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Abstract 

Owing to the complex structure and multi-meaning, property alignment is generally 

regarded as a challenging problem in the context of linked data. In this paper, we propose 

a novel method to align properties between datasets of linked data. Considering the role 

of properties in RDF triples, we regard all properties of linked data as property functions, 

and convert the problem of property alignment to the similarity evaluation between 

property functions, while the equivalent instances as inputs of property functions. Based 

on the similarity of property functions, the property alignment process of linked data is 

introduced. In order to prove the validity, we use the method to align properties in five 

representative domains between DBpeida and YAGO, DBpedia and LinkedGeoData 

respectively. The experimental results show that our method is independent of the 

property naming rules and can retrieve some matching properties ignored by other 

methods. In addition, our method requires fewer entity co-reference links than the link 

statistical approach. 

 

Keywords: Property Alignment; Linked Data; Property Function; Similarity between 

Functions. 

 

1. Introduction 

Since linked data was proposed by Chris Bizer and Richard Cyganiak in 2007, more 

and more datasets following the principle of linked data are published on the web. These 

datasets cover a diversity of areas so that many researchers of different backgrounds try to 

develop some intelligent systems by taking advantage of these massive data. For example, 

the Traffic LarKC combined DBpeida with the datasets of two Milano municipalities to 

implement a question answering system about the traffic [1]; the music site in BBC pulls 

music metadata, from Musicbrainz and fetches introductory text from Wikipedia via 

DBpeida interlinking [2]. Although linked data is shining a bright light on the road 

forward for engineers to build intelligent information system, there is an inevitable 

roadblock, how to retrieve information from multiple datasets, that always have distinct 

schemas. In order to solve the above problem, ontology alignment has been widely 

employed.  

Ontology alignment, or named ontology matching, is the process of determining a set 

of relationships (for example, subsumption and equivalence relationships) between 

entities (classes, properties, and individuals) in two ontologies [3]. The result of ontology 

alignment can be used for various tasks, such as ontology merging, query answering, or 

data translation [4]. Due to the importance of ontology alignment, a lot of achievements 

on ontology alignment have been carried out. According to the information that the 

methods of ontology alignment refer to, these methods fall into three categories: schema-

based (H-Match [5], COMA & COMA++ [6, 7], CtxMatch & CtxMatch2 [8, 9]), 

instance-based (T-tree [10], ProbaMap [11]), mixed (Falcon-AO [12], RiMOM [13]). In 
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order to assess these methods and measure the progress of ontology matchers, the OAEI 

(Ontology Alignment Evaluation Initiative) annually releases the benchmark test library, 

resulting in the purpose of many techniques is to achieve better results on the test library. 

Considering the characteristics of linked data, lots of researchers have realized that the 

techniques aiming at the benchmark may not suitable for linked data, so several alignment 

methods for linked data have been proposed in recent years. 

In the context of linked data, ontology alignment mainly comprises three parts: class 

(concept) alignment, property alignment, and instance alignment [14]. The techniques for 

class alignment of linked data can be divided into two categories according to the types of 

information used for alignment: (1) external hierarchies and knowledge presented in 

lexical databases (BLOOM & BLOOM+ [15, 16]), (2) instance-level information (PARIS 

[17] and the method introduced in [18]). Instance alignment also is a research hotpot, and 

many systems have been proposed, such as SILK [19], SERIMI [20] and EAGLE [21]. 

Because properties have more complex structure and meaning than classes and instances, 

property alignment is regarded as a challenging problem in the ontology alignment field. 

Basing on similarity metrics, clustering, machine learning, and other technologies, many 

methods have been proposed in the last decade [14]. Among them, there are two methods 

that are similar with our method. The first one is introduced in [22, 33], the original 

purpose of which is to construct an upper level ontology from LOD (linked open data). 

Despite this method can find some similar properties, it has an apparent imperfection – 

properties having different semantic meaning may be aggregated into the same group (for 

example, “birthPlace” and “deathPlace”). The second one uses the entity co-reference 

(ECR) links to count the numbers of matching subjects and subject-object pairs between 

two datasets, and then find matching properties by analyzing the statistical results [24]. 

The method can eliminate the mismatches that happened in [22, 33], but it also has an 

obvious limitation – a large number of subjects and objects in the datasets should be 

related with ECR links. 

