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Abstract 

Twig query is a core operation in processing and optimizing XML structural queries. 

Recently, various algorithms have been proposed for finding twig patterns efficiently. 

Most of them are based on region labeling, pay little attention on nodes level information, 

and require additional caches such as stacks or lists to maintain the intermediate 

matching results, which cause the performance bottleneck of these algorithms. In contrast 

to previous work, we present a bottom-up algorithm for twig queries, which does not 

require additional caches and introduces idea of string searching to determine binary 

relationship between two nodes. Be- sides, this paper presents a node filtering 

mechanism–PathLevel, which can also be used in other algorithms for speeding up the 

query. Comprehensive experiments on several datasets demonstrate our method is an 

effective way for twig query. 
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1. Introduction 

Twig query (Twig Pattern Matching) plays an important role in processing XML data 

and is a key factor that determines the efficiency of structural XML query processing. In 

literature, there is a great deal of work being done on how to support twig query. N. Bruno 

et al. [1] proposed a holistic algorithm, TwigStack, to the best of our knowledge, it is the 

first algorithm that addresses twig query without decomposing twig pattern into binary 

(parent-child and ancestor-descendant)relationships between pairs of nodes. Lu et al. in [2] 

proposed TwigStackList, which uses lists to store PC (parent-child) relationship. Lu et al. in 

[3] proposed a new algorithm–TJFast, which is based on new entended Dewey. Chen et al. 

proposed Twig2Stack [4], introduced hierarchical stacks to enumerate the matching paths 

and Twig2Stack performs better than TwigStackList and TJFast. In summary, all above 

algorithms have following common points: 

1) Require additional caches (e.g., stack, list) to store the intermediate results; 

2) Except TJFast, all of them use region-based representation of positions (e.g., 

Zhang[5] labeling) of XML nodes or string values; 

3) Pay little attention in analyzing level information, implicated in twig pattern. 

In this paper, we improve the existing Dewey[6] labeling scheme, called Dewey*, 

which can easily support the determination of node’s or its ancestor’s label. Based on 

Dewey*, we present a new algorithm, called TwigLevel, which is independently 

developed and queries twig pattern from bottom to up. The unique feature is that, 

TwigLevel converts the calculation of relationship between two nodes into searching a 

specific string, this change gives us a chance to develop a new efficient algorithm to 

match twig pattern based on current mature searching techniques. 
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The main contributions of this paper are summarized as below. We propose a new 

bottom-up twig query algorithm, TwigLevel, which does not require to decompose twig 

pattern. Based on Dewey* labeling method, we can determine the relationship between two 

nodes by searching specific string, and therefore we can fully use mature string searching 

techniques. We conduct extensive experimental studies on different datasets. Our 

experimental evaluations show that TwigLevel is an effective algorithm and is linear to 

the size of leaf node’s streams. 

The rest of this paper is organized as follows. Section 2 presents the notations used in 

this paper, the description of node’s level and Dewey* labeling. Section 3 introduces 

TwigLevel algorithm. We report our experimental studies in Section 4. In Section 5 we 

conclude our study and present our future work. 
 

2. Preliminaries 

 
2.1 Node’s  Level 

An XML document can be modeled as a rooted, ordered, and labeled tree, each node 

corresponding to an element or a value and the edges representing PC or AD 

relationships. For each node or value, there is a depth/level that denotes what level this 

node is located. Figure 1(a) shows the tree representation of a sample XML document. 

As shown in Figure 1, the numbers in left side present the level that some nodes or 

values located. In this paper, the level starts from 0, which is the level of the root node, 

and other nodes’ level is their parents’ level plusing 1. 

 root

reg_num subj days time place

 �..

start_time end_time building room M-W 

0

1

2

3

level

             

                 (a) tree representation                                    (b)     a twig pattern 

Figure 1. A Sample XML 

TwigLevel is a bottom-up algorithm that based on node’s level information. The typical 

feature of TwigLevel is to convert the determination of relationship between two elements 

into searching the specific label (positional representation of an element) in a stream. 

We derive the level of upper level node from the label of the bottom node in a twig 

pattern, and then find whether it exists in upper-level node’s stream, if success, the two 

nodes meet the binary structure relationships. To meet above requirements, we propose a 

new labeling scheme Dewey*, which is based on the traditional Dewey labeling scheme. 

