
International Journal of Database Theory and Application

Vol.8, No.4 (2015), pp.241-250

http://dx.doi.org/10.14257/ijdta.2015.8.4.24

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Intersection Checking for Regular Expressions Based on Inference
System

Jia Liu
1
 and Husheng Liao

2

College of Computer Science, Beijing University of Technology, Beijing, China
1
jeromeliu2006@gmail.com,2liaohs@bjut.edu.cn

Abstract

Decision problem of intersection checking for regular expressions plays an important

role in the XML type checking. The typical technique is converted into the problem of

automata intersection, which may generate a lot of redundant computing during the

conversion. In the present paper, according to the features of XML schema languages, a

new intersection checking algorithm based on inference system for regular expressions is

proposed. This method is derived directly based on regular expression without the need

for any conversion. For general regular expressions that is exponential time algorithm,

but without constructing automata and for some special cases, especially for the one-

unambiguous regular expressions used in XML type checking, is the polynomial time

algorithm. Proofs of the correctness and completeness of the inference rules are given.

Experiment results show that our approach are more effective than automatic approach

in practical.

Keywords: XML type checking; regular expression; intersection checking; inference

rules.

1. Introduction

In the past decades, relational database [1] has held the dominant position in the area of

information management system by virtues of its rigorous mathematical foundation,

simple structured data model and non-procedural query language. However, with the

rapid development of web applications such as social networking and e-commerce,

traditional relational databases are increasingly difficult to deal with massive semi-

structured data on the web. The Extensible Markup Language [2] (XML) proposed by

W3C is designed to meet this challenge and has become the universal format for semi-

structured data representation of large-scale electronic publishing and information

exchange over the Internet. Usually in applications XML data are provided with schemas

that the XML data must conform to. A cluster of XML schema languages based on

regular tree grammar[3] have been developed, such as the oldest Document Type

Definition[2] (DTD), the XML Schema[5] (XSD) described by the W3C as the successor

of DTDs, the RELAX NG[8] as an ISO/IEC International Standard, and so on[4,6,7,9].

These schemas are important for improving efficiency in many XML processing tasks

such as data query, data integration and type checking. Different extensions of regular

expressions are used to describe the content models for modeling the data structures of

document elements in the major XML schema languages mentioned above. Therefore, the

important decision problems of schema languages which are core operations in the XML

type checking, just like inclusion, equivalence, and non-emptiness of intersection, can be

easily transformed into the corresponding decision problems of regular expressions.

In the present paper, we investigate the non-emptiness of intersection problem for

regular expressions used in XML schema languages. The input to the problem consists of

two expressions, and the question is whether there is at least one non-empty string that

belongs to both the languages of two input expressions. The classical algorithm starts with

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

242 Copyright ⓒ 2015 SERSC

constructing non-deterministic finite automata for each of the expressions, and then

constructs DFAs from those NFAs. Then a DFA recognizing the intersection of the

languages of the two input expressions is constructed. Finally, the algorithm checks that

whether there is at least one final state is reachable in the DFA. In this computation

process, super-polynomial blowup occurs when constructing a DFA from the NFA, and

the other steps are polynomial time. Usually the regular expressions used in content

models of XML schema languages are restricted by a requirement of determinism, which

means that a parser recognizing XML document element contents has to be able to decide

without look ahead, which content model token to match with the current input token,

while processing the document from left to right. Deterministic regular expressions were

first formalized and studied by Brüggemann-Klein and Wood[10], and they called

determinism more precisely one-unambiguity. Paper[10] also shows a polynomial time

construction of DFAs from one-unambiguous regular expressions, therefore, the classical

algorithm can be modified to solve the intersection problem in polynomial time when the

input expressions are one-unambiguity. No matter whether one-unambiguous regular

expressions or not, the classical algorithm need to construct finite automata. For some

noone-unambiguous regular expressions, the DFA constructed by classical algorithm is

super-polynomial size, and this has been proven theoretically by Myhill and Nerode

[12].This paper presents an alternative algorithm for intersection problem of regular

expressions. The new algorithm is based on a syntax-directed inference system and does

not need to construct finite automata. Another advantage of this new algorithm is that

only treats the parts of expressions which are necessary and automatically ignore useless

parts of expressions. If the useless parts of expressions correspond exactly super-

polynomial size DFAs, the process may therefore just need polynomial-time instead of

super-polynomial time.

The main contributions of the paper are as follows: We propose a new algorithm based

on inference system for intersection problem of regular expressions. Firstly, this algorithm

has a wide range of adaptability and can both deal with one-unambiguous regular

expressions or ordinary regular expressions. For ordinary regular expressions, the

complexity of this algorithm is super-polynomial time, and for one-unambiguous regular

expressions, is polynomial time. For some specific non one-unambiguous regular

expressions, this algorithm still terminates in polynomial time. Finally, the new algorithm

is derived directly based on regular expression without the need for any conversion of

finite automata.

Section 2 introduces preliminary definitions. The inference system is presented in

Section 3. Section 4 discusses some properties of inference system. Section 5 describes

the new algorithm which based on the inference system described in Section 3. Section

6shows the experiment results, Section7discusses some related works and Section

8contains a conclusion.

2. Definitions

Let 𝛴 be an alphabet of symbols.Assume 𝑎 , 𝑏 , and 𝑐 are members

of𝛴.𝑙, 𝑙1, 𝑙2 ⋯areused as variables for numbers of 𝛴.

Definition 1. Regular expression. The regular expression over alphabet 𝛴 are

denoted 𝑅𝛴and defined in the following inductive manner:𝑅𝛴 ≔ 𝑅𝛴+𝑅𝛴|𝑅𝛴 ⋅ 𝑅𝛴|𝑅𝛴
∗|𝛴.