By regarding properties as functions, we propose a novel method to align properties of 

linked data in this paper. On the basis of “owl:sameAs” links between subjects, the 

method collects all output sets of two property functions that take the equivalent instance 

as input, and measures the similarity between two properties by evaluating the similarity 

between these output sets. The higher similarity between the output sets means that two 

properties match each other with the higher probability. The main contributions of this 

paper are as follows: 

1. We define the property function on the context of linked data and propose a method 

to measure the similarity between two property functions. As the property functions have 

multiple types of outputs, we also propose several methods to measure the similarities 

between sets and between elements. 

2. We illustrate the process of property alignment, which is composed of triple 

collecting, data preprocessing, property pair construction, similarity computing, filtering, 

etc.  

3. In order to verify the effectiveness, we use several methods to align properties in 

five representative domains between DBpedia and YAGO, DBpedia and LinkedGeoData 

(LGD) respectively. The experimental results show that our method has distinctive 

characteristics and advantages compared with other methods, such as the independence on 

the naming rules of property and the fewer requirements for ECR links. 

The remainder of this paper is structured as follows: Section 2 defines the property 

function in the context of linked data. Section 3 describes how to compute the similarity 

between property functions. In Section 4, the process of property alignment is explained 

in detail. The experiments and results are discussed in Section 5. Finally, the conclusion is 

presented in Section 6. 
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2. Property Function 

geo: http://www.w3.org/2003/01/geo/wgs84_pos#   foaf: http://xmlns.com/foaf/0.1/   dbp: http://dbpedia.org/property/

owl: http://www.w3.org/2002/07/owl#   yago: http://yago-knowledge.org/resource/   dbo: http://dbpedia.org/ontology/

dbr: http://dbpedia.org/resource/  lgd: http://linkedgeodata.org/ontology/  w3: http://www.w3.org/2000/01/rdf-schema#

dbr:Shanghai

geo:long
121.5

yago:Shanghai

DBpedia YAGO

dbr:Han_Zheng

dbr:Yang_Xiong_(politician)

31.2

owl:sameAsgeo:lat

yago:Han_Zheng

yago:Anhui

yago:linksTo

yago:linksTo

121.5

31.2

yago:hasLongitude

yago:hasLatitude

dbr:China

dbo:country

yago:China

yago:isLocatedIn

dbr:Beijing

geo:long
116.38

dbr:Guo_Jinlong

39.9139

dbo:leaderName

owl:sameAs

geo:la
t

yago:Tsinghua_University

116.38333

39.9

yago:hasLongitude

yago:hasLatitude

dbr:China

dbo:country

yago:Asia

yago:isLocatedIn

dbr:Wang_Anshun

dbo:leaderName

dbo:leaderName

dbo:leaderName

yago:linksTo

yago:linksTo

dbr:Guangzhou

geo:long
113.267

yago:Guangzhou

dbr:Chen_Jianhua

23.1333

dbo:leaderName

owl:sameAs

geo:la
t

yago:Guangzhou_Daily

yago:China

113.266

23.1333

yago:hasLongitude

yago:hasLatitude

dbr:China

dbo:country

yago:Guangdong

yago:isLocatedIn

dbr:Wan_Qingliang

dbo:leaderName yago:linksTo

yago:Beijing_Zoo

yago:linksTo

yago:Beijing

yago:Beijing_Zoo

yago:Xi_Jinping

yago:linksTo

yago:Foshan

yago:linksToyago:linksTo

 Figure 1. Several RDF Triples in DBpedia and YAGO 

The basic component of linked data is RDF (Resource Description Framework) triple, 

which can be formally expressed as (s, p, o) ∈ (I ∪ B) ×  (I ∪ B) ×  (I ∪ B ∪ L), where 

I is a set of IRIs (International URIs), B a set of blank and L a set of literals. In the triple, 

s can be looked as subject, p the property, and o the object or property value [25]. The 

subject denotes the resource, and the property denotes traits of instances or a relationship 

between the subject and the object. Owing to the vague meaning of the triples with blank, 

providing none useful information, our method does not take them into account in the 

process of property alignment. Therefore, we present the definition of property function, 

the key concept for the following content. 

Definition 1 (Property Function) Suppose that (s, p, o) is a triple in the dataset D1, p can 

be defined as a property function, where the domain of p is the subject set S=(s1,s2,…,sn) 

and the range of p is the set of object/value set O=(o1,o2,…,om), such that s∈S and 

1 i ii [ ,m],p(s) o ,o o     . 