Dewey* encodes node through a coding array called Code (See Figure 2), given an element 

v in XML document (we don’t need to label the root node, that is to say, the label of the 

root node is an empty string), its label(v) = label(parent_label(v)) + Code[i mod 52]; if v 

is a text node, then label(v) = label(parent_label(v)) + @. As shown in Figure 3, a1 is a 

root node, so label (a1) is a empty string. b1 is the 1st child of a1 and therefore label(b1) = 

1/52 + Code[i mod 52] = 0A; Similarly, given label(f1) = 0D0B, we know that f1  is the 2nd 

child of its parent whose label is 0D (Figure 3). 
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Figure 2. Coding Array          Figure  3. An Example for Dewey*Labeling 

3. Bottom-up Algorithm: TwigLevel 

  
3.1 Problem Statement 

Given a twig query Q and an XML database D, a match of Q in D can be 

identified by a mapping from the nodes in Q to the nodes in D, such that query 

node predicates and structural relationships (PC or AD) between query nodes are 

satisfied by the corresponding database nodes. The results of a twig query with n 

nodes can be represented as a  tuple  1 2, , , nd d d  consists of the nodes in D. 

 
3.2 Path Level Algorithm 

To address the problem of matching twig pattern, we first split twig pattern into several 

path patterns and then merge their answers to form the results of twig query. In this 

section, we introduce algorithm PathLevel which calculates results for a path pattern and is a 

key part of algorithm TwigLevel.   

The key idea of PathLevel is to use the label of the bottom node in twig pattern to 

infer the labels of its parents or ancestors, and to determine structural relationships by 

querying whether the specified label of parent or ancestor exists in the stream of parent of 

ancestor. Since the bottom node’s label keeps the complete structural information from 

root to itself, algorithm PathLevel adopts bottom-up matching order to address path 

pattern. As shown in Algorithm 1, PathLevel can be divided two stages: Preparation stage, 

which finishes the work of parsing path pattern and node filtering (Algorithm 2); and 

Searching stage which executes searching on streams that have been processed in 

Preparation stage. 

 

Algorithm 1 PathLevel(P )  

Input: a path query P 

 Output:  the matching results  

Preparation Stage 
1: twigPatternParse(P )  

2: for all n in N odes do 

3:      filterStream(Tn, n) 

4:  end for 

Searching Stage 
1: n ← getLeaf N ode(P )  

2: while ¬ eof (Tn) do   

3: L ← current(Tn) 

4: for i ← (N odes.legth − 2) downto 1 do 

5: m ← N odes[i] 

6:     if the edge from n to N odes[i] include only P C edge then 

7:        if ¬ isind(pref ix(L, ((depth(n) − (N odes.legth − i − 1))), Ti)) then 
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8:                   delete(Tn) 

9:              end if 

10:       end if 

11:       if Depths.legth = 1 then     

12:             if  ¬ isF ind(pref ix(L, depth(m))) then 

13:                   delete(Tn) 

14:              end if 

15:        end if 

16:      if Depths(m).legth > 1 then  

17:         if all d∈Depthsm that isFind(pref ix(L, d), Ti) return false then 

18:                delete(Tn) 

19:            end if 

20:       end if 

21: end for 

22: end while 

 

Now we turn to analyze Searching stage. As shown in Algorithm 1, line 1 gets the 

lead node of path pattern P through function getLeafNode(), lines 4-20 present how an 
element in Tn matches the path pattern. If the current element in Tn matches the given 

path pattern P, then processes the next element; otherwise, deletes this element. In the 

process of matching, we need to compute the level that node m locates. There are three 

situations for determining the level of node m: (1) if there is only a PC edge between 

node (n) and m, then depth(m)=depth(n)-c is the number of PC edge between n and m 
( l i n e s  6 -1 0 ) ; (2) if all elements in Tm locate at a same level, then we set depth(m) to 

this level (lines 11-15); (3) if elements in Tm locate at several levels, then depth(m) 

possibly equals to any levels stored in  Depths(m) (lines 16-19). 