Thesemantics of regular expressions is defined in terms of sets of words over the

alphabet 𝛴 . The operation union + means if 𝐿1, 𝐿2 ⊆ 𝛴∗， then 𝐿1 + 𝐿2 = {𝑤1 ∪
𝑤2|𝑤1 ∈ 𝐿1, 𝑤2 ∈ 𝐿2} . Similarly, operation concatenation ⋅ means if 𝐿1, 𝐿2 ⊆ 𝛴∗，
then 𝐿1 ⋅ 𝐿2 = {𝑤1 ⋅ 𝑤2|𝑤1 ∈ 𝐿1, 𝑤2 ∈ 𝐿2}, and the star ∗ means the Kleene closure of

𝐿 ⊆ 𝛴∗. Operation∗ has the highest priority, ⋅ followed and + has the lowest priority.

To avoid ambiguity, parentheses can be added to the expressions such as (𝑅𝛴 + 𝑅𝛴)

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 243

and (𝑅𝛴 ⋅ 𝑅𝛴)∗ . The concatenation ⋅ will often be omitted. We use 𝑟, 𝑟1, 𝑟2, ⋯ as

variables for regular expressions. Notice that we do not allow the empty symbol ϵ in

the regular expressions just like the classical definition. That is the most important

difference between our definition and others definition. In fact , it is easy to proof

that the regular expression without ϵ semantically equivalent to the regular

expression with ϵ except to not match an empty string. In this paper, we do not

consider the intersection problem with empty string, because there is no practical

meaning and will add unnecessary complexity to the algorithm. But we still use the

symbol ϵ in the following reference rules, but it just means the termination of

regular expression and therefore can only appear in the end of a regular expression.

Definition 2. Language of a regular expression. The language of a regular

expression 𝑟 is denoted ∥ 𝑟 ∥ and is defined by the following inductive rules:

∥ 𝑟1 + 𝑟2 ∥=∥ 𝑟1 ∥∪∥ 𝑟2 ∥，∥ 𝑟1 ⋅ 𝑟2 ∥=∥ 𝑟1 ∥⋅∥ 𝑟2 ∥，∥ 𝑟∗ ∥=∪0≤𝑖∥ 𝑟 ∥𝑖 and for 𝑎 ∈ 𝛴 ,

∥ 𝑎 ∥= {𝑎} . The decision problemof non-emptiness of intersection for regular

expressions is that whether there is at least one non-empty string𝑣, such that𝑣 ∈∥
𝑟1 ∥ ⋀𝑣 ∈∥ 𝑟2 ∥.

Definition 3.1-Unambiguousregular expression. To define the 1-unambiguous

regular expression, we first introduce the concept of marked expression. For a

regular expression we can mark symbols with subscripts so that in the marked

expression each marked symbol occurs only once. For example (𝑎1𝑏1)∗𝑎2𝑏2(𝑎3+𝑏3)

is a marking of the expression(𝑎𝑏)∗𝑎𝑏(𝑎 + 𝑏). The marking of an expression 𝑟 is

denoted by𝑟𝑚𝑎𝑟𝑘 . We extend the notion for string in the obvious way. A regular

expression 𝑟 is one-unambiguousregular expression if and only if, for all string

𝑢𝑥𝑣, 𝑢𝑦𝑣 ∈∥ 𝑟𝑚𝑎𝑟𝑘 ∥， where 𝑥, 𝑦 ∈ 𝛴， if 𝑥 ≠ 𝑦， then 𝜆(𝑥) ≠ 𝜆(𝑦) , where the

function 𝜆 means of unmarkingsubscripts of a string. Examples of one-

unambiguousregular expression are 𝑎𝑎∗and 𝑏∗𝑎(𝑏∗𝑎)∗, while 𝑎∗𝑎 and 𝑎∗(𝑏∗𝑎)∗𝑏 are

not one-unambiguous regular expressions.

3. Rules for Intersection

For the convenience of derivation process, we add terminator symbol ϵ = ϵ∗|ϵ𝑙 to the

ends of all expressions appeared in all the reference steps. Theterminator is just mark the

end of an expression, and does not affect the semantics of regular expressions,that is to

say∥ 𝑟 ⋅ ϵ∗ ∥=∥ 𝑟 ⋅ ϵ𝑙 ∥=∥ 𝑟 ∥.We add the terminator ϵ∗to the input expression 𝑟1 and 𝑟2of

the derivation process, which creates new input regular expressions 𝑟1
′ = 𝑟1 ⋅ ϵ∗ and𝑟2

′ =
𝑟2 ⋅ ϵ∗ .The function 𝑡𝑜ϵ𝑙 defined as 𝑡𝑜ϵ𝑙(𝑟1 ⋯ 𝑟𝑛 ⋅ ϵ) = 𝑟1 ⋯ 𝑟𝑛 ⋅ ϵ𝑙 . Actually, 𝑡𝑜ϵ𝑙 just

replaces the terminator from ϵ∗ to ϵ𝑙，and does also not affect the semantics of regular

expressions. The sematic of symbol 𝐹 appeared in the derivation is that no string s will be

find according to the derivation from𝑟1and 𝑟2to𝐹, such that𝑠 ∈∥ 𝑟1 ∥ ⋀𝑠 ∈∥ 𝑟2 ∥. On the

contrary, The sematic of 𝑇appearedin the derivation is that at least one string s will be

find according to the derivation from𝑟1and 𝑟2 to 𝑇, such that 𝑠 ∈∥ 𝑟1 ∥ ⋀𝑠 ∈∥ 𝑟2 ∥. The

seven rules used in the derivation are showed as follows:

Rule ϵ1：
ϵ∩𝑙⋅𝑟

𝐹
[𝜖 = 𝜖∗ 𝑜𝑟 𝜖𝑙]

Rule ϵ2：
ϵ∩ϵ

𝐹
[𝜖 = 𝜖∗]

Rule ϵ3：
ϵ∩ϵ

𝑇
[𝜖 = 𝜖𝑙]