Note that the output of property function is a set, which contains one or more 

than one value/object, such as dbo:leaderName(dbr:Shanghai) in Figure 1 include 

two objects. In addition, the property functions have multiple types of outputs. As 

shown in Figure 1, the output elements of dbo:leaderName are URI type, and the 

output elements of geo:long are number type. In [23], property-object pairs are 
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classified into five distinct types: Class, String, Date, Number, and URI. In this 

paper, we modify this classification for the subsequent computation of similarity 

between property functions. As all classes must be expressed as URI according to 

the principles of linked data, it is not necessary to set Class as a separate type, so we 

divide the property functions into four types: String, Date, Number, and URI. Table 

1 presents our classifications and some samples. Obviously, it is easy to identify the 

types of property functions. For example, the elements in the output elements of 

URI property functions all start with “http://”, the elements in the output set of 

String property functions contain “@”. 

Table 1. Property Function Classifications and Some Samples 

Type Property Object 

String 

dbo:postalCode "100000–102629"@en 

yago: 

isPreferredMeaningOf 
"Beijing"@en 

Date 

dbo:foundingYear 
"1955-01-01T00:00:00+02:00"^^ 

<http://www.w3.org/2001/XMLSchema#gYear> 

yago: 

wasCreatedOnDate 

"1868-##-##"^^ 

<http://www.w3.org/2001/XMLSchema#date> 

Number 

dbo:areaTotal 
"1.68012e+10"^^ 

<http://www.w3.org/2001/XMLSchema#double> 

geo:lat 
"39.9139"^^ 

<http://www.w3.org/2001/XMLSchema#float> 

yago:hasArea 
"1.680125E10"^^ 

<http://yago-knowledge.org/resource/m^2> 

yago:hasLatitude "39.9"^^<http://yago-knowledge.org/resource/degrees> 

URI 

dbo:country http://dbpedia.org/resource/China 

dbo:leaderName http://dbpedia.org/resource/Han_Zheng 

yago:linksTo http://dbpedia.org/resource/Tinghua_University 

yago:isLocatedIn http://yago-knowledge.org/resource/Asia 

 

3. Similarity between Property Functions 

The similarity measure between functions is a widely studied issue, related with 

several pattern recognition problems, such as classification, clustering, and retrieval 

problems [26]. Considering lots of equivalent instances are connected by owl:sameAs in 

linked data, it is a reasonable to use the similarity between property functions to align the 

properties coming from the different datasets. Suppose that D1 and D2 are two datasets in 

linked data, p1 and p2 are properties in D1 and D2 respectively, S1 is the subject set of p1 

and S2 is the subject set of p2, such that the similarity between p1 and p2 (denoted 

as 1 2SimProperty(p , p ) ) can be calculated by the following formula. 

1 2 1

1 2

2

1 2

01 1 2
1

2 0

2
2

10

s s S

Set

S

S

S S
S S

S

im

S

Sim
,( )

Property

(p (s ), p (s ))

| |(p , p )
| |

| |

 








  






  (1) 

1 2S S =

1 2 1 2 1 2 1 1 1 1 2 2 2 21 2 1 2s s s S s S s owl sameAs s o o o o{( , )| ( , : , ) (s , p , ) D (s ,p , ) D }        , and 

1 2S S| |  is the size of subject pair set. 1 21 2SetSim (p (s ), p (s ))  is on behalf of the 
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similarity between the output sets of 11p (s )  and 22p (s ) , which is introduced in the 

subsequent content. The intuition behind the Formula (1) is that the similarity 

between properties can be converted to the similarity between the outputs of 

property functions. The greater value the similarity between outputs gets, the greater 

value the similarity between property functions gets, and these properties are more 

likely to match with each other. In Figure 1, yago:hasLatitude is more similar with 

geo:lat than yago:hasLongtitude, because the output set of geo:lat(dbr:Shanghai) 

({31.2}) equals with the output set of yago:hasLatitude(yago:Shanghai) ({31.2}), 

the output set of geo:lat(dbr:Beijing) ({39.9139}) approximately equals with the 

output set of yago:hasLatitude(yago:Beijing) ({39.9}), and the output set of 

geo:lat(dbr:Guangzhou) ({23.1333}) equals with the output set of 

yago:hasLatitude(yago:Guangzhou) ({21.1333}). At the same time, there are some 

big gaps between the output sets of geo:lat and yago:hasLongtitude. Hence, geo:lat 

and yago:hasLatitude are more likely to have the same meaning than geo:lat and 

yago:hasLongtitude. The example above is very intuitive and the conclusion can be 

easily drawn. However, the quantitative technique for the evaluation of similarity 

between sets is indispensable to implement the property alignment automatically 

and precisely. 