After knowing the level of node m, PathLevel starts to judge the structural relationships 

between two elements in Tn and Tm respectively (lines 8,13,18). This step is particularly 

important, it is the key feature that distinguishes PathLevel from other twig query 

algorithms. Function prefix(L,depth(m)) returns the label of L’s ancestor that locates at 

depth(m) level. isFind(prefix(L, depth(m)),Ti) returns whether prefix(L, depth(m)) exists 

in stream Ti, if returns true, then continue to match the next element; otherwise, L 

certainly will not construct the final results. Because of function isFind(), PathLevel 

converts the determination of relationships between nodes into string query problem. 

Therefore, we can depending on nowadays mature string searching techniques to improve 

the efficiency of twig query (in this paper, we adopt common hashing method to 

implement string searching). 
Having known that, through parsing of twig pattern we can get the possible or exact 

levels that the nodes in twig pattern locate. That is to say, those nodes that do not locate at 

such levels must not match the twig pattern. Thus, we can directly omit these nodes or 

only select the nodes that meet the requirements of level in the stage of twig pattern parse. 

However, only depending on the twig pattern, Depths may not keep the exact levels for a 

node (in fact, it is possible only a range that a node locates), and thus Depths requires 

further modifications, whose modification strategy is to modify Depths according to the 

node’s stream. 

Algorithm 2 FilterStream(Tn, n) 

Input:  a node in twig query n, and its corrensponding stream Tn 

Output:  a filtered stream Tn, and Depthsn after processing  

1: while ¬ eof (Tn) do 

2: v ← current(Tn) 

3:  if v ∈ Depthsn  then 

4: delete v from Tn 

5: else 
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6: Put(v, n)  

7: end if 

8:  end while 

9: procedure Put(d, n)  

10:   if d ∈ Depthsn then 

11:     return 

12:   else 

13:    Add d into Depthsn 

14:   end if 

15: end procedure 

 

For example, given a node n in twig pattern q, after parsing q, all levels are stored in 

Depthn, then for each element e in Tn, if e∈Depthn, add label(e) into Tn and add depth(e) 

into Depthn; otherwise, omit e (line 6). Based on above ideas, we develop a level-based 

node Filtering mechanism, FilterStream, which is shown in Alogrithm 2. After filtering, 

elements in Tn all meet the requirements of level. 

 
3.3 Twig Level Algorithm 

Based on PathLevel, we develop a holistic twig query algorithm, TwigLevel (See 

Algorithm 3). For a twig pattern, it can be splitted into several path patterns that can be 

solved by using PathLevel. For better analysis, we introduce the concept of Query Region. 

Given a twig query (Q), then the root node of q represents a region; Besides, all the pathes 

from branch node to leaf node in Q compose the other regions. For example, 

Q1=/root/course[subj]/time/starttime, there are two regions (as illustrated in Figure 1(b)): 

R1  and R2. 

 

Algorithm 3 TwigLevel(Q)  

Input: a twig query Q 

Output:  the matching results 

1: Preparation Stage  

2: Searching Stage 

3: for i ← BranchingN odes.legth − 1 down to 1 do 

4:         b ← BranchingN odes[i] 

5:       for all P do  

6:           n ← leaf N ode(P ) 

7:           delete all the elements u(
nu T ) 

8:          and elements v(
bu T ) that do not match the path query P 

9:        end for 

10: end for 

 

TwigLevel processes twig query from bottom to up, that is, TwigLevel first processes the 

bottom region, which is most closed to the bottom node, and then processes the region 

above it. Take Q1 as an example, TwigLevel will first processes region R2 and then 

processes region R1. The main difference between PathLevel and TwigLevel is that 

TwigLevel not only needs to alter the streams of leaf nodes but also requires to alter the 

streams of branch nodes in each region dynamically. Just as PathLevel, TwigLevel needs 

to delete the elements that surely will not contribute to the final answers both in leaf nodes 

and branch nodes in each region. TwigLevel also includes two stages: Preparation stage and 

Searching stage. Lines 3-9 show that Algorithm TwigLevel begins to process each region 

from bottom to up, and then matches each path pattern included in each region.  
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4. Experimental Evaluation 

 
4.1 Experimental Setting 

We implemented all algorithms in MyEclipse 6.5 with JDK 1.6 using the Bekelery DB 

as the storage engine. All experiments were run on a computer with 3.1GHZ Pentium(R) 4 

processor, 1GB main memory, and 150GB disk. The Operating System is XP. We used 

following datasets for experimental evaluations. 

1) Reed is a dataset with 10546 elements which describles the courses information of Reed 

College, the maximum depth is 4 and the average depth is 3.19979. 