Rule 𝑙1：
𝑙1⋅𝑟1∩𝑙2⋅𝑟2

𝐹
[𝑙1 ≠ 𝑙2]

Rule 𝑙2：
𝑙1⋅𝑟1∩𝑙2⋅𝑟2

𝑡𝑜𝜖𝑙(𝑟1) ∩𝑡𝑜ϵ𝑙(𝑟2)
[𝑙1 = 𝑙2]

Rule +：
𝑟1∩(𝑟2+𝑟3)⋅𝑟4

𝑟1∩ 𝑟2⋅𝑟4∨𝑟1∩ 𝑟3⋅𝑟4

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

244 Copyright ⓒ 2015 SERSC

Rule ∗ ：
𝑟1∩𝑟2

∗𝑟3

𝑟1∩ 𝑟2⋅𝑟2
∗𝑟3→𝑟1∩ 𝑟3

We give some necessary explanations for the above inference rules. Each rule consists

of a horizontal line with a conclusion below it, and a premise above the line. All rules but

rule +and rule∗also have side conditions in square brackets. We only allow rule instances

where the side conditions are satisfied. These seven rules can be divided into three groups

according to the priority. The first five rules have the highestpriority, the rule + followed

and the rule ∗ is the lowest. The symbol∨ in the conclusion of rule + denotes the logic

relation inclusive-or between the two sub-expressions of the conclusion, that is to say the

two expressions are independent of each other. The symbol→ in the conclusion of rule ∗

indicate that the former sub-expression 𝑟1 ∩ 𝑟2 ⋅ 𝑟2
∗𝑟3 must be inferred first, then we infer

the lattersub-expression 𝑟1 ∩ 𝑟3because the pair of conclusion are not independentof each

other. More details about this will discuss in section 4. To simplify the inference process,

we can extend the inference rules as follows:

Rule 𝜖∗：
𝜖∗∩𝑟

𝐹

Rule 𝑙 +：
𝑙⋅𝑟1∩(𝑟2+𝑟3)⋅𝑟4

𝑙⋅𝑟1∩𝑟2⋅𝑟4∨𝑙⋅𝑟1∩𝑟3⋅𝑟4

Rule 𝑙 ∗：
𝑙⋅𝑟1∩𝑟2

∗⋅𝑟3

𝑙⋅𝑟1∩𝑟2⋅𝑟2
∗⋅𝑟3∨𝑙⋅𝑟1∩𝑟3

Rule + +：
(𝑟1+𝑟2)⋅𝑟3∩(𝑟4+𝑟5)⋅𝑟6

𝑟1⋅𝑟3∩𝑟4⋅𝑟6 ∨ 𝑟2⋅𝑟3∩𝑟4⋅𝑟6 ∨ 𝑟1⋅𝑟3∩𝑟5⋅𝑟6 ∨ 𝑟2⋅𝑟3∩𝑟5⋅𝑟6

4. Properties of the Rules

Theorem 1. The rules are sound.

Proof. For rule ϵ1. Because the firstset of 𝑙 ⋅ 𝑟is𝑙 ∈ 𝛴, so the beginning characterfor

any string s ∈∥ 𝑙 ⋅ 𝑟 ∥must be 𝑙 . Without loss of generality, we assume 𝑟1 = 𝑟1
′ ⋅ ϵ and

𝑟2 = 𝑟2
′ ⋅ 𝑙 ⋅ 𝑟 + 𝑟2

′′ . Then for any s′ ∈∥ 𝑟1
′ ∥ ⋀𝑠′ ∈∥ 𝑟2

′ ∥, we have s′ ⋅ s ∈∥ 𝑟2
′ ⋅ 𝑙 ⋅ 𝑟 ∥ ⋀s′ ⋅

s ∉∥ 𝑟1
′ ⋅ ϵ ∥. So the conclusion of rule ϵ1 is 𝐹.

For rule ϵ2 . The premise of this rule is ϵ∗ ∩ ϵ∗ . Let 𝑟1 = 𝑟1
′𝑟2

′ ⋯ 𝑟𝑛
′ ⋅ ϵ∗ and 𝑟2 =

𝑟1
′′𝑟2

′′ ⋯ 𝑟𝑚
′′ ⋅ ϵ∗. The rule 𝑙2 must not be used in the process of derivation from 𝑟1 ∩ 𝑟2 to

ϵ∗ ∩ ϵ∗, becausethe end symbol ϵ∗ of a string can be changed into ϵ𝑙 by the function

𝑡𝑜ϵ𝑙 which only used in rule 𝑙2. Therefore only rule ∗ can be used in the process of

eliminating 𝑟1
′, 𝑟2

′, ⋯ , 𝑟𝑛
′ and 𝑟1

′′, 𝑟2
′′, ⋯ , 𝑟𝑚

′′. So we cannot find a sting s, such that 𝑠 ∈∥ 𝑟1 ∥
⋀𝑠 ∈∥ 𝑟2 ∥ in the derivation from expression 𝑟1,𝑟2to ϵ∗ ∩ ϵ∗. So the conclusion of rule ϵ2

is 𝐹.

For rule ϵ3. The premise of this rule is ϵ𝑙 ∩ ϵ𝑙. Let regular expressions 𝑟1 = 𝑟1
′𝑟2

′ ⋯ 𝑟𝑛
′ ⋅

ϵ𝑙 and 𝑟2 = 𝑟1
′′𝑟2

′′ ⋯ 𝑟𝑚
′′ ⋅ ϵ𝑙. Then at least once rule 𝑙2 used in the derivation from 𝑟1 ∩ 𝑟2

to ϵ𝑙 ∩ ϵ𝑙, because the end symbol ϵ∗ of a string can be changed into ϵ𝑙by the function

𝑡𝑜ϵ𝑙which only used in rule 𝑙2. Therefore at least exist one string 𝑢𝑙𝑣, such that 𝑢𝑙𝑣 ∈∥
𝑟1 ∥ ⋀𝑢𝑙𝑣 ∈∥ 𝑟2 ∥,where𝑙 ∈ 𝛴 is the eliminated character applied by rule 𝑙2 and 𝑢, 𝑣 ∈ 𝛴∗

are any other characters. So the conclusion of rule ϵ3 is 𝑇.

