
International Journal of Database Theory and Application

Vol.8, No.4 (2015), pp.191-206

http://dx.doi.org/10.14257/ijdta.2015.8.4.20

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Property Alignment of Linked Data Based on Similarity between

Functions

Yu Liu
1, 2

, Shi-Hong Chen
1
 and Jin-Guang Gu

2

1
Computer School, Wuhan University, Luo-Jia-Shan Road 16, Wuhan 430072,

China
2
College of Computer Science and Technology, Wuhan University of Science and

Technology, Heping Road 947, Wuhan 430081, China;

Abstract

Owing to the complex structure and multi-meaning, property alignment is generally

regarded as a challenging problem in the context of linked data. In this paper, we propose

a novel method to align properties between datasets of linked data. Considering the role

of properties in RDF triples, we regard all properties of linked data as property functions,

and convert the problem of property alignment to the similarity evaluation between

property functions, while the equivalent instances as inputs of property functions. Based

on the similarity of property functions, the property alignment process of linked data is

introduced. In order to prove the validity, we use the method to align properties in five

representative domains between DBpeida and YAGO, DBpedia and LinkedGeoData

respectively. The experimental results show that our method is independent of the

property naming rules and can retrieve some matching properties ignored by other

methods. In addition, our method requires fewer entity co-reference links than the link

statistical approach.

Keywords: Property Alignment; Linked Data; Property Function; Similarity between

Functions.

1. Introduction

Since linked data was proposed by Chris Bizer and Richard Cyganiak in 2007, more

and more datasets following the principle of linked data are published on the web. These

datasets cover a diversity of areas so that many researchers of different backgrounds try to

develop some intelligent systems by taking advantage of these massive data. For example,

the Traffic LarKC combined DBpeida with the datasets of two Milano municipalities to

implement a question answering system about the traffic [1]; the music site in BBC pulls

music metadata, from Musicbrainz and fetches introductory text from Wikipedia via

DBpeida interlinking [2]. Although linked data is shining a bright light on the road

forward for engineers to build intelligent information system, there is an inevitable

roadblock, how to retrieve information from multiple datasets, that always have distinct

schemas. In order to solve the above problem, ontology alignment has been widely

employed.

Ontology alignment, or named ontology matching, is the process of determining a set

of relationships (for example, subsumption and equivalence relationships) between

entities (classes, properties, and individuals) in two ontologies [3]. The result of ontology

alignment can be used for various tasks, such as ontology merging, query answering, or

data translation [4]. Due to the importance of ontology alignment, a lot of achievements

on ontology alignment have been carried out. According to the information that the

methods of ontology alignment refer to, these methods fall into three categories: schema-

based (H-Match [5], COMA & COMA++ [6, 7], CtxMatch & CtxMatch2 [8, 9]),

instance-based (T-tree [10], ProbaMap [11]), mixed (Falcon-AO [12], RiMOM [13]). In

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

192 Copyright ⓒ 2015 SERSC

order to assess these methods and measure the progress of ontology matchers, the OAEI

(Ontology Alignment Evaluation Initiative) annually releases the benchmark test library,

resulting in the purpose of many techniques is to achieve better results on the test library.

Considering the characteristics of linked data, lots of researchers have realized that the

techniques aiming at the benchmark may not suitable for linked data, so several alignment

methods for linked data have been proposed in recent years.

In the context of linked data, ontology alignment mainly comprises three parts: class

(concept) alignment, property alignment, and instance alignment [14]. The techniques for

class alignment of linked data can be divided into two categories according to the types of

information used for alignment: (1) external hierarchies and knowledge presented in

lexical databases (BLOOM & BLOOM+ [15, 16]), (2) instance-level information (PARIS

[17] and the method introduced in [18]). Instance alignment also is a research hotpot, and

many systems have been proposed, such as SILK [19], SERIMI [20] and EAGLE [21].

Because properties have more complex structure and meaning than classes and instances,

property alignment is regarded as a challenging problem in the ontology alignment field.

Basing on similarity metrics, clustering, machine learning, and other technologies, many

methods have been proposed in the last decade [14]. Among them, there are two methods

that are similar with our method. The first one is introduced in [22, 33], the original

purpose of which is to construct an upper level ontology from LOD (linked open data).

Despite this method can find some similar properties, it has an apparent imperfection –

properties having different semantic meaning may be aggregated into the same group (for

example, “birthPlace” and “deathPlace”). The second one uses the entity co-reference

(ECR) links to count the numbers of matching subjects and subject-object pairs between

two datasets, and then find matching properties by analyzing the statistical results [24].

The method can eliminate the mismatches that happened in [22, 33], but it also has an

obvious limitation – a large number of subjects and objects in the datasets should be

related with ECR links.

By regarding properties as functions, we propose a novel method to align properties of

linked data in this paper. On the basis of “owl:sameAs” links between subjects, the

method collects all output sets of two property functions that take the equivalent instance

as input, and measures the similarity between two properties by evaluating the similarity

between these output sets. The higher similarity between the output sets means that two

properties match each other with the higher probability. The main contributions of this

paper are as follows:

1. We define the property function on the context of linked data and propose a method

to measure the similarity between two property functions. As the property functions have

multiple types of outputs, we also propose several methods to measure the similarities

between sets and between elements.