2) SigmodRecord depicts the papers corresponding to XML published in SIGMOD, and there are 

11526 elements in SigmodRecord. The maximum depth is 6 and the average depth is 5.014107. 

3) Treebank is a deep dataset and has many self-recursive elements with the same label. The 

maximum depth is 36 and the average depth is 7.87279. It is about 82MB. 

 

4.2 Path Query 

As shown in Table 1, there are four groups of path queries, each group has different 

leaf nodes and each query in a group has the same leaf node but with different path 

length. Figure 4 shows that in each group, processing time of each query almost has no 

relation with path length. Furthermore, as shown in Figure 4, the group with relatively 

smaller size of leaf nodes’ stream consumes much less time than others. For example, 

Figure 3-(d) spends time from 10ms to 50ms, Figure 4-(c) from 50ms to 200ms. Therefore, 

combined with former analysis, the path length will almost have no influence on 

PathLevel. 

Table 1. Path Queries with Same Leaf Node but with Different Path Length 

Path Query With Different Length and Leaf Node in TreeBank

                   2                            //S//NN                                   //S//JJ                                       //S//VBN                                //S//NNPS

                   3                            //S/NP/NN                              //S//VP//JJ                                //S//VP//VBN                        //S//VP//NNPS

                   4                          //S/VP/NP/NN                        //S/VP/NP/JJ                            //S//VP/PP/VBN                    //S//VP//NP//NNPS

                5                     //S/VP/PP/NP/NN                   //S/VP/PP/NP/JJ                      //S//VP/PP/NP/VBN              //S//VP//PP//NP/NNPS

     Path Length               NN: 186442                           JJ: 85417                                VBN: 28302                           NNPS: 3250
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Figure  4. Comparison of Run Time over Different Queries with the 
Same Leaf Node (ms) 

4.3 Twig Query 

Figure 4 presents the processing time of twig queries given in Table.2. Because 

TwigLevel is built based on PathLevel, the processing time is also linear to the number of 

the elements in the streams of leaf nodes. As shown in Figure 5, in each group of query, 

the processing time has no direct connection with the length of twig pattern but has 

obvious relationship with the leaf nodes. Illustrated by the case of Figure 5-(a) and Figure 

5-(b), the processing times of five twig queries have no obvious fluctuations, but for Figure 

5-(c), fluctuation is apparent. Compared with Reed and SigmodRecord datasets, Tree-

Bank is an irregular dataset that the size of stream of each node has big difference, 

which causes the above phenomenon. For example, TQ4 and TQ5, which have the same 

leaf nodes, need almost the same processing time, but compared with other queries, the 

times they consumed are apparently different. 

Table 2. Twig Queries on Reed, Sigmod Record and Treebank 

  PQ2  //course[title]/subj                                SQ2  //articles/article[title]/initPage                                                                     TQ2  //VP[DT]//NN

  PQ3  /root/course[subj]/time                       SQ3  //aricles[author]/article/endPage                                                               TQ3  //S/NP[NNS]/PP/IN

  PQ4  //course[title]/place/building           SQ4  //issue/articles[.//title]//author                                                                     TQ4  //S[.//VP/IN]//NP/VBN

  PQ5  /root/course[subj]/time/end_time   SQ5  //SigmodRecord/issue/articles/article[initPage]/author/author      TQ5  //S/VP/PP[IN]/NP/VBN

  PQ1  /root[.//reg_num]//title                       SQ1 //issue[number]//title                                                                                        TQ1  //S[NP]//JJ

Twig Queries in Reed, SigmodRecord, and Treebank XML datasets
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Figure  5. Comparsion of Run Time over Different Twig Queries (ms) 

5. Conclusion and Future Work 

In this paper, we propose a bottom-up twig pattern matching algorithm that effectively 

queries twig pattern. PathLevel introduces string searching techniques into path query, 
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which converts the determination of the binary relationship between two nodes into 

finding whether thecertain string exists. Based on PathLevel, we develop TwigLevel,  which 

is used to match twig pattern. Experimental study shows that TwigLevel is an effective 

algorithm whose time complexity has no connection with twig pattern and is linear to the 

size of leaf nodes’ streams. In our future work, we are planning to further study the 

performance of TwigLevel and PathLevel, and to extend this algorithm in distributed 

environment.  
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