. These methods obtain good result but some fail when

the duplicate or near duplicate document part is modified by rewording or changing some

words, and the main drawback for the method proposed by Alzahrani et Al. [3] is that it

fails to consider individual words and takes the whole sentence as one part. The main

drawback for algorithms based on shingling is the big number of shingles produced and

increases the time complexity to near quadratic. This number of shingles also affects

efficiency because the system has to resort to the external storage because mostly they

cannot fit in the main memory.

The main difference between our proposed method and these techniques is presented in

two points: first our proposed method reduces the number of shingles to be compared; for

example the shingles belonging only in one file are discarded. The second point

corresponds to comparison mechanism: heuristically our method discard unnecessary files

in comparison process because their comparison cannot bring any information regarding

the similarity of documents we are looking for. This reduces the time complexity which

before was quadratic to almost linear complexity. Our work could be leveraged by these

applications for improved performance and higher accuracy.

2. Proposed Method

Documents are represented in a characteristic matrix. This matrix represents sets in a

way to ease their manipulation and computation. In a characteristic matrix, sets are

represented in columns and elements are represented in rows. The document is

represented as a set, where tokens or shingles are its elements. To represent documents in

a characteristic matrix, columns of the matrix correspond to the documents and the rows

correspond to the elements of the universal set of shingles [11]. The matrix has 1 in row r

and column c if the element for row r is a member of the set for column c, otherwise the

value in position (r, c) is 0. Table 1 shows the representation of documents in the

characteristic matrix.

In a large corpus with thousands of documents, this representation of documents as the

set becomes impractical and their computation might be huge [7, 11]. We are presenting

a new method to save space where we only consider the cells in the matrix having value 1

which reduce the computation time where the number of pairs to compare is reduced.

To avoid the sparse matrix, we use a data structure like relation, which can manage

efficiently up to millions of rows and which can ease counting and aggregation operations

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

60 Copyright ⓒ 2015 SERSC

that will be needed in the documents resemblance computation. This relation contains all

shingles of the universal set and their respective document.

Table 1. Documents Representation by Sparse Matrix

 doc1 doc2 doc3 doc4 doc5 doc6 … docn

shing1 0 1 0 0 1 0 … 1

shing2 1 0 0 0 1 0 … 0

shing3 0 0 1 0 0 0 … 0

shing4 1 0 0 1 0 1 … 1

shing5 0 1 1 0 0 1 … 0

shing6 0 0 0 0 0 0 … 1

shing7 1 1 0 1 0 1 … 1

shing8 0 0 0 0 0 0 … 0

shing9 0 0 0 0 0 0 … 0

shing10 0 0 0 0 0 0 … 0

shing11 0 0 0 0 0 0 … 0

shing12 0 0 0 0 0 0 … 0

… … … … … … …

shingn 0 0 0 0 0 0 … 0

2.1 Reducing Computation Time

Pair-wise documents similarity result is an upper triangular matrix because the

similarity between two documents is symmetric. This means SIM(A,B) = SIM(B,A). We

can take advantage of this property to reduce the number of computation while we are

looking for the similarity of documents in a corpus [12]. By sorting the files in decreasing

order of documents number of shingles, at given time in the process we get the solution

before we scan all documents, smaller documents being incorporated in bigger

documents. Here we can reduce the time complexity from O (n) to O (log n).

The relation to be created in order to represent the set of all shingles in the collection

has two attributes. Its row represents a pair (a, b) such that a is a shingle in the document

b. In Fig. 2 this relation is represented by List of Tuples. Our objective is to find the

triple (u, v, w) such that there is a link from u to v (which means that u document has v

shingle)and a link from v to w (which means that v shingle belongs to document w). Here,

we essentially want to take the natural join of doc/shingle with itself, and we can achieve

that by taking our relation as two relations L1 and L2. That is, for each tuple t1 of L1 and

each tuple t2 of L2 check if their v component is the same [13]. The idea behind

implementing natural join can be observed if we look at the specific case of joining

R(A,B) with S(B,C). We must first find tuples that agree on their B components. That is

the second component from tuples of R and 1st component tuples of S. We shall use B

value of tuples from either relation as the key.