2. We illustrate the process of property alignment, which is composed of triple

collecting, data preprocessing, property pair construction, similarity computing, filtering,

etc.

3. In order to verify the effectiveness, we use several methods to align properties in

five representative domains between DBpedia and YAGO, DBpedia and LinkedGeoData

(LGD) respectively. The experimental results show that our method has distinctive

characteristics and advantages compared with other methods, such as the independence on

the naming rules of property and the fewer requirements for ECR links.

The remainder of this paper is structured as follows: Section 2 defines the property

function in the context of linked data. Section 3 describes how to compute the similarity

between property functions. In Section 4, the process of property alignment is explained

in detail. The experiments and results are discussed in Section 5. Finally, the conclusion is

presented in Section 6.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 193

2. Property Function

geo: http://www.w3.org/2003/01/geo/wgs84_pos# foaf: http://xmlns.com/foaf/0.1/ dbp: http://dbpedia.org/property/

owl: http://www.w3.org/2002/07/owl# yago: http://yago-knowledge.org/resource/ dbo: http://dbpedia.org/ontology/

dbr: http://dbpedia.org/resource/ lgd: http://linkedgeodata.org/ontology/ w3: http://www.w3.org/2000/01/rdf-schema#

dbr:Shanghai

geo:long
121.5

yago:Shanghai

DBpedia YAGO

dbr:Han_Zheng

dbr:Yang_Xiong_(politician)

31.2

owl:sameAsgeo:lat

yago:Han_Zheng

yago:Anhui

yago:linksTo

yago:linksTo

121.5

31.2

yago:hasLongitude

yago:hasLatitude

dbr:China

dbo:country

yago:China

yago:isLocatedIn

dbr:Beijing

geo:long
116.38

dbr:Guo_Jinlong

39.9139

dbo:leaderName

owl:sameAs

geo:la
t

yago:Tsinghua_University

116.38333

39.9

yago:hasLongitude

yago:hasLatitude

dbr:China

dbo:country

yago:Asia

yago:isLocatedIn

dbr:Wang_Anshun

dbo:leaderName

dbo:leaderName

dbo:leaderName

yago:linksTo

yago:linksTo

dbr:Guangzhou

geo:long
113.267

yago:Guangzhou

dbr:Chen_Jianhua

23.1333

dbo:leaderName

owl:sameAs

geo:la
t

yago:Guangzhou_Daily

yago:China

113.266

23.1333

yago:hasLongitude

yago:hasLatitude

dbr:China

dbo:country

yago:Guangdong

yago:isLocatedIn

dbr:Wan_Qingliang

dbo:leaderName yago:linksTo

yago:Beijing_Zoo

yago:linksTo

yago:Beijing

yago:Beijing_Zoo

yago:Xi_Jinping

yago:linksTo

yago:Foshan

yago:linksToyago:linksTo

 Figure 1. Several RDF Triples in DBpedia and YAGO

The basic component of linked data is RDF (Resource Description Framework) triple,

which can be formally expressed as (s, p, o) ∈ (I ∪ B) × (I ∪ B) × (I ∪ B ∪ L), where

I is a set of IRIs (International URIs), B a set of blank and L a set of literals. In the triple,

s can be looked as subject, p the property, and o the object or property value [25]. The

subject denotes the resource, and the property denotes traits of instances or a relationship

between the subject and the object. Owing to the vague meaning of the triples with blank,

providing none useful information, our method does not take them into account in the

process of property alignment. Therefore, we present the definition of property function,

the key concept for the following content.

Definition 1 (Property Function) Suppose that (s, p, o) is a triple in the dataset D1, p can

be defined as a property function, where the domain of p is the subject set S=(s1,s2,…,sn)

and the range of p is the set of object/value set O=(o1,o2,…,om), such that s∈S and

1 i ii [,m],p(s) o ,o o    .

Note that the output of property function is a set, which contains one or more

than one value/object, such as dbo:leaderName(dbr:Shanghai) in Figure 1 include

two objects. In addition, the property functions have multiple types of outputs. As

shown in Figure 1, the output elements of dbo:leaderName are URI type, and the

output elements of geo:long are number type. In [23], property-object pairs are

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

194 Copyright ⓒ 2015 SERSC

classified into five distinct types: Class, String, Date, Number, and URI. In this

paper, we modify this classification for the subsequent computation of similarity

between property functions. As all classes must be expressed as URI according to

the principles of linked data, it is not necessary to set Class as a separate type, so we

divide the property functions into four types: String, Date, Number, and URI. Table

1 presents our classifications and some samples. Obviously, it is easy to identify the

types of property functions. For example, the elements in the output elements of

URI property functions all start with “http://”, the elements in the output set of

String property functions contain “@”.

Table 1. Property Function Classifications and Some Samples

Type Property Object

String

dbo:postalCode "100000–102629"@en

yago:

isPreferredMeaningOf
"Beijing"@en

Date

dbo:foundingYear
"1955-01-01T00:00:00+02:00"^^

<http://www.w3.org/2001/XMLSchema#gYear>

yago:

wasCreatedOnDate

"1868-##-##"^^

<http://www.w3.org/2001/XMLSchema#date>

Number

dbo:areaTotal
"1.68012e+10"^^

<http://www.w3.org/2001/XMLSchema#double>

geo:lat
"39.9139"^^

<http://www.w3.org/2001/XMLSchema#float>

yago:hasArea
"1.680125E10"^^

<http://yago-knowledge.org/resource/m^2>

yago:hasLatitude "39.9"^^<http://yago-knowledge.org/resource/degrees>

URI

dbo:country http://dbpedia.org/resource/China

dbo:leaderName http://dbpedia.org/resource/Han_Zheng

yago:linksTo http://dbpedia.org/resource/Tinghua_University

yago:isLocatedIn http://yago-knowledge.org/resource/Asia

3. Similarity between Property Functions

The similarity measure between functions is a widely studied issue, related with

several pattern recognition problems, such as classification, clustering, and retrieval

problems [26]. Considering lots of equivalent instances are connected by owl:sameAs in

linked data, it is a reasonable to use the similarity between property functions to align the

properties coming from the different datasets. Suppose that D1 and D2 are two datasets in

linked data, p1 and p2 are properties in D1 and D2 respectively, S1 is the subject set of p1

and S2 is the subject set of p2, such that the similarity between p1 and p2 (denoted

as 1 2SimProperty(p , p)) can be calculated by the following formula.

1 2 1

1 2

2

1 2

01 1 2
1

2 0

2
2

10

s s S

Set

S

S

S S
S S

S

im

S

Sim
,()

Property

(p (s), p (s))

| |(p , p)
| |

| |

 








  






 (1)

1 2S S =

1 2 1 2 1 2 1 1 1 1 2 2 2 21 2 1 2s s s S s S s owl sameAs s o o o o{(,)| (, : ,) (s , p ,) D (s ,p ,) D }        , and

1 2S S| | is the size of subject pair set. 1 21 2SetSim (p (s), p (s)) is on behalf of the

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 195

similarity between the output sets of 11p (s) and 22p (s) , which is introduced in the

subsequent content. The intuition behind the Formula (1) is that the similarity

between properties can be converted to the similarity between the outputs of

property functions. The greater value the similarity between outputs gets, the greater

value the similarity between property functions gets, and these properties are more

likely to match with each other. In Figure 1, yago:hasLatitude is more similar with

geo:lat than yago:hasLongtitude, because the output set of geo:lat(dbr:Shanghai)

({31.2}) equals with the output set of yago:hasLatitude(yago:Shanghai) ({31.2}),

the output set of geo:lat(dbr:Beijing) ({39.9139}) approximately equals with the

output set of yago:hasLatitude(yago:Beijing) ({39.9}), and the output set of

geo:lat(dbr:Guangzhou) ({23.1333}) equals with the output set of

yago:hasLatitude(yago:Guangzhou) ({21.1333}). At the same time, there are some

big gaps between the output sets of geo:lat and yago:hasLongtitude. Hence, geo:lat

and yago:hasLatitude are more likely to have the same meaning than geo:lat and

yago:hasLongtitude. The example above is very intuitive and the conclusion can be

easily drawn. However, the quantitative technique for the evaluation of similarity

between sets is indispensable to implement the property alignment automatically

and precisely.

Table 2. The Similarity Matrix of dbo: leaderName (dbr: Shanghai) and
yago: linksTo (yago: Shanghai)

dbo:leaderName(dbr:Shanghai)

dbr:Yang_Xiong_(politician) dbr:Han_Zheng

yago:linksTo

(yago:Shang

hai)

yago:Xi_Jinping 0.087 0.299

yago:Han_Zheng 0.269 1.0

yago:Anhui 0.236 0.289

Given 1

1 11 nRS (rs ,...rs) and 1

2 22 mRS (rs ,...rs) are the output sets of 11p (s) and 22p (s) in

Formula (1) respectively, the similarity matrix of 1RS and 2RS can be constructed with

similarity values between corresponding object/value pairs. It is clear that the size of

similarity matrix of 1RS and 2RS is n*m. Table 2 describes the similarity matrix of

dbo:leaderName(dbr:Shanghai) and yago:linksTo(yago:Shanghai), in which each

similarity value can be calculated according to the similarity measurement of URIs

introduced later. In order to compute the similarity between output sets of property

functions, we propose the definition of best matching collection.

Definition 2 (Best Matching Collection) Suppose that M is a similarity matrix of 1RS and

2RS , the best matching collection is composed of several object/value pairs, and each pair

(denoted as 1 2

x y(rs ,rs)) has the maximum similarity value compared to other pairs, which

are in the same row and same column of 1 2

x y(rs ,rs) . The definition of the best matching

collection of 1RS and 2RS can be formally described as the formula below.

1 2

1 2 1 2

1 2 1 2

1 2 1 1

1

1

x y

x y i y

Elem Elem

x y x j

Elem Elem

BMC n m

i n Sim Sim

j Sim Sim

(RS ,RS) {(rs ,rs)| x [,] y [,]

[,], (rs ,rs) (rs ,rs)

[,m], (rs ,rs) (rs ,rs)}

    

   

  

 (2)

In Formula (2), the function 1 2

x y

ElemSim (rs ,rs) returns the similarity between 1

xrs and

2

yrs , which are the elements in 1RS and 2RS respectively. Once the best matching

collection is solved out, the similarity between the output sets can be calculated by the

following formula.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

196 Copyright ⓒ 2015 SERSC

1 1

1 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2

1 2
1 2

n m

Set Set

Elem

RS RS

Sim Sim RS RS

Sim

f RS RS
RS RS

(brs ,brs) BMC(,)

(p (s), p (s)) ((rs ,...rs), (rs ,...rs))

(brs ,brs)

(n,m,BMC(,))
| BMC(,)|









 (3)

Obviously, two factors in Formula (3) determine the similarity between the output sets

of 11p (s) and 22p (s) . The first factor is the average of similarity between elements in all

pairs of the best matching collection, the second is 1 2f RS RS(n,m,BMC(,)) , which is

employed to evaluate how much the relationship between n, m and 1 2RS RSBMC(,)

influences the similarity between output sets. In this paper, we take the evaluation

function as follow.

1 2
1 2

1 2

RS RS
f RS RS

m n RS RS

| BMC(,)|
(n,m,BMC(,))

| BMC(,)|


 
 (4)

Formula (4) reflects a phenomenon – the greater size of best matching collection

means that two output sets might be more similar, and vice versa. Hence, it can be

calculated out that the similarity between the output sets shown in Table 2 is 0.2. It should

be noted that the size of 1 2RS RSBMC(,) may exceed the sum of m and n when lots of the

same elements exist in the output sets. To avoid this unreasonable situation, the duplicate

triples should be removed from the output sets before the construction of similarity matrix.

According to the explanation above, it is evident that the similarity between elements

is the fundamental for the similarity evaluation between output sets. Nevertheless, the

diversity of elements shown in Table 1 makes it impossible to use a single approach to

calculate the similarity between all kinds of objects/values. The computation method

relies on the several concrete situations. Consequently, we introduce these situations and

the corresponding computation methods one by one. As the similarity between strings is

the basis of similarity between elements of other types, the computation method for string

similarity is given firstly. To evaluate the similarity between strings accurately, literal

similarity and semantic similarity are taken into account. The literal similarity of our

method is the mean value of three string-based similarity measures -- Jaro_Winkler

distance, Levenshtein distance, and N-gram, which are introduced in [27]. The similarity

library introduced in [28], an extension of the JWSL (Java WordNet Similarity Library),

is employed to evaluate the semantic similarity between strings. Consequently, the mean

value of literal similarity and semantic similarity is the similarity between strings, just as

shown in Formula (5) and Formula (6).

1
1 2

2
1 2

3

1 2Lite

String String

ral Jaro Winkler Levenshtein N gram
Sim _ (

_ (s ,s) (s ,s) _ (s ,
s ,s)

s)


 

(5)

1 2 1 2
1 2

2

Lite Semantic

String String String String

Str

ra

ing S ri g

l

t n

Sim Sim
Sim

_ _

_

(s ,s) (s ,s)
(s ,s)




(6)

Where,

1 2Semantic

String StringSim _ (s ,s) adopts FaITH (Feature and Information Theoretic) [28] to

measure the semantic similarity between s1 and s2.

1 2 1 2
1 2

1 2 2

1 2

String String String String

URI URI

String String

Sim Sim

Sim
else

Sim

_ _

_

_

(tail(u),tail(u)) (u ,u)
if hasTail(u) hasTail(u)

(u ,u)

(u ,u)

 


 



 (7)

As far as URI is concerned, the evaluation of similarity between URIs relies on the

similarity between strings. Given u1 and u2 are two instances of URI type, the similarity

between them can be calculated by applying Formula (7). Here, 1tail(u) is to obtain the

substring of u1, which starts at the character following the last ‘/’ of u1. For example, the

result of http dbpediaorg resource China: / / . / /tail() is “China”. Therefore, the evaluation

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 197

of similarity between u1 and u2 consider not only the similarity between two original

strings but also the similarity between their tails.

1 2
1 1 0 2 0

1 2 1 2

1

Number Number

n n
if n n

Sim n n n n

else

_

| |
!()

(,) | | | |


   

 



(8)

1 2 1 2Date Date Number NumberSim Sim n n_ _(d ,d) (toNumber(), toNumber())

(9)

Formula (8) explains how to compute the similarity between numbers. The method

fixes the bug in [23], which may cause the problem when n1 and n2 are opposite in sign.

Since a date can be cased into a number, the similarity between dates can refer to Formula

(8) after both dates are cast to numbers. Hence, the similarity between dates can be

computed by Formula (9).

The evaluation of similarity between elements introduced above only considers the

elements that share the same type, but two elements belonging to different types may refer

to the equivalent objects/values in the real world. For instance, "Beijing"@en and

yago:Beijing both mean the city of Beijing. In this paper, the similarity between String

and URI is processed separately. Suppose that u is a URI instance and s is a String

instance, the similarity between u and s can be calculated by Formula (10).