For rule 𝑙1 . The premise is 𝑙1 ⋅ 𝑟1 ∩ 𝑙2 ⋅ 𝑟2 , 𝑙1 ≠ 𝑙2 . We can proof the rule

bycontradiction. We assume the conclusion of the rule is 𝑇 . Then there isat least

onestring 𝑙𝑣， 𝑣 ∈ 𝛴∗ , such that 𝑙𝑣 ∈∥ 𝑙1 ⋅ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ 𝑙2 ⋅ 𝑟2 ∥ , so 𝑙 = 𝑙1 = 𝑙2 . That

contradicts with the premise𝑙1 ≠ 𝑙2. So we can get F from 𝑙1 ⋅ 𝑟1 ∩ 𝑙2 ⋅ 𝑟2，𝑙1 ≠ 𝑙2.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 245

For rule 𝑙2. The premise is 𝑙1 ⋅ 𝑟1 ∩ 𝑙2 ⋅ 𝑟2,𝑙1 = 𝑙2. That is 𝑙 ⋅ 𝑟1 ∩ 𝑙 ⋅ 𝑟2. If 𝑙 ⋅ 𝑟1 ∩ 𝑙 ⋅ 𝑟2is

not empty, then there is at least one string 𝑙𝑣，𝑣 ∈ Σ∗，such that 𝑙𝑣 ∈∥ 𝑙 ⋅ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ 𝑙 ⋅
𝑟2 ∥ . Therefore we have 𝑣 ∈∥ 𝑟1 ∥ ⋀𝑣 ∈∥ 𝑟2 ∥ , so 𝑟1 ∩ 𝑟2 ≠ ∅ . And according to the

definition of function ϵ𝑙:∥ 𝑡𝑜ϵ𝑙(𝑟) ∥=∥ 𝑟 ∥, so we have 𝑡𝑜𝜖𝑙(𝑟1) ∩ 𝑡𝑜ϵ𝑙(𝑟2) ≠ ∅. Thenrule

𝑙2 is sound.

For rule +. The premise is 𝑟1 ∩ (𝑟2 + 𝑟3) ⋅ 𝑟4. If 𝑟1 = 𝜖, clearly the conclusion is 𝑇. If

𝑟1 ≠ 𝜖, we assume the conclusion is T, then there is at least on string 𝑙𝑣，𝑣 ∈ 𝛴∗, such

that 𝑣 ∈∥ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ (𝑟2 + 𝑟3) ⋅ 𝑟4 ∥ . According to the definition 2, we have 𝑣 ∈∥ 𝑟1 ∥
⋀𝑙𝑣 ∈ (∥ 𝑟2 ⋅ 𝑟4 ∥∪∥ 𝑟3 ⋅ 𝑟4 ∥), so we have 𝑙𝑣 ∈∥ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ 𝑟2 ⋅ 𝑟4 ∥ ⋁𝑙𝑣 ∈∥ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ 𝑟3 ⋅
𝑟4 ∥. Thenrule +is sound.

For rule ∗. The premise is 𝑟1 ∩ 𝑟2
∗𝑟3. If 𝑟1 = 𝜖, clearly the conclusion is 𝑇. If 𝑟1 ≠ 𝜖,

there are three cases for the expressions derived from premise. The first case that at

least one of the conclusionsis𝑇; the second case is that the conclusions are all 𝐹 and

there are no premise𝑟1 ∩ 𝑟2
∗𝑟3expressions; the third case is that the conclusions are all 𝐹

but there is at least onepremise𝑟1 ∩ 𝑟2
∗𝑟3 expressions. For the first case, the is at least

one string 𝑙𝑣，𝑣 ∈ Σ∗, such that 𝑙𝑣 ∈∥ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ 𝑟2
∗𝑟3 ∥, Thereforewe have 𝑙𝑣 ∈ (∥ 𝑟1 ∥

⋀𝑙𝑣 ∈∥ 𝑟2 ⋅ 𝑟2
∗𝑟3 ∥ ⋁ ∥ 𝑟1 ∥ ⋀𝑙𝑣 ∈∥ 𝑟3 ∥);For the second case, clearly the conclusion is 𝐹;

for the third case, if the end of premise𝑟1 ∩ 𝑟2
∗𝑟3 is ϵ𝑙, then the end of derived expression

𝑟1 ∩ 𝑟2
∗𝑟3 may be ϵ𝑙 . Because the next setp of 𝑟1 ∩ 𝑟2

∗𝑟3 is 𝑟1 ∩ 𝑟2 ⋅ 𝑟2
∗𝑟3 , if𝑟2 is not the

regular language with ϵ, then the only next step is rule 𝑙2, and the 𝑙2 will replace ϵ∗ to ϵ𝑙.

Then all the end of expressions in conclusions will become ϵ𝑙.Thereforerule ∗ is sound.

Theorem 2. The rules are complete.