For each tuple (a,b) of R, produce the key-value pair [b(r,a)]. For each tuple (b, c) of

S, produce the key-value pair [b,(s,c)]. Each key value b will be associated with a list of

pairs that are either of the forms (R,a) or (S,c). The output for key b is (b, [(a1, b, c1),

(a2, b, c2)…]) that is, b associated with the list of tuples that can be formed from a R-

tuple and S-tuple with a common b value. After this process, we count the number of

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 61

common shingles between (R, a) and (S, c) as expressed by the relation List of Triples in

Fig. 1. The pairwise similarity is represented as an upper triangular matrix where rows

and columns represent documents and cell represent the number of shared shingles. As

expressed in Fig. 1 by Similarity Table, the pairwise similarity of any document is given

by its intersection cell with all other documents in the collection. In the next sections, we

propose the algorithms to perform this process.

Before applying our algorithm, text preprocessing should be carried out. Stopwords

are frequently occurring, insignificant words that appear in documents and they are

useless to use in the similarity of documents [13]. Stopwords lists and stemming

algorithms are two commonly used information retrieval techniques for preprocessing text

documents. Action that make up the process of text-refinement in documents starts from

extracting lexical units (tokenization), and further text-refinement operations are:

elimination of the words in stopwords-list, identification of multi-word concept and

bringing concept to the main form by stemming [13]. The goal of stemming is to reduce

inflectional forms and sometimes derivationally related forms of a word to a common

base form.

2.2 Create the Relation for Pairwise Computation

The most effective way to present documents as a set is to construct from the document

the set of short strings that appear within it [12]. The documents that share pieces as short

as sentences or even phrases will have many common elements in their sets, even if those

sentences appear in different orders in the two documents. K-shingle for a document is

any substring of length k found within the document.

Figutre 1. General Process of the Proposed Method

To start the process, our method reads the corpus. Two cases may appear: the corpus

fit in memory or the corpus is too big to fit in memory [1]. In our method, we concentrate

the efforts in the first option where corpus can fit in the memory of the system. The Fig. 1

shows the full process of our method: the methods start by reading the corpus which will

be tuned in a data structure like a relation. After that, it computes the intersection

between documents by counting the common tuples and finally build a table to show the

pairwise similarity.

The basic approach for computing resemblance is expressed as a set of intersection

problem. The reduction to a set intersection problem is done via a process called

shingling. In shingling each document D gets an associated set Sd. This is performed as

follows: we view each document as a sequence of tokens. Tokens may be letters, words

or lines. We assume that we have a parser program that takes an arbitrary document and

reduce it to a canonical sequence of tokens. Any duplicates would be removed. When

we have the two sets of shingles for two different documents, we could calculate the

Jaccard coefficient, which gives a similarity score between two sets. The coefficient is

defined as the size of the intersection, the number of shingles present in both, divided by

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

62 Copyright ⓒ 2015 SERSC

the size of the union, the number of shingle present in either document. This is given by

the following formula, considering document A and document B:

 Sim(A, B) =
|A ∩B|

|A ∪B |
 (2)

The way to process documents in a corpus are so varied, application and language

dependent. Here, a document is represented by a set of token which will be divided and

grouped to produce a set of shingles according to a number specified by the user. If the

given number is small, we will have a good recall ratio while picking the big value will

provide a good precision ratio. The important thing to remember in picking the value is

that it should be picked large enough that the probability of any given shingle appearing

in any given document is low. Our objective is to represent all documents in the corpus in

different vectors, which will allow us to represent the document in a form of a relation of

pair (Dc, Sh), that says, the document Dc has the shingle Sh as shown by Fig. 2.

Figure 2. Shingle by Document Relation

The idea behind this is to find the triple (U, V, W) such that there is a document U

having V shingle, and that shingle V is also in document W. We look for each tuple t1 of

L1 (ie. Each tuple of Doc, Shing) and each tuple t2 of L2, see if their shingle component is

the same. Note that these components are the second component of t1 and the first

component of t2. If these two components agree, then produce a tuple schema (V1, V2, V3).