Table 2. The Similarity Matrix of dbo: leaderName (dbr: Shanghai) and 
yago: linksTo (yago: Shanghai) 

 
dbo:leaderName(dbr:Shanghai) 

dbr:Yang_Xiong_(politician) dbr:Han_Zheng 

yago:linksTo

(yago:Shang

hai) 

yago:Xi_Jinping 0.087 0.299 

yago:Han_Zheng 0.269 1.0 

yago:Anhui 0.236 0.289 

Given 1

1 11 nRS (rs ,...rs )  and 1

2 22 mRS (rs ,...rs )  are the output sets of 11p (s )  and 22p (s )  in 

Formula (1) respectively, the similarity matrix of 1RS  and 2RS  can be constructed with 

similarity values between corresponding object/value pairs. It is clear that the size of 

similarity matrix of 1RS  and 2RS  is n*m. Table 2 describes the similarity matrix of 

dbo:leaderName(dbr:Shanghai) and yago:linksTo(yago:Shanghai), in which each 

similarity value can be calculated according to the similarity measurement of URIs 

introduced later. In order to compute the similarity between output sets of property 

functions, we propose the definition of best matching collection. 

Definition 2 (Best Matching Collection) Suppose that M is a similarity matrix of 1RS  and 

2RS , the best matching collection is composed of several object/value pairs, and each pair 

(denoted as 1 2

x y(rs ,rs ) ) has the maximum similarity value compared to other pairs, which 

are in the same row and same column of 1 2

x y(rs ,rs ) . The definition of the best matching 

collection of 1RS  and 2RS  can be formally described as the formula below. 

1 2

1 2 1 2

1 2 1 2

1 2 1 1

1

1

x y

x y i y

Elem Elem

x y x j

Elem Elem

BMC n m

i n Sim Sim

j Sim Sim

(RS ,RS ) {(rs ,rs )| x [ , ] y [ , ]

[ , ], (rs ,rs ) (rs ,rs )

[ ,m], (rs ,rs ) (rs ,rs )}

    

   

  
             

   (2) 

In Formula (2), the function 1 2

x y

ElemSim (rs ,rs )  returns the similarity between 1

xrs  and 

2

yrs , which are the elements in 1RS  and 2RS  respectively. Once the best matching 

collection is solved out, the similarity between the output sets can be calculated by the 

following formula. 
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1 1

1 2 1 1 2 2

1 2 1 2

1 2 1 2

1 2

1 2
1 2

n m

Set Set

Elem

RS RS

Sim Sim RS RS

Sim

f RS RS
RS RS

(brs ,brs ) BMC( , )

(p (s ), p (s )) ( (rs ,...rs ), (rs ,...rs ))

(brs ,brs )

(n,m,BMC( , ))
| BMC( , )|








  

 (3) 

Obviously, two factors in Formula (3) determine the similarity between the output sets 

of 11p (s )  and 22p (s ) . The first factor is the average of similarity between elements in all 

pairs of the best matching collection, the second is 1 2f RS RS(n,m,BMC( , )) , which is 

employed to evaluate how much the relationship between n, m and 1 2RS RSBMC( , )  

influences the similarity between output sets. In this paper, we take the evaluation 

function as follow. 

1 2
1 2

1 2

RS RS
f RS RS

m n RS RS

| BMC( , )|
(n,m,BMC( , ))

| BMC( , )|


             
   (4) 

Formula (4) reflects a phenomenon – the greater size of best matching collection 

means that two output sets might be more similar, and vice versa. Hence, it can be 

calculated out that the similarity between the output sets shown in Table 2 is 0.2. It should 

be noted that the size of 1 2RS RSBMC( , )  may exceed the sum of m and n when lots of the 

same elements exist in the output sets. To avoid this unreasonable situation, the duplicate 

triples should be removed from the output sets before the construction of similarity matrix. 

According to the explanation above, it is evident that the similarity between elements 

is the fundamental for the similarity evaluation between output sets. Nevertheless, the 

diversity of elements shown in Table 1 makes it impossible to use a single approach to 

calculate the similarity between all kinds of objects/values. The computation method 

relies on the several concrete situations. Consequently, we introduce these situations and 

the corresponding computation methods one by one. As the similarity between strings is 

the basis of similarity between elements of other types, the computation method for string 

similarity is given firstly. To evaluate the similarity between strings accurately, literal 

similarity and semantic similarity are taken into account. The literal similarity of our 

method is the mean value of three string-based similarity measures -- Jaro_Winkler 

distance, Levenshtein distance, and N-gram, which are introduced in [27]. The similarity 

library introduced in [28], an extension of the JWSL (Java WordNet Similarity Library), 

is employed to evaluate the semantic similarity between strings. Consequently, the mean 

value of literal similarity and semantic similarity is the similarity between strings, just as 

shown in Formula (5) and Formula (6). 

1
1 2

2
1 2

3

1 2Lite

String String

ral Jaro Winkler Levenshtein N gram
Sim _ (

_ (s ,s ) (s ,s ) _ (s ,
s ,s )

s )


 

   
(5) 

1 2 1 2
1 2

2

Lite Semantic

String String String String

Str

ra

ing S ri g

l

t n

Sim Sim
Sim

_ _

_

(s ,s ) (s ,s )
(s ,s )




     
(6) 

Where,
 

1 2Semantic

String StringSim _ (s ,s )  adopts FaITH (Feature and Information Theoretic) [28] to 

measure the semantic similarity between s1 and s2. 

1 2 1 2
1 2

1 2 2

1 2

String String String String

URI URI

String String

Sim Sim

Sim
else

Sim

_ _

_

_

(tail(u ),tail(u )) (u ,u )
if hasTail(u ) hasTail(u )

(u ,u )

(u ,u )

 


 



  
 (7) 

As far as URI is concerned, the evaluation of similarity between URIs relies on the 

similarity between strings. Given u1 and u2 are two instances of URI type, the similarity 

between them can be calculated by applying Formula (7). Here, 1tail(u )  is to obtain the 

substring of u1, which starts at the character following the last ‘/’ of u1. For example, the 

result of  http dbpediaorg resource China: / / . / /tail( )  is “China”. Therefore, the evaluation 
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of similarity between u1 and u2 consider not only the similarity between two original 

strings but also the similarity between their tails.  

1 2
1 1 0 2 0

1 2 1 2

1

Number Number

n n
if n n

Sim n n n n

else

_

| |
!( )

( , ) | | | |


   

 



     
(8) 

1 2 1 2Date Date Number NumberSim Sim n n_ _(d ,d ) (toNumber( ), toNumber( ))
     

(9) 

Formula (8) explains how to compute the similarity between numbers. The method 

fixes the bug in [23], which may cause the problem when n1 and n2 are opposite in sign. 

Since a date can be cased into a number, the similarity between dates can refer to Formula 

(8) after both dates are cast to numbers. Hence, the similarity between dates can be 

computed by Formula (9). 

The evaluation of similarity between elements introduced above only considers the 

elements that share the same type, but two elements belonging to different types may refer 

to the equivalent objects/values in the real world. For instance, "Beijing"@en and 

yago:Beijing both mean the city of Beijing. In this paper, the similarity between String 

and URI is processed separately. Suppose that u is a URI instance and s is a String 

instance, the similarity between u and s can be calculated by Formula (10).  

2

String String

String UR

String String

I

String String

Sim Sim

Sim
else

Sim

_

_

_

_ (s,tail(u)) (s,u
if hasTail(u)

(s

)

u

(s,u

,

)

)




 





     
(10) 

With regard to other pairs composed by elements belonging to different types, 

Formula (5) and Formula (6) are employed to evaluate the similarity between them 

after all elements in pairs are cast to strings. The purpose of this strategy is to find 

similarity between elements as much as possible, because the elements belonging to 

different types may be potentially similar. For example, the type of elements in the 

output set of dbp:establishedDate is http://www.w3.org/2001/XMLSchema#integer, 

but http://www.w3.org/2001/XMLSchema#date is the type of elements in the output 

set of yago:wasCreatedOnDate, so that the naive strategy only considering elements 

belonging to the same type may overlook the matching properties. In order to 

explain our strategy more clearly, the calculation methods of similarity for different 

property types are summarized in Table 3. 