Proof. For the completeness of rules, we can proof that for any regular expressions

𝑟₁and 𝑟₂, there is at least one rule satisfying 𝑟₁and 𝑟₂. According to the definition of

regular expression, each expression must belong to one of the following four cases: ϵ，
𝑙 ⋅ 𝑟, (𝑟₁ + 𝑟₂) ⋅ 𝑟，r1

∗ ⋅ r where 𝑙 ∈ 𝛴，𝑟𝑖 ∈ 𝑅𝛴 and the ϵonly appears at the end of the

regular expressions. We combine two by two of the four cases described above, then the

following 10 kinds of cases can be obtained: ϵ ∩ ϵ ； ϵ ∩ 𝑙 ⋅ 𝑟 ； ϵ ∩ (𝑟1 + 𝑟2) ⋅ 𝑟3 ；
ϵ ∩ 𝑟1

∗ ⋅ 𝑟2 ； 𝑙1 ⋅ 𝑟1 ∩ 𝑙2 ⋅ 𝑟2 ； 𝑙 ⋅ 𝑟1 ∩ (𝑟2 + 𝑟3) ⋅ 𝑟4 ； 𝑙 ⋅ 𝑟1 ∩ 𝑟2
∗ ⋅ 𝑟3 ； (𝑟1 + 𝑟2) ⋅ 𝑟3 ∩ (𝑟4 +

𝑟5) ⋅ 𝑟6；(r1 + r2) ⋅ r3 ∩ r4
∗ ⋅ r5；𝑟1

∗ ⋅ 𝑟2 ∩ 𝑟3
∗ ⋅ 𝑟4. Now we will discuss each kind of those

cases.

Case 1. ϵ ∩ ϵ. According to the definition of ϵ, the case 1 can be divided into the

following three subcases: 𝜖∗ ∩ 𝜖∗，𝜖𝑙 ∩ 𝜖𝑙and 𝜖∗ ∩ 𝜖𝑙. For 𝜖∗ ∩ 𝜖∗and 𝜖𝑙 ∩ 𝜖𝑙, we can

directly apply the ruleϵ2and ϵ3. Forthepair𝜖∗ ∩ 𝜖𝑙, itcannot be appearedin the derived

process. Because on the one hand, if 𝜖𝑙appeared, then in the derivation, rule 𝑙2 must

apply at least once. The conclusion of 𝑙2 is 𝑡𝑜𝜖𝑙(𝑟1) ∩ 𝑡𝑜ϵ𝑙(𝑟2), that both expressions in

the conclusion must apply function 𝑡𝑜𝜖𝑙, therefore if the one side of ϵ∩ϵ is 𝜖𝑙, then the

other side also must be𝜖𝑙. On the other hand, because there are no rules that can replace

the end of expression from 𝜖∗ to 𝜖𝑙 , therefore it is impossible to get 𝜖∗ ∩ 𝜖𝑙 from

𝜖∗ ∩ 𝜖∗. So thepair𝜖∗ ∩ 𝜖𝑙cannot be appearedin the derived process.

Case 2. For the case𝜖 ∩ 𝑙 ⋅ 𝑟, rule ϵ1 match this pair, then we can get the conclusion 𝐹.

Case 3. For the case 𝜖 ∩ (𝑟1 + 𝑟2) ⋅ 𝑟3 , rule + match this pair, then we can get the

conclusion 𝜖 ∩ 𝑟1 ⋅ 𝑟3 ∨ 𝜖 ∩ 𝑟2 ⋅ 𝑟3.

Case4.Forthe case 𝜖 ∩ 𝑟1
∗ ⋅ 𝑟2, rule∗ match this pair ,then we can get the conclusion

𝜖 ∩ 𝑟1 ⋅ 𝑟1
∗𝑟2 ∨ 𝜖 ∩ 𝑟2.

Case5. For the case 𝑙1 ⋅ 𝑟1 ∩ 𝑙2 ⋅ 𝑟2, if 𝑙1 ≠ 𝑙2, then rule 𝑙1 match this pair, and we can

get the conclusion 𝐹; if l1 = l2 , then the rule 𝑙2 match this pair, and we can get the

conclusion 𝑡𝑜𝜖𝑙(𝑟1) ∩ 𝑡𝑜𝜖𝑙(𝑟2) .

Case 6. For the case 𝑙 ⋅ 𝑟1 ∩ (𝑟2 + 𝑟3) ⋅ 𝑟4, the rule + match this pair, then we can get

the conclusion 𝑙 ⋅ 𝑟1 ∩ 𝑟2 ⋅ 𝑟4 ∨ 𝑙 ⋅ 𝑟1 ∩ 𝑟3 ⋅ 𝑟4.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

246 Copyright ⓒ 2015 SERSC

Case 7. For the case 𝑙 ⋅ 𝑟1 ∩ 𝑟2
∗ ⋅ 𝑟3 , the rule∗ match this pair, then we can get the

conclusion 𝑙 ⋅ 𝑟1 ∩ 𝑟2 ⋅ 𝑟2
∗ ⋅ 𝑟3 ∨ 𝑙 ⋅ 𝑟1 ∩ 𝑟3.

Case 8. For the case (𝑟1 + 𝑟2) ⋅ 𝑟3 ∩ (𝑟4 + 𝑟5) ⋅ 𝑟6,we can apply the rule + twice and

will get the conclusion 𝑟1 ⋅ 𝑟3 ∩ 𝑟4 ⋅ 𝑟6 ∨ 𝑟2 ⋅ 𝑟3 ∩ 𝑟4 ⋅ 𝑟6 ∨ 𝑟1 ⋅ 𝑟3 ∩ 𝑟5 ⋅ 𝑟6 ∨ 𝑟2 ⋅ 𝑟3 ∩ 𝑟5 ⋅
𝑟6.

Case 9. For the case (𝑟1 + 𝑟2) ⋅ 𝑟3 ∩ 𝑟4
∗ ⋅ 𝑟5, firstly, we can apply the rule + and get the

conclusion𝑟1 ⋅ 𝑟3 ∩ 𝑟4
∗ ⋅ 𝑟5 ∨ 𝑟2 ⋅ 𝑟3 ∩ 𝑟4

∗ ⋅ 𝑟5, then apply the rule * and get the conclusion

𝑟1 ⋅ 𝑟3 ∩ 𝑟4 ⋅ 𝑟4
∗𝑟5 ∨ 𝑟1 ⋅ 𝑟3 ∩ 𝑟6 ∨ 𝑟2 ⋅ 𝑟3 ∩ 𝑟4 ⋅ 𝑟4

∗𝑟5 ∨ 𝑟2 ⋅ 𝑟3 ∩ 𝑟5.