2

String String

String UR

String String

I

String String

Sim Sim

Sim
else

Sim

_

_

_

_ (s,tail(u)) (s,u
if hasTail(u)

(s

)

u

(s,u

,

)

)




 





(10)

With regard to other pairs composed by elements belonging to different types,

Formula (5) and Formula (6) are employed to evaluate the similarity between them

after all elements in pairs are cast to strings. The purpose of this strategy is to find

similarity between elements as much as possible, because the elements belonging to

different types may be potentially similar. For example, the type of elements in the

output set of dbp:establishedDate is http://www.w3.org/2001/XMLSchema#integer,

but http://www.w3.org/2001/XMLSchema#date is the type of elements in the output

set of yago:wasCreatedOnDate, so that the naive strategy only considering elements

belonging to the same type may overlook the matching properties. In order to

explain our strategy more clearly, the calculation methods of similarity for different

property types are summarized in Table 3.

4. Property Alignment Process

Just as most of ontology matching systems introduced in [29], the property

alignment proposed in this paper also is a multi-step process, which is shown in

Figure 2. First of

Table 3. The Calculation Methods of Similarity for Different Property
Types

 String Date Number URI

String String StringSim _ String StringSim _ String StringSim _ String URISim _

Date String StringSim _ Date DateSim _ String StringSim _ String StringSim _

Number String StringSim _ String StringSim _ Number NumberSim _

String StringSim _

URI String URISim _ String StringSim _ String StringSim _ URI URISim _

all, several “owl:sameAs” RDF triples in two datasets D1 and D2 are collected.

These triples should meet the following requirements: subject coming from D1 and

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

198 Copyright ⓒ 2015 SERSC

object coming from D2, or vice versa. Then, the triples that describe the subjects

and objects in these triples are retrieved from D1 and D2. Second, the data

preprocessing is to deal with the collected RDF triples for the later alignment, such

as duplicate triples removal, string replacement, tokenization, and normalization.

The aim of duplicate triples removal is to construct a reasonable similarity matrix,

which is explained in the above section. The operation of string replacement can

solve the imperfection in the original value, such as "1868-##-##" in table 1. In this

paper, we use the string “01” to replace “##”. As [27], tokenization is to split strings

into their component words based on delimiters and camel case, and normalization

is the elimination of stylistic differences due to capitalization, punctuation, word

order, and characters not in the Latin alphabet. In the third step, property pairs and

the set of subjects shared by them are retrieved by traversing all “owl:sameAs”

triples and RDF statements collected in previous steps. In Figure 2, p1 and p1’ are

properties in D1, p2 and p2’ are properties in D2, SS is the set that contains the

subjects shared by p1 and p2, and SS’ has similar meaning. Once the property pairs

and the set of subjects shared by properties are prepared, the similarity between

these properties can be calculated out by applying the corresponding calculation

methods introduced above, so that each property pair can get a value indicating the

similarity between properties in the pair. At the end, the filtering operation is

executed to identify matching properties from all property pairs. Obviously, it is a

key issue what kind of strategy should be employed in the filtering operation, which

is discussed in the next section.

D2

D1

<s1 owl:sameAs s2>

<s2 owl:sameAs s1>

……

<s1 p1 o1>

<s2 p2 o2>

……

2. Data

Preprocessing

(p1 p2, SS)

(p1' p2', SS')

……

1. Triple
Collecting

1. T
rip

le

Colle
ctin

g

3. Property

Pair Creating

(p1 p2 sv)

(p1' p2' sv')

……
4. Similarity

Computing A
5. Filtering

 Figure 2. The Property Alignment Process of Linked Data based on
Similarity between Functions

5. Experiments and Discussions

In order to verify the performance of our method, we use four similarity

measurement methods (JaroWinkler, Levenshtein, FaITH and SimFun) to find the

matching properties between three real-world datasets – DBpedia, YAGO and LGD.

SimFun is the abbreviation of property alignment based on similarity between

functions. Among the datasets in LOD, DBpeida is an interlining hub because there

are a mass of “owl:sameAs” links between DBpedia and other datasets, which is an

attractive feature for our method. Owing to the vast number of RDF triples in

DBpedia, it is a great deal of work to align all properties in DBpeida with other

datasets so that the experiments in this paper only cover five representative domains:

airport, city, country, island and school. According to the property alignment

process introduced above, all RDF triples required for alignment are collec ted from

the SPARQL endpoints of the corresponding datasets. Table 4 lists some statistics

of the experimental data, such as the number of RDF triples, the number of distinct

subject in these triples, and the number of property belonging to different types . It is

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 199

evident that the types of most properties in these datasets are String and Number,

and the proportion of URI properties is relatively less, that means the method

introduced in [24] may miss most of matching properties between these datasets

because it only concern the objects of URI type. Considering the original purpose of

the method introduced in [22, 33] and its apparent imperfection, we do not compare

SimFun with the method in this paper.

Table 4. The Statistics of the Experimental Data

Data Sources #RDF #Subject
#Property

String Date Number URI

Airport

DBpedia 648933 7233 252 8 353 75

YAGO 268952 6718 3 2 6 7

LGD 135981 7061 192 3 40 10

City

DBpedia 2373467 22205 716 15 897 79

YAGO 770649 14124 6 5 8 13

LGD 485864 22926 572 2 133 28

Country

DBpedia 81977 202 186 5 399 79

YAGO 100122 199 5 2 17 15

LGD 27966 194 357 2 14 7

Island

DBpedia 41367 316 145 3 297 90

YAGO 24561 283 3 1 11 11

LGD 5603 332 55 2 17 7

School

DBpedia 201377 2259 452 11 221 130

YAGO 109374 2251 4 2 2 7

LGD 35226 1985 37 3 16 9

Before comparing SimFun with other methods, the filtering strategy of SimFun should be

settled down firstly. Although most of ontology alignment methods based on the similarity

evaluation generally use a single threshold to identify the matching properties, this naive

strategy may be not suitable for our method because there are several computational methods

for similarity evaluation, which can be broadly divided into two categories: string-based

method (
String StringSim _

,
String URISim _

,
URI URISim _

) and number-based method

(Date DateSim _
,

Number NumberSim _
). Hence, SimFun should have at least two thresholds to filter the

results of different methods: one is for the results of string-based methods; the other is for the

results of number-based methods. Obviously, these threshold values have great effects on the

performance of SimFun. In order to choose the optimal values of string threshold and

number threshold, performance metrics of different threshold values are recorded while

DBpeida and YAGO are aligned by SimFun. In this paper, the performance metrics that we

concern include precision, recall and F1-measure, which are defined as the formula (11), (12)

and (13) respectively.

Machting_Property_Pairs Property_Pairs_In_Result
Precision

|Property_Pairs_In_Result

| |

|


(11)

Machting_Property_Pairs Property_Pairs_In_Result
Recall

|Machting_Property_Pairs

| |

|


(12)

2 Precision Recall

Pr
F1-me

ecisi
as

on
ure

+Recall

 


(13)

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

200 Copyright ⓒ 2015 SERSC

Where, Machting_Property_Pairs and Property_Pairs_In_Result both are the sets of property pair. The

difference between two sets is that Machting_Property_Pairs is obtained by manual, and

Property_Pairs_In_Result is the result of SimFun. In Figure 3, (a1), (a2) and (a3) show the

changes of precision, recall and F1-measure respectively while the string threshold values

ranging from 0.7 to 1.0 are used to filter the results of string-based methods; (b1), (b2) and

(ba3) show the changes of precision, recall and F1-measure respectively when the number

threshold values ranging from 0.9 to 0.98 are used to filter the results of number-based

methods. Considering F1-measure is the comprehensive metric, the optimal threshold value

should ensure that the F1-measure value is the greatest. In Figure 3, it is not hard to find that

the optimal value of string threshold is around 0.9 and the optimal value of number threshold

is around 0.98.

Figure 3. The Performances of SimFun with different Threshold
Values

By applying other methods to align the properties between DBpeida and YAGO,

the threshold values of these methods are determined according to the same

principle (the greater F1-measure is, the better threshold value is). As the result, the

threshold values of JaroWinkler, Levenshtein and FaITH are around 0.8 , 0.5 and 1

respectively. While these methods with the corresponding threshold values are used

to align the properties between DBpedia and YAGO, we record the performances of

different methods and present them in Figure 4. It is clear that these methods have

their respective advantages: JaroWinkler is good at precision; FaITH can recall

more results; The F1-measure of SimFun is greater than others in the most cases.

Taken together, the experimental results show that SimFun is more suitable for the

property alignment between DBpedia and YAGO. The note about these results is

that the performances of all methods are not very good, which reflects the reality

that the property alignment of real-world datasets really is a difficult problem.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 201

Figure 4. The Performances of different Methods (DBpedia vs. YAGO)

 To more fully compare the performances of different methods, we also apply

these methods with the same threshold values to align the properties between

DBpeida and LGD. The results shown in Figure 5 illustrate that the alignment

methods based on the property self-expression (JaroWinkler, Levenshtein, FaITH)

obtain some completely different performances comparing to the performances

shown in Figure 4. Although these methods adopt the same threshold values that a re

used in the alignment of DBpedia and YAGO, they are apt to achieve the higher

recall and the much smaller precision. At the same time, SimFun can achieve the

stable performances no matter what datasets are aligned. By analyzing the dataset of

LGD, it is discovered that a mass of properties in LGD start with several same

substrings, such as “lgd:name%3Aale”, “lgd:name%3Aprefix”, “lgd:name%3Apam”,

and so on. Although these properties are literally similar, they actually have very

different meanings. As the result, this kind of naming rule tends to cause plenty of

mismatches when LGD is aligned with DBpedia, and then decrease the performance

of precision. As far as the naming rules of object/value concerned, DBpedia, YAGO

and LGD share some similar rules, especially number and date. Consequently, we

can draw a conclusion that the performances of methods based on the property self -

expression rely on the naming rules of property, which always have some

differences between datasets, but the performance of SimFun is related with the

naming rules of object/value of datasets, which usually are similar in many datasets.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

202 Copyright ⓒ 2015 SERSC

Figure 5. The Performances of different Methods (DBpedia vs. LGD)

In addition to the characteristics mentioned above, SimFun has other prominent

advantages—it can retrieve the matching properties that other methods cannot find,

and can identify the unmatched properties that are returned by other methods. Table

5 shows some property pairs and their similarity computed by different methods. In

the header of Table 5, J, L, F, S stand for JaroWinkler, Levenshtein, FaITH and

SimFun respectively. The property pairs in No.1-4 lines are regarded as the

matching properties by SimFun, but are overlooked by other methods. Moreover, all

methods except SimFun return the property pairs in No.5-8 lines as the matching

properties, but they actually have very different meanings. Despite of these

advantages, SimFun has its own drawbacks too. First, the “owl:sameAs” links still

play an important role in the process of property alignment, though SimFun do not

need that the objects in the triples are connected by “owl:sameAs”, which is the

essential condition of the method introduced in [24]. For example, a mismatch may

occur when the number of subjects shared by two properties is too small, such as

(dbp:sepPrecipitationInch, lgd:ele) in the domain of island. These two properties

have completely different meanings, but the similarity calculated by SimFun is

0.984, because they have only one input shared by them and the values in two

triples happen to be similar. More than that, some properties that are literally same

are not regarded as the matching properties by SimFun, because they share none of

equivalent subjects, such as (dbp:url, lgd:url) in the domain of school. Second,

SimFun takes much more time to compute the similarity between properties than the

alignment methods based on the property self-expression. The reason is that two

properties in a property pair may share many equivalent subjects and a property

function with even one input could produce lots of objects/values, which ultimately

results in the large computational quantity of similarity evaluation.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 203

Table 5. Some Property Pairs and their Similarity Computed by different
Methods

No. Property Pair J L F S

1 (dbp:country, lgd:is_in%3Anation) 0.406 0.154 0 1

2 (dbp:popEstAsOf, lgd:population%3Adate) 0.694 0.375 0.116 1

3 (geo:lat, yago:hasLatitude) 0.472 0.25 0.035 0.999

4 (dbp:population, yago:hasNumberOfPeople) 0.367 0.1 0.601 0.982

5 (dbp:countryCode, lgd:contry_code_fips) 0.941 0.706 1 0.205

6 (dbp:labelType, w3:lable) 0.9 0.5 1 0.104

7 (dbp:populaitionDensity, lgd:population) 0.911 0.556 1 0.0004

8 (dbp:officialLanguage, lgd:officialName) 0.909 0.706 1 0.019

6. Conclusion

In this paper, we propose a novel method to align properties between datasets of

linked data. With regard to properties in RDF triples as functions, the problem of

similarity evaluation between properties is transformed into the similarity

measurement between the object/value sets, which are the output sets of property

functions that take the equivalent instances as inputs. Then, we propose several

calculation methods to evaluate the similarity between sets and elements of different

types respectively. Besides that, the property alignment process of linked data based

on similarity between functions is introduced in detail. After collecting the RDF

triples and the “owl:sameAs” statements from DBpeida, YAGO and LGD, some

properties in five representative domains are aligned with JaroWinkler, Levenshtein,

FaITH and our method. The experimental results show that our method can

guarantee freedom from the interference of property naming rules in different

datasets, so that the property alignment based on similarity between functions can

retrieve some matching properties that other methods cannot find, and can identify

the unmatched properties that are returned by other methods. Besides that, our

method requires fewer entity co-reference links than the link statistical approach

introduced in [24]. Meanwhile, our method also has some deficiencies, such as the

dependence on “owl:sameAs” links and the large calculating quantity. In the future,

we will continue to investigate the property alignment of linked data from the

following two directions. The first direction is to combine SimFun with other

methods so as to improve the performance of property alignment by taking

advantage of their superiorities. The second direction is to find some ways to

decrease the computational quantity on the premise of approximation performances.

Acknowledgement

This work was partly supported by the National Science Foundation of China (No.

61303117), the Key Projects of National Social Science Foundation of China

(No.11&ZD189), the Science Guidance Project of Education Department of Hubei

Province (No. B2014085), the Science Foundation for Yong Teachers of Wuhan

University of Science and Technology (No. 2012XZ015).

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

204 Copyright ⓒ 2015 SERSC

References

[1] I. Celino, D. D. Aglio and E. D. Valle, “Integrating Machine Learning in a Semantic Web Platform for

Traffic Forecasting and Routing”, In Proceedings of the 3rd International Workshop on Inductive

Reasoning and Machine Learning for the Semantic Web. Springer Berlin Heidelberg, (2011).

[2] S. Tu, “Exploiting linked data to build web applications”, IEEE internet computing, vol.13, no.4, (2009),

pp.68-73.

[3] O. Udrea, L. Getoor and R J. Miller, “Leveraging data and structure in ontology integration”, In

Proceedings of the 2007 international conference on Management of data. ACM, (2007), pp.449-460.

[4] P. Shvaiko and J. Euzenat, “Ontology matching: state of the art and future challenges”, IEEE

Transactions on Knowledge and Data Engineering, vol.25, no.1, (2013), pp.158-176.

[5] S. Castano, A. Ferrara and S. Montanelli, “H-MATCH: an Algorithm for Dynamically Matching

Ontologies in Peer-based Systems”, In Proceedings of the First Workshop on Semantic Web and

Databases, (2003).

[6] H. H. Do and E. Rahm, “COMA: a system for flexible combination of schema matching approaches”, In

Proceedings of the 28th international conference on Very Large Data Bases. VLDB Endowment, (2002).

[7] D. Aumueller, H. H. Do and S. Massmann, “Schema and ontology matching with COMA++”, In

Proceedings of the 2005 international conference on Management of data. ACM, (2005).

[8] L. Serafini, P. Bouquet and B. Magnini, “An algorithm for matching contextualized schemas via SAT”,

In Proceedings of CONTEXT, vol.3, (2003), pp.126-132.

[9] P. Bouquet, L. Serafini and S. Zanobini, “Bootstrapping semantics on the web: meaning elicitation

from schemas”, In Proceedings of the 15th international conference on World Wide Web. ACM, (2006).

[10] J. Euzenat “Brief overview of T-tree: the Tropes taxonomy building tool”, Advances in Classification

Research Online, vol.4, no.1, (1993), pp.69-88.

[11] R. Tournaire, J. M. Petit and M. C. Rousset, “Discovery of probabilistic mappings between taxonomies:

Principles and experiments”, Journal on data semantics, (2011), pp.66-101.

[12] W. Hu and Y. Qu, “Falcon-AO: A practical ontology matching system”, Web Semantics: Science,

Services and Agents on the World Wide Web, vol.6, no.3, (2008), pp.237-239.

[13] J. Li, J. Tang and Y. Li, “Rimom: A dynamic multi-strategy ontology alignment framework”, IEEE

Transactions on Knowledge and Data Engineering, vol.21, no.8, (2009), pp.1218-1232.

[14] K. Gunaratna, S. Lalithsena and A. Sheth, “Alignment and dataset identification of linked data in

Semantic Web”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.4, no.2,

(2014), pp.139-151.

[15] P. Jain, P. Hitzler and A. Sheth, “Ontology alignment for linked open data”, In Proceedings of the

International Semantic Web Conference, (2010).

[16] P. Jain, P. Yeh and K. Verma, “Contextual ontology alignment of LOD with an upper ontology: a case

study with proton”, In Proceedings of The Semantic Web: Research and Applications, (2011).

[17] F. Suchanek, S. Abiteboul and P. Senellart, “PARIS: probabilistic alignment of relations, instances, and

schema”, In Proceedings of VLDB Endow 2011, (2011).

[18] R. Parundekar, C. Knoblock and J. Ambite, “Discovering concept coverings in ontologies of linked data

sources”, In Proceedings of the International Semantic Web Conference, (2012); Springer Berlin

Heidelberg.

[19] J. Volz, C. Bizer and M. Gaedke, “Silk–a link discovery framework for the web of data”, In Proceedings

of the 2nd Linked Data on the Web Workshop, (2009).

[20] S. Araujo, J. Hidders and D. Schwabe, “SERIMI resource description similarity, RDF instance matching

and interlinking”, Journal of Computing Research Repository, (2011), pp.236-248.

[21] N. A. Ngonga and K. Lyko, “EAGLE: efficient active learning of link specifications using genetic

programming”, In Proceedings of The Semantic Web: Research and Applications, (2012).

[22] L. Zhao and R. Ichise, “Mid-ontology learning from linked data”, The Semantic Web, Springer Berlin

Heidelberg, (2012), pp.112-127.

[23] L. Zhao and R. Ichise, “Ontology Integration for Linked Data”, Journal on Data Semantics, (2014),

pp.1-18.

[24] K. Gunaratna, K. Thirunarayan and P. Jain, “A statistical and schema independent approach to identify

equivalent properties on linked data”, Proceedings of the 9th International Conference on Semantic

Systems. ACM, (2013).

[25] H. Huang, C. Liu and X. Zhou, “Approximating query answering on RDF databases”, World Wide

Web, vol.15, no.1, (2012), pp.89-114.

[26] S. H. Cha, “Comprehensive survey on distance/similarity measures between probability density

functions”, International Journal of Mathmatical Models and Methods in Applied Sciences, vol.1, no.2,

(2007), pp.300-307.

[27] M. Cheatham and P. Hitzler, “String similarity metrics for ontology alignment”, In Proceedings of the

International Semantic Web Conference, (2013); Springer Berlin Heidelberg.

[28] P. Giuseppe and E. Jérôme, “A Feature and Information Theoretic Framework for Semantic Similarity

and Relatedness”, In Proceedings of the 9th International Semantic Web Conference, (2010); Springer.

[29] J. Euzenat and P. Shvaiko, “Overview of matching systems”, Ontology Matching, (2007), pp.153-192.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 205

Authors

Yu Liu, he received the master degree in School of Computer

Science and Technology of Huazhong University of Science and

Technology. He is a PhD candidate in Computer School of

Wuhan University. His research interests are semantic web and

knowledge engineering.

Shihong Chen, he is a professor in Computer School of

Wuhan University, China. He also is the deputy director of the

national engineering research center for multimedia software.

His research interests are software engineering and knowledge

engineering.

Jin-Guang Gu, he is a professor at College of Computer

Science and Technology, Wuhan University of Science and

Technology, Wuhan, China. His current research interests

include distributed computing, intelligent information processing,

semantic web and software engineering.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

206 Copyright ⓒ 2015 SERSC