This tuple consists of the first component of t1, the second component of t1 (which must

equal to the first component of t2) and the second component of t2. The algorithm will

scan the relation and for each document in the corpus, it identifies the intersection

between the shingles of documents and the relation created. The results give all

documents having in common one or more shingles. We can easily create a triple (V1, V2,

V3) such that, V1 is the document concerned, V2 and V3 is a tuple of the result of applying

the intersection between document and relation. To be able to produce this relation, two

algorithms are proposed: the first one creates the relation of all shingles and the

documents they belong to while the second algorithm creates the relation of triples to be

used in evaluation of similarity.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 63

Create_Shingle_Relation Algorithm

//This algorithm construct a relation of tuple Document Shingle, where document has

shingle

Input: The path of the corpus (Set of documents and the number of n-grams

Output: A set of tuple (Doc, Shingle)

LTuple = Empty list 1
LDocument = Empty list 2
Reader : The corpus reader 3
Text: The empty text 4
//Get the list of all documents names from corpora 5
LDocument = Reader.GetDocumentName(Path_Of_Corpus) 6
For each D in LDocument 7
 Text = Reader.GetDocumentText(D) //Read the text of document D from disk 8
 Text = RemoveStopWords(Text) 9
 Text = RemovePonctuation(Text) 10
 Text = Steemer(Text) 11
 LShingle = DivideInnGrams(Text, n) 12
 For each LS in LShingle 13
 Tp = produce_Tuple(D, LS) 14
 LTuples .Add(Tp) 15
 End for 16
End for 17
Return (LTuples) 18

The execution time of this algorithm is the time used to generate the list of all shingle

for every document in the corpus (from line 12 to 16). As this operation will be

performed for every document, the execution time depends to the number of document in

the corpus (d) times number of all shingles in the corpus (n), which is O(d * n).

Traditionally, the shingling algorithms have a high computational complexity in time

because they are O (n
2
) (n is the number of documents in the collection).

The following algorithm creates the list of triples (a, b, c) such that a is the document

having b as shingle and the shingle b belongs to the document c. Actually this is the

bottleneck of other methods because the worse case may be quadratic. The main

objective of this algorithm is to reduce the candidates’ pairs to be considered in

documents similarity computation, knowing that the big number of candidates pair affect

efficiency. Given that the similarity of two documents is symmetric, the algorithm is

improved such that after comparing a document, we do not need to recompute its

similarity by any other document. This is achieved by keeping the track of document we

have finished comparing so that we compare only the difference of shingles remaining.

Create_Triples Algorithm

//Construct a relation of triples, where two document share a shingle

Input: The list of tuples created by the previous algorithm

Output: A list of triples (a, b, c) such that a is the document having b as frequent term and

b also is in the document

ListTriples = Empty set 1

DocShingles = Empty set 2
SetShingles = Empty set 3
For each D in ListOfDocument 4

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

64 Copyright ⓒ 2015 SERSC

 SetShingles = ListTuples - ListTriples.Shingles //this is to consider the symmetric of 5
pairs 6

 If SetShingles ≠ ø then 7

 DocShingles = D.Shingles ∩ SetShingles 8

 For each triple in DocShingles 9
 tripleVar = (D, triple.doc, triple.Shingle) 10
 ListTriples.Add(tripleVar) 11

 End For 12
 End if 13
End for 14
Return(ListTriples) 15

 1

This algorithm produces the list of triples. Line 5 executes the reduction of the set of 2
pairs to compare, by reducing the triples of documents we have already finished. This 3
implies that the number of files to compare is less than the number of files in the corpus. 4
Thus, we do not need to perform the Cartesian product, but files having shingles to be 5
compared will enter the process. The time complexity is O(nlog m) (n is the number of 6
documents and m is the set of shingles). Actually, the naïve algorithm has the time 7
complexity of O(n

2
) where n is the number of shingles in the collection. 8

 9
2.3 Similarity Calculation 10

The last step of our method is to produce the final relation of triples (a, b, c) such that a 11
is the document in the corpus, b is another document in the corpus, both documents share 12
c numbers of shingles. This relation provide all parameters we need to compute the 13
Jaccard Similarity because it represents the intersection between document a and 14
document b. 15