 

4. Property Alignment Process 

Just as most of ontology matching systems introduced in [29], the property 

alignment proposed in this paper also is a multi-step process, which is shown in 

Figure 2. First of  

Table 3. The Calculation Methods of Similarity for Different Property 
Types 

 String Date Number URI 

String String StringSim _  String StringSim _  String StringSim _  String URISim _  

Date String StringSim _  Date DateSim _  String StringSim _  String StringSim _  

Number String StringSim _  String StringSim _  Number NumberSim _

 

String StringSim _  

URI String URISim _  String StringSim _  String StringSim _  URI URISim _  

all, several “owl:sameAs” RDF triples in two datasets D1 and D2 are collected. 

These triples should meet the following requirements: subject coming from D1 and 
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object coming from D2, or vice versa. Then, the triples that describe the subjects 

and objects in these triples are retrieved from D1 and D2. Second, the data 

preprocessing is to deal with the collected RDF triples for the later alignment, such 

as duplicate triples removal, string replacement, tokenization, and normalization. 

The aim of duplicate triples removal is to construct a reasonable similarity matrix, 

which is explained in the above section. The operation of string replacement can 

solve the imperfection in the original value, such as "1868-##-##" in table 1. In this 

paper, we use the string “01” to replace “##”. As [27], tokenization is to split strings 

into their component words based on delimiters and camel case, and normalization 

is the elimination of stylistic differences due to capitalization, punctuation, word 

order, and characters not in the Latin alphabet. In the third step, property pairs and 

the set of subjects shared by them are retrieved by traversing all “owl:sameAs” 

triples and RDF statements collected in previous steps. In Figure 2, p1 and p1’ are 

properties in D1, p2 and p2’ are properties in D2, SS is the set that contains the 

subjects shared by p1 and p2, and SS’ has similar meaning. Once the property pairs 

and the set of subjects shared by properties are prepared, the similarity between 

these properties can be calculated out by applying the corresponding calculation 

methods introduced above, so that each property pair can get a value indicating the 

similarity between properties in the pair. At the end, the filtering operation is 

executed to identify matching properties from all property pairs. Obviously, it is a 

key issue what kind of strategy should be employed in the filtering operation, which 

is discussed in the next section. 

D2

D1

<s1 owl:sameAs s2>

<s2 owl:sameAs s1>

……

<s1 p1 o1>

<s2 p2 o2>

……

2. Data 

Preprocessing

(p1 p2, SS)

(p1' p2', SS')

……

1. Triple 
Collecting

1. T
rip

le 

Colle
ctin

g

3. Property 

Pair Creating

(p1 p2 sv)

(p1' p2' sv' )

……
4. Similarity

Computing A
5. Filtering

 Figure 2. The Property Alignment Process of Linked Data based on 
Similarity between Functions 

5. Experiments and Discussions 

In order to verify the performance of our method, we use four similarity 

measurement methods (JaroWinkler, Levenshtein, FaITH and SimFun) to find the 

matching properties between three real-world datasets – DBpedia, YAGO and LGD. 

SimFun is the abbreviation of property alignment based on similarity between 

functions. Among the datasets in LOD, DBpeida is an interlining hub because there 

are a mass of “owl:sameAs” links between DBpedia and other datasets, which is an 

attractive feature for our method. Owing to the vast number of RDF triples in 

DBpedia, it is a great deal of work to align all properties in DBpeida with other 

datasets so that the experiments in this paper only cover five representative domains: 

airport, city, country, island and school. According to the property alignment 

process introduced above, all RDF triples required for alignment are collec ted from 

the SPARQL endpoints of the corresponding datasets. Table 4 lists some statistics 

of the experimental data, such as the number of RDF triples, the number of distinct 

subject in these triples, and the number of property belonging to different types . It is 
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evident that the types of most properties in these datasets are String and Number, 

and the proportion of URI properties is relatively less, that means the method 

introduced in [24] may miss most of matching properties between these datasets 

because it only concern the objects of URI type. Considering the original purpose of 

the method introduced in [22, 33] and its apparent imperfection, we do not compare 

SimFun with the method in this paper. 