Case 10. The case 𝑟1
∗ ⋅ 𝑟2 ∩ 𝑟3

∗ ⋅ 𝑟4similar with case 8, then we can apply rule * twice.

5. Algorithm and Examples

Based on the inference rules, we develop an intersection checking algorithm for regular

expressions. The input of the algorithm is two regular expressions. To simplify the

process of the inference, add symbolϵ∗ at the end of input regular expressions. The

algorithm is depth-first searching based on inference system, finding the first conclusionT

which indicates that the algorithm already find a non-empty string s conforming regular

expression𝑟1and𝑟2 , which means 𝑟1and 𝑟2have intersection, thus Yes returned and the

process is over. When the conclusion of the inference is F, it indicates that cannot find

non-empty string s conforming both 𝑟1and 𝑟2 inthe current inference branch, thus go back

to the closest branch point and search along another inference path. If there is not

conclusion after traversal all the searching space, then 𝑟1disjoints 𝑟2 and No returned.

According to paper[11], we know that decision problem of intersection checking for

regular expressions is PSPACE-complete. For the general regular expressions, the

algorithm is exponential, but when both of the regular expressions are one-unambiguous

regular expressions, the algorithm is polynomial [10]. Figure2 is about decision problem

of intersection checking for one-unambiguous regular expressions. As we will mention in

section7, compared with other researchers’ works[19], our algorithm has a much

wider applicability, especially for certain ambiguity regular expressions, the algorithm

can give a result in polynomial time, see figure3 for more detailed information.

INPUT: regular expression 𝑟1and 𝑟2

OUPUT: “Yes” or “No”

Initialize stack T and set S empty;

push(𝑟1，𝑟2) on T；

While T is not empty do

 pop(𝑟3，𝑟4) from T；

 if(𝑟3，𝑟4)∉S

 find an inference rule matching (𝑟3，𝑟4);

 if its conclusion is T; Return “Yes”;

 if its conclusion is (𝑟5 ∩ 𝑟6) ∨⋯∨(𝑟𝑚 ∩ 𝑟𝑛); push(𝑟5，𝑟6) ,⋯,(𝑟𝑚，𝑟𝑛) on T;

 if the conclusion is (𝑟5 ∩ 𝑟6)→(𝑟5，𝑟7); push (𝑟5，𝑟7) , (𝑟5 ∩ 𝑟6) on T；

 add(𝑟3，𝑟4) to S；

 end

 if(𝑟3，𝑟4)∈S

if the end of (𝑟3，𝑟4) is 𝜖𝑙，then find a regular expression pair (𝑟8，𝑟9)in T

which is equivalent to (𝑟3，𝑟4), if the end of (𝑟8，𝑟9)is𝜖∗，replace the end of all

the regular expressions upon (𝑟8，𝑟9) in T with 𝜖𝑙；

 end

end

return “No”；

Figure 1. Algorithm of Intersection Checking

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 247

Figure2 and 3 are two cases about decision problem of intersection checking for

regular expressions. Figure2is𝑎∗𝑏∗⋂(𝑎 + 𝑏)∗, as each of the input regular expressions

don’t has unambiguous symbols, thus they are all one-unambiguous regular expressions.

Notice that for convenience, we add 𝜖∗at the end of 𝑟1 and 𝑟2 at the beginning of the

inference. When we calculate to expression 8, result of the inference is same with

expression 1, thus replace the end of expression 1 and all the regular expressions below it

with𝜖𝑙. In figure2, we use “…” to omit some simple inference steps. When we calculate

to expression 19, the result is “T”by using rule𝑙1, then return “Yes”.

The right side of figure3 is a non-deterministic regular expression(𝑎 + (𝑏 + 𝑐)∗𝑐(𝑏 +
𝑐)(𝑏 + 𝑐)(𝑏 + 𝑐)(𝑏 + 𝑐))𝑏, among which the non-deterministic regular expression is

(𝑏 + 𝑐)∗𝑐(𝑏 + 𝑐)(𝑏 + 𝑐)(𝑏 + 𝑐)(𝑏 + 𝑐), indicating string whose fifth-last symbol is c.

The deterministic automata for regular expression (𝑏 + 𝑐)∗𝑐(𝑏 + 𝑐)𝑛 has the number of

states proportional to O(2𝑛), that is to say its states exponentially grow. In process of

inference in figure3, the non-deterministic sub expression in the right side is ignored,

saving much computing time. Thus as for regular expressions like(𝑟1 + 𝑟2)𝑟3, in which

𝑟1and 𝑟3 are one-unambiguous regular expressions,𝑟2 is an ambiguityregular expression.

When we get “F” from the inference of𝑟1𝑟3, our algorithm can automatic ignore𝑟2, this

makes time complexity of the whole inference still keeps polynomial time.

1: 𝑎∗𝑏∗𝜖𝑙⋂(𝑎 + 𝑏)∗𝜖𝑙

(∗)2:𝑎∗𝑏∗𝜖𝑙⋂(𝑎+𝑏)(𝑎+𝑏)∗𝜖𝑙

(+)4:𝑎∗𝑏∗𝜖𝑙⋂𝑎(𝑎+𝑏)∗𝜖𝑙

(∗)6:𝑎𝑎∗𝑏∗𝜖𝑙⋂𝑎(𝑎+𝑏)∗𝜖𝑙

(𝑙2)8:𝑎∗𝑏∗𝜖𝑙⋂(𝑎+𝑏)∗𝜖𝑙

1

→
7:𝑏∗𝜖𝑙⋂𝑎(𝑎+𝑏)∗𝜖𝑙

(∗)9:𝑏𝑏∗𝜖𝑙⋂𝑎(𝑎+𝑏)∗𝜖𝑙

(𝑙1)𝐹
→

10:𝜖𝑙⋂𝑎(𝑎+𝑏)∗𝜖𝑙

(ϵ1)𝐹

∨11
→ 3: 𝑎∗𝑏∗𝜖∗⋂𝜖∗

11: 𝑎∗𝑏∗𝜖𝑙⋂𝑏(𝑎 + 𝑏)∗𝜖𝑙

(∗)12:𝑎𝑎∗𝑏∗𝜖𝑙⋂𝑏(𝑎+𝑏)∗𝜖𝑙

(𝑙1)𝐹
→

13:𝑏∗𝜖𝑙⋂𝑏(𝑎+𝑏)∗𝜖𝑙

(∗)14:𝑏𝑏∗𝜖𝑙⋂𝑏(𝑎+𝑏)∗𝜖𝑙

(𝑙2)16:𝑏∗𝜖𝑙⋂(𝑎+𝑏)∗𝜖𝑙

(∗)17:𝑏∗𝜖𝑙⋂(𝑎+𝑏)(𝑎+𝑏)∗𝜖𝑙

(+)19:𝑏∗𝜖𝑙⋂𝑏(𝑎+𝑏)∗𝜖𝑙

(∗)…
16 →⋯

…
𝐹

∨
…
𝐹

→
(∗)18:𝑏∗𝜖𝑙⋂𝜖𝑙

(∗)…
𝐹

→
(𝑙1)19:𝜖𝑙⋂𝜖𝑙

𝑇

→15:𝜖𝑙⋂𝑏(𝑎+𝑏)∗𝜖𝑙

Figure 2. 𝐚∗𝐛∗⋂(𝐚 + 𝐛)∗

1: 𝑎𝑏𝜖∗ ∩ (𝑎 + (𝑏 + 𝑐)∗𝑐(𝑏 + 𝑐)(𝑏 + 𝑐)(𝑏 + 𝑐)(𝑏 + 𝑐))𝑏𝜖∗

(+)2:𝑎𝑏𝜖∗∩𝑎𝑏𝜖∗

(𝑙2)3:𝜖𝑙⋂𝜖𝑙

𝑇

∨ 4: 𝑎𝑏 ∩ (𝑏 + 𝑐)∗𝑐(𝑏 + 𝑐)4𝑏𝜖∗

Figure 3. 𝒂𝒃 ∩ (𝒂 + (𝒃 + 𝒄)∗𝒄(𝒃 + 𝒄)(𝒃 + 𝒄)(𝒃 + 𝒄)(𝒃 + 𝒄))𝒃

6. Experiments

The decision problem of intersection for regular expressions has been studied in depth

based on the automatic technology and the complexity of this problem also has been

proved by mathematic. Therefore, our approach cannot reduce the computational

complexity of this problem in theory but can improve the practical computational

speed significantly due to our approach do not need to convert the expressions to

automatics and automatically ignore the no necessary parts of the regular

expressions. In this section we present performance measurements for the

introduced algorithms that decide the intersection of two regular expressions. The

implementations were done in Java; the tests were performed on Core i7 with 2.8

GHz and 4 GB main memory.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

248 Copyright ⓒ 2015 SERSC

A. Experiment of ordinary regular expressions

Figure 4. Experiment of Ordinary Regular Expressions

The first experiment tests the intersection algorithm showed in section 5for

ordinary expressions such as 𝑎∗𝑏∗⋂(𝑎 + 𝑏)∗ . We extend the expressions to

𝑎∗𝑏∗𝑐∗ ⋯ ⋂(𝑎 + 𝑏 + 𝑐 ⋯)∗ and the characters of those expressions were created

randomly from a finite alphabet 𝛴. We simply define the length of a regular expression as

the number of characters of a regular expression and test the length of expressions from

2 to 20. For comparison, we build the automatic approachand the time

measurements include the parsingof the regular expressions, the creation of the

automatics and the analysis whether the final state is reachable. Inorder to obtain

stable values we executed the algorithm thousand times.The measured total time is

afterwards divided to get a stableaverage execution time for one run. The execution

time of the two algorithmsshowed in figure 4.

B. Experiment of regular expressions with no necessary parts

In a second scenario we evaluated the regular expressions with no necessary

partssuch as 𝑎𝑏 ∩ (𝑎 + (𝑏 + 𝑐)∗𝑐(𝑏 + 𝑐)𝑛)𝑏. We test the number of n from 1 to 20.

The execution time of experimentshowed in figure 5. It is easy to see that the time

complexity of our algorithm is almost unchanged.

Figure 5. Experiment of Regular Expressions with no Necessary Parts

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ti
m

e
in

 m
m

length of regular expressions

Derivation method Automata method

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ti
m

e
in

 m
m

length of regular expressions

Derivation method Automata method

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 249

7. Relation Works

Theoreticalresearch on decision problems of regular expressions has been preceded by

intensive research on finite automata in the 1960s and 1970s [11-12]. Martens,Neven and

Schwentick study in paper[13] the complexity of the inclusion problem for several sub-

classes of the regular expressions used in XML schema languages. Early research on the

use of inference rules to solve the decision problems of regular expressions is found in

Salomaa’s work [14]
.
 Two axiom systems for equality of regular expressions are

presented in the paper [14]. Brzozowski [15-16] first proposed a set of inference rules for

solving inclusion problem of regular expressions. Antimirov reinvents and details this

approach in paper [17], as a term rewriting system for inequalities of regular expressions.

To define the schema language DTD for SGML [18], Brüggemann-Klein and Wood [10]

gave the definition of 1-unambiguity and showed that 1-unambiguous regular expressions

are characterized by deterministic Glushkov automata.

The idea of this paper has some inspiration from the works of paper [19] and paper

[20]. In order to solve decision problem of regular tree grammars with disjoint production,

paper [19] described an algorithm which checks the intersection between two regular

expressions based on constructing finite automata. The time complexity of this algorithm

is O(|𝐸1| ⋅ |𝐸2| ⋅ |𝛴1 ∪ 𝛴2|)，where 𝐸1 and 𝐸2 are the input expressions, 𝛴1 and 𝛴2 are the

character sets of 𝐸1 and 𝐸2. The problem to be solved in paper [19] is similar with ours,

but we adopt a different method. Ours algorithm does not need to construct finite

automata from regular expressions. Additionally, for some non 1-unambiguous regular

expressions, Ours algorithm also may terminate in polynomial time while the paper [19]

cannot do. Paper [20] described a polynomial-time algorithm based on a syntax-directed

inference system for inclusion of 1-unambiguous regular expression. Our work differs

from paper [20] as follows: Firstly, the reference rules presented by our are to address the

intersection problem for regular expressions instead of inclusion problem. Secondly, our

algorithm can deal with all kinds of regular expressions, while the algorithm described in

paper [20] can only be used to 1-unambiguous regular expression. Finally, every step of

derivation needs to calculate the set first and the function header of two input expressions,

which significantly increases the cost of computing time. The algorithm of this paper do

not need to calculate the set first and the function header and only need to calculate a

function which computational complexity is constant time, and therefore more faster than

the algorithm described in paper [20].

8. Conclusion

In this paper we provide an algorithm aimed at intersection checking algorithm for

regular expressions, which is a goal-directed, depth-first searching based on inference

system. This method is derived directly based on regular expression without constructing

of deterministic finite automata. Our approach cannot reduce the computational

complexity of this problem in theory but can improve the practical computational speed

significantly due to our approach do not need to convert the expressions to automatics and

automatically ignore the no necessary parts of the regular expressions. For general regular

expressions it is exponential time algorithm and for some special cases, especially for the

regular expressions with no necessary parts and one-unambiguous regular expressions

often used in XML type checking, it is the polynomial time algorithm.

Acknowledgements

This work was both supported in part by the Beijing Nature Science Foundation

underGrant 4122011and the National Science Foundation for Young Scientists of China

underGrant 61202074.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

250 Copyright ⓒ 2015 SERSC

References

[1] E. F. Codd, “A relational model of data for large shared data banks”, Communications of the ACM, vol.

13, no.6, (1975), pp. 377-387.

[2] T. Bray, J. Paoli and C. M. Sperberg-McQueen, “Extensible markup language (XML)”, World Wide

Web Consortium Recommendation REC-xml-19980210, http://www. w3. org/TR/1998/REC-xml-

19980210, (1998).

[3] H. Comon, M. Dauchet and R. Gilleron, “Tree automata techniques and applications”, http://tata.gfor

ge.inria.fr, (2014).

[4] V. Benzaken, G. Castagna and A. Frisch, “CDuce: an XML-centric general-purpose language”, ACM

SIGPLAN Notices, vol.38, no.9, (2003), pp. 51-63.

[5] H. S. Thompson, XML schema part 1: structures second edition, http://www. w3. org/TR/2004/REC-

xmlschema-1-20041028, (2004).

[6] V. Gapeyev, M. Y. Levin and B. C. Pierce, The Xtatic experience, Technical Reports, University of

Pennsylvania, (2004).

[7] H. Hosoya and B. C. Pierce, “XDuce: A statically typed XML processing language”, ACM Transactions

on Internet Technology, vol.3, no.2, (2003), pp.117-148.

[8] E. van der Vlist, Relax Ng, O'Reilly Media, (2003).

[9] J. Clark, TREX–tree regular expressions for XML, http://www.thaiopensource.com/trex, (2001).

[10] A. Brüggemann-Klein and D. Wood, One-unambiguous regular languages, Information and computation,

vol.140, no.2, (1998), pp.229-253.

[11] L. J. Stockmeyer and A. R. Meyer, Word problems requiring exponential time, Proceedings of the fifth

annual ACM symposium on Theory of computing, (1973).

[12] A. Nerode, Linear automaton transformations, Proceedings of the American Mathematical

Society(1958).

[13] W. Martens, F. Neven and T. Schwentick, Expressiveness and complexity of XML Schema, ACM

Transactions on Database Systems (TODS), vol.31, no.3, (2006), pp.770-813.

[14] A. Salomaa, Two complete axiom systems for the algebra of regular events, Journal of the ACM

(JACM), vol.13, no.1, (1966), pp.158-169.

[15] J. A. Brzozowski, Derivatives of regular expressions, Journal of the ACM (JACM), vol.11, no.4, (1964),

pp.481-494.

[16] J. A. Brzozowski, “Roots of star events, Switching and Automata Theory”, IEEE Conference Record of

Seventh Annual Symposium, (1966).

[17] V. Antimirov, Rewriting regular inequalities, Fundamentals of Computation Theory, Springer Berlin

Heidelberg, (1995), pp.116-125.

[18] C. F. Goldfarb and Y. Rubinsky, “The SGML handbook”, Oxford University Press, (1990).

[19] NI Xiao-yong and CHEN Hai-ming, Intersection checking of production rules in regular tree grammar.

Computer Engineering and Design, vol.33, no.3, (2012), pp.1197-1202.

[20] D. Hovland, “The inclusion problem for regular expressions”, Journal of Computer and System Sciences,

vol.78, no.6, (2012), pp.1795-1813.

Authors

Jia Liu, he was born in 1984. He is a Ph.D. candidate at Beijing

University of Technology. His research interests include software

theory, data management for XML, etc.

Husheng Liao, he was born in Changchun in 1954. He is a

professor and doctoral supervisor at Beijing University of

Technology in P.R. China. His research interests include software

automation methods and data integration technology, etc.