 16

Create_Shingle_Relation Algorithm 17

//Construct a relation of tuple Document Shingle, where document has shingle 18
Input: The list of all shingles of the corpus and the Document to compare 19
Output: A set of triple (Doc1, Doc2, Count) where Doc1 and Doc2 have in common 20
Count Shingles 21
LComp = The empty set 22
ListResult = the empty set 23
LdcShingle = The empty set 24
LdcShingle = Read the shingles of Document D 25
LComp = LdcShingle ∩ LTuples //Here we consider only shingles in document D 26
ListSh = Add (Lcomp, D) //Here, all shingles in LComp having same shingle as D are combined 27
ListSh.SortBy(D) 28
For each doc in ListSh 29
 N = Count the number of shingles having doc 30
 Tpl = create_Triple (D, doc, N) 31
 ListResult.Add(Tpl) 32
End for 33
Return ListResult34

We do remember that the list is sorted by the document, which will reduce the time

complexity. In the algorithm, a document is produced as a candidate if it matches with

any other document (from line 5 to line 8). After the identification of files to be

compared, the algorithm starts counting the singles in common. The time complexity of

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 65

this algorithm is O (n), where n is the number of pairs to count. This is an improvement

to the execution time of other methods because they have to go through all the candidates’

pairs in the collection. The relation produced by the algorithm is shown by Figure 3.

Figure 3. Computing Intersection of Documents

3. Experimental Evaluation

In this section, we present our experimental results. Our proposed method Best-Join

algorithm to efficiently compute pairwise similarity in the corpus has been compared with

All-Pairs algorithm.

Our algorithm is compared to All-Pairs to measure its efficiency. We have chosen this

algorithm (All-Pairs) because it doesn’t resort to approximation or discarding of frequent

features. Its contribution is to scale exact method to larger datasets. In other algorithms,

the problem is solved approximately by applying either a sketching function based on

mini-wise independent permutations in order to compress documents vectors whose

dimensions correspond to distinct n-grams or any other probabilistic method.

We measured both the size of the candidate pairs and the running time for all

experiment. All-pairs is using cosine similarity while Best-Join use Jaccard similarity.

The data set used was downloaded from Reuter’s corpus and we have collected other

small documents also to check the efficiency and effectiveness of our method on small

and average documents. All stop-words were removed and all words in the data set were

stemmed.

3.1 Reducing Candidates Pairs

The main drawback of pairwise document similarity computation is the big number of

documents to be compared. Documents are represented in w-shingles to be able to

highlight the intersection between them which will be the cornerstone to compute their

similarity. Reducing the number of shingles involve reducing execution time and

memory to be used by the process of similarity computation.

The Table 2 shows how our method reduces the number of shingles to be used in the

similarity computation. Here we are comparing with the size produced by All-Pair

algorithm using a group of (10, 20, 50, 100, 200, 350, 500, 600, 900 and 1000)

documents. The results show that our method performs better than All-Pairs, it reduces

the candidate pairs up to 71% in average. Fig 4 shows the trend of reduction of

candidates’ pairs between All-Pairs and our proposed method.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

66 Copyright ⓒ 2015 SERSC

Table 2. Candidate Size Comparison

n All-Pairs Best-Join
Reduced
Shingles

Reduction
%

10 3,917 2,063 1,854 47%

50 18,597 5,421 13,176 71%

100 36,522 12,054 24,468 67%

200 70,507 19,579 50,928 72%

350 121,879 28,461 93,418 77%

500 174,175 39,823 134,352 77%

600 216,195 52,820 163,375 76%

750 276,766 70,798 205,968 74%

900 332,013 84,962 247,051 74%

1,000 383,106 115,499 267,607 70%

Figure 4. Candidates Pairs Comparison

3.2 Time Complexity Evaluation

As shown before, our method depends on the size of shingle. We should note that, by

increasing the length of a shingle, we increase also the space of storage and the number of

pairs to be compared which can hinder the efficiency of the method. For our method, the

average of eight tokens by shingle was good enough.

The Fig. 5 shows the running time of both algorithms. It’s clear that our method

outperform the All-Pairs algorithm. One reason is the number of candidates’ pairs

generated by both algorithms. Another reason, many candidates are quickly discarded in

our method than All-Pairs. This reduces dramatically the execution time for our method

if compared with All-Pairs.

Two cases are to be considered: comparing a given document to the rest of the

documents in the corpus and pair-wise document resemblance, which consist in putting in

evidence all documents having a certain resemblance given a threshold.

Dealing with the first case, the time used by this method to perform is O (n), where n is

the number of shingles in the document. It is the time used for computing the intersection

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 67

between the document shingles and the time for counting the shingles shared by each

document in the intersection.

Figure 5. Comparison of Running Time

For the second case, the naïve algorithm uses quadratic time. In our method, we do not

need to perform the Cartesian product which is the time and space consuming. The time

complexity is O(n log m) where n is the number of documents and m is the universal set

of shingles.

As we have explained before, the representation of a corpus as a matrix is space

consuming. In our approach, we have adopted the representation for the matrix as a list of

tuples. This has an advantage of being indexed and sorted which will dramatically

improve the access and search time and save the space used by matrix (by construction a

lookup index data structure)

3.3 Effectiveness

We evaluate the effectiveness of our method using three general testing parameters that

are commonly used in Information Retrieval (IR). These are Precision, Recall, and F-

Measure. Precision is the ratio of number of relevant documents retrieved to the total

number of irrelevant and relevant documents. The recall is the ratio of the relevant

document retrieved to the total number of the relevant document in the corpus. F-

Measure is an effectiveness measure based on recall and precision. It has the advantage

of summarizing effectiveness in a single number.

Let A be the number of relevant documents retrieved, B be the number of relevant

documents not retrieved and C be the number of irrelevant documents retrieved. The

Precision (PR) and Recall (RC) are given by the formula:

 (3)

 (4)

 (5)

Our method was tested according to a set of 1000 documents in which 6 pairs of

documents were near similar. We have tested by varying the number of w-shingles

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

68 Copyright ⓒ 2015 SERSC

because we have seen that it’s the number of the length of shingle which affects precision

and recall. Table 3 shows the precision, recall and F-Measure ratio of our method. We

can notice that with the single size 8, we obtain a good ratio of Precision and Recall.

Table 3. Effectiveness Evaluation by Precision, Recall and F-Measure

Shingle Size Precision% Recall% F-Measure%

4 25 100 40

5 35 83 50

6 40 66 50

7 50 66 57

8 75 50 60

9 100 66 80

4. Conclusion

In this paper, we propose efficient similarity join algorithms by exploiting the ordering

of documents and shingles in the records. The algorithm provides efficient solutions for

pairwise documents similarity in a corpus. The algorithm alleviates the problem of

quadratic growth of candidate pairs when the size of data grows. We have identified that

the Cartesian product is the main factor because it implies to consider all document in the

corpus and all shingles produced, and we have proposed a method to overcome the issue.

Our method uses heuristic techniques to reduce the number of pairs to be compared, and

the experimental results indicate that it is possible to reduce the number of candidate

shingles to be compared by organizing files in corpus in decreasing order of their size.

We have applied our new approaches on 1000 text documents as a sample, and have seen

that our approach outperforms other exact search algorithms by reducing the number of

shingles to be compared (the average reduction of candidate size in our approach is 71%)

thus reducing the computation time.

Our evaluation shows that our method is able to evaluate the similarity of documents in

a corpus in O(n log m) time, m being the number of documents. In the future, we will

extend our method to incorporate blocking strategies by reducing the candidate pairs for

comparison. This can be achieved by representing the sets of documents by their subset,

which will reduce the number of shingles and respectively the number of pairs to

compute.

Acknowledgements

 Project supported by the National Natural Science Foundation of China (Grant No.

61379109, M1321007) and Research Fund for the Doctoral Program of Higher Education

of China (Grant No. 20120162110077).

References

[1] C. C. Aggarwal, W. Lin and P. S. Yu, Searching by Corpus with Fingerprints, ACM 348 (2012).

[2] X. Yuan, J. Long, H. Zhang, Z. Zhang and W. Gui, “Optimazing a Near-duplicate Document Detection

System with SIMD Technologies”, Journal of Computational Information Systems, Binary Inforation

Press, 3846 (2011).

[3] S. M. Alzahrani, N. Salim and A. Abraham, Understanding Plagiarism Linguistic Patterns, Textual

Features, and Detection Methods, Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions, vol. 42, no.133, (2011).

[4] A. H. Osman, N. Salim, M. S. Binwahlan, R. Alteeb and A. Abuobieda, “An improved plagiarism

detection scheme based on semantic role labeling”, Applied Soft Computing, Elsivier, (2012).

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 69

[5] S. A. Ksouri, M. S. Hidri and K. Barkaoui, “A Parallel Comparator of Documents”, Proceedings of the

24th International Workshop on Database and Expert Systems Applications, (2013); Prague, Czech

Republic.

[6] H. Chim and X. Deng, Efficient Phrase-Based Document Similarity for Clustering, in: IEEE transaction

on knowledge and data engineering, vol.20, no.127, (2008).

[7] R. Mishra and A. Choubey, Discovery of Frequent Patterns from Web Log Data by using FP-Growth

algorithm for Web Usage Mining, in: International Journal of Advanced Research in Computer Science

and Software Engineering, vol.2, no.311, (2012).

[8] D. Ceglarek, IARIA. Linearithmic Corpus to Corpus Comparison by Sentence Hashing Algorithm

SHAPD2, Proceedings of the Fifth International Conference on Advanced Cognitive Technologies and

Applications, (2013); Valencia, Spain.

[9] M. Zini, M. Fabri, M. Moneglia and A. Panunza, “Plagiarism detection through multilevel text

comparison”, Proceedings of the Automated Production of Cross Media Content for Multi-Channel

Distribution, (2006); Leeds, UK.

[10] P. Kaur, S. S. Khurmi and G. S. Josan, “Analysis for Classification of Similar Documents among

Various Websites using Rapid Miner”, (2014), pp.465.

[11] M S. Charikar, ACM, “Similarity estimation techniques from rounding algorithms”, Proceedings of the

thirty-fourth annual ACM symposium on Theory of computing, (2002); New York, USA.

[12] J. Seo, C.-S. Ock, H.-G. Cho, “A Unified Approach for Computing Document Similarity with

Fingerprinting and Alignments”, in: Proceedings of the International Conference on Computer and

Information Technology, (2012) ; Chengdu.

[13] Jannik, Strotgen, M. Gertz and C. Junghans, “An Event-Centric Model for Multilingual Document

Similarity”, Proceedings of ACM SIGIR, (2011); Beijing, China.

[14] A. Shahbazi and J. Miller, “Extended Subtree: A New Similarity Function for Tree Structured Data”, in:

IEEE Transactions on knowledge and data engineering, (2014).

[15] Y. Peng and C. Zhang, “Web Information Extraction and its application”, Proceedings of IEEE CCIS,

(2011).

[16] R. T. Selvi and E. G. D. P. Raj, An approach to Improve Precision and Recall for Ad-hoc Information

Retrieval using SBIR Algorithm, in: World Congress on Computing and Communication Technologies,

IEEE, (2014), pp.137.

[17] C. Xiao, W. Wang, X. Lin, J. X. yu and G. Wang, “Efficient Similarity Joins for Near Duplicate

Detection”, in: ACM Transactions on Database Systems, (2012), pp.131-140.

[18] T. Elsayed, J. Lin, D. W. Oard, “Pairwise Document Similarity in Large Collections with MapReduce”,

in: Proceedings of ACL -08: HLT, (2008); June Columbus, Ohio, USA.

[19] C. Yao, J. Bu, C. Wu and G. Chen, “Semi-supervised spectral hashing for fast similarity”, ELSEVIER

Neurocomputing, vol.101, no.52, (2012).

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

70 Copyright ⓒ 2015 SERSC