Table 4. The Statistics of the Experimental Data 

Data Sources #RDF #Subject 
#Property 

String Date Number URI 

Airport 

DBpedia 648933 7233 252 8 353 75 

YAGO 268952 6718 3 2 6 7 

LGD 135981 7061 192 3 40 10 

City 

DBpedia 2373467 22205 716 15 897 79 

YAGO 770649 14124 6 5 8 13 

LGD 485864 22926 572 2 133 28 

Country 

DBpedia 81977 202 186 5 399 79 

YAGO 100122 199 5 2 17 15 

LGD 27966 194 357 2 14 7 

Island 

DBpedia 41367 316 145 3 297 90 

YAGO 24561 283 3 1 11 11 

LGD 5603 332 55 2 17 7 

School 

DBpedia 201377 2259 452 11 221 130 

YAGO 109374 2251 4 2 2 7 

LGD 35226 1985 37 3 16 9 

Before comparing SimFun with other methods, the filtering strategy of SimFun should be 

settled down firstly. Although most of ontology alignment methods based on the similarity 

evaluation generally use a single threshold to identify the matching properties, this naive 

strategy may be not suitable for our method because there are several computational methods 

for similarity evaluation, which can be broadly divided into two categories: string-based 

method (
String StringSim _

, 
String URISim _

, 
URI URISim _

) and number-based method 

( Date DateSim _
,

Number NumberSim _
). Hence, SimFun should have at least two thresholds to filter the 

results of different methods: one is for the results of string-based methods; the other is for the 

results of number-based methods. Obviously, these threshold values have great effects on the 

performance of SimFun. In order to choose the optimal values of string threshold and 

number threshold, performance metrics of different threshold values are recorded while 

DBpeida and YAGO are aligned by SimFun. In this paper, the performance metrics that we 

concern include precision, recall and F1-measure, which are defined as the formula (11), (12) 

and (13) respectively.  

Machting_Property_Pairs Property_Pairs_In_Result
Precision

|Property_Pairs_In_Result

| |

|


                          
(11) 

Machting_Property_Pairs Property_Pairs_In_Result
Recall

|Machting_Property_Pairs

| |

|


                          
(12) 

2 Precision Recall

Pr
F1-me

ecisi
as

on
ure

+Recall

 


                                                        
(13) 
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Where, Machting_Property_Pairs and Property_Pairs_In_Result both are the sets of property pair. The 

difference between two sets is that Machting_Property_Pairs  is obtained by manual, and 

Property_Pairs_In_Result is the result of SimFun. In Figure 3, (a1), (a2) and (a3) show the 

changes of precision, recall and F1-measure respectively while the string threshold values 

ranging from 0.7 to 1.0 are used to filter the results of string-based methods; (b1), (b2) and 

(ba3) show the changes of precision, recall and F1-measure respectively when the number 

threshold values ranging from 0.9 to 0.98 are used to filter the results of number-based 

methods. Considering F1-measure is the comprehensive metric, the optimal threshold value 

should ensure that the F1-measure value is the greatest. In Figure 3, it is not hard to find that 

the optimal value of string threshold is around 0.9 and the optimal value of number threshold 

is around 0.98.  

 

Figure 3. The Performances of SimFun with different Threshold 
Values  

By applying other methods to align the properties between DBpeida and YAGO, 

the threshold values of these methods are determined according to the same 

principle (the greater F1-measure is, the better threshold value is). As the result, the 

threshold values of JaroWinkler, Levenshtein and FaITH are around 0.8 , 0.5 and 1 

respectively. While these methods with the corresponding threshold values are used 

to align the properties between DBpedia and YAGO, we record the performances of 

different methods and present them in Figure 4. It is clear that these methods have 

their respective advantages: JaroWinkler is good at precision; FaITH can recall 

more results; The F1-measure of SimFun is greater than others in the most cases. 

Taken together, the experimental results show that SimFun is more suitable for the 

property alignment between DBpedia and YAGO. The note about these results is 

that the performances of all methods are not very good, which reflects the reality 

that the property alignment of real-world datasets really is a difficult problem. 
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Figure 4. The Performances of different Methods (DBpedia vs. YAGO) 

 To more fully compare the performances of different methods, we also apply 

these methods with the same threshold values to align the properties between 

DBpeida and LGD. The results shown in Figure 5 illustrate  that the alignment 

methods based on the property self-expression (JaroWinkler, Levenshtein, FaITH) 

obtain some completely different performances comparing to the performances 

shown in Figure 4. Although these methods adopt the same threshold values that a re 

used in the alignment of DBpedia and YAGO, they are apt to achieve the higher 

recall and the much smaller precision. At the same time, SimFun can achieve the 

stable performances no matter what datasets are aligned. By analyzing the dataset of 

LGD, it is discovered that a mass of properties in LGD start with several same 

substrings, such as “lgd:name%3Aale”, “lgd:name%3Aprefix”, “lgd:name%3Apam”, 

and so on. Although these properties are literally similar, they actually have very 

different meanings. As the result, this kind of naming rule tends to cause plenty of 

mismatches when LGD is aligned with DBpedia, and then decrease the performance 

of precision. As far as the naming rules of object/value concerned, DBpedia, YAGO 

and LGD share some similar rules, especially number and date. Consequently, we 

can draw a conclusion that the performances of methods based on the property self -

expression rely on the naming rules of property, which always have some 

differences between datasets, but the performance of SimFun is related with the 

naming rules of object/value of datasets, which usually are similar in many datasets.  
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Figure 5. The Performances of different Methods (DBpedia vs. LGD) 

In addition to the characteristics mentioned above, SimFun has other prominent 

advantages—it can retrieve the matching properties that other methods cannot find, 

and can identify the unmatched properties that are returned by other methods. Table 

5 shows some property pairs and their similarity computed by different methods. In 

the header of Table 5, J, L, F, S stand for JaroWinkler, Levenshtein, FaITH and 

SimFun respectively. The property pairs in No.1-4 lines are regarded as the 

matching properties by SimFun, but are overlooked by other methods. Moreover, all 

methods except SimFun return the property pairs in No.5-8 lines as the matching 

properties, but they actually have very different meanings. Despite of these 

advantages, SimFun has its own drawbacks too. First, the “owl:sameAs” links still 

play an important role in the process of property alignment, though SimFun do not 

need that the objects in the triples are connected by “owl:sameAs”, which is the 

essential condition of  the method introduced in [24]. For example, a mismatch may 

occur when the number of subjects shared by two properties is too small, such as 

(dbp:sepPrecipitationInch, lgd:ele) in the domain of island. These two properties 

have completely different meanings, but the similarity calculated by SimFun is 

0.984, because they have only one input shared by them and the values in two 

triples happen to be similar. More than that, some properties that are literally same 

are not regarded as the matching properties by SimFun, because they share none of 

equivalent subjects, such as (dbp:url, lgd:url) in the domain of school. Second, 

SimFun takes much more time to compute the similarity between properties than the 

alignment methods based on the property self-expression. The reason is that two 

properties in a property pair may share many equivalent subjects and a property 

function with even one input could produce lots of objects/values, which ultimately 

results in the large computational quantity of similarity evaluation.  
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Table 5. Some Property Pairs and their Similarity Computed by different 
Methods 

No. Property Pair J L F S 

1 (dbp:country, lgd:is_in%3Anation) 0.406 0.154 0 1 

2 (dbp:popEstAsOf, lgd:population%3Adate) 0.694 0.375 0.116 1 

3 (geo:lat, yago:hasLatitude) 0.472 0.25 0.035 0.999 

4 (dbp:population, yago:hasNumberOfPeople) 0.367 0.1 0.601 0.982 

5 (dbp:countryCode, lgd:contry_code_fips) 0.941 0.706 1 0.205 

6 (dbp:labelType, w3:lable) 0.9 0.5 1 0.104 

7 (dbp:populaitionDensity, lgd:population) 0.911 0.556 1 0.0004 

8 (dbp:officialLanguage, lgd:officialName) 0.909 0.706 1 0.019 

 

6. Conclusion 

In this paper, we propose a novel method to align properties between datasets of 

linked data. With regard to properties in RDF triples as functions, the problem of 

similarity evaluation between properties is transformed into the similarity 

measurement between the object/value sets, which are the output sets of property 

functions that take the equivalent instances as inputs. Then, we propose several 

calculation methods to evaluate the similarity between sets and elements of different 

types respectively. Besides that, the property alignment process of linked data based 

on similarity between functions is introduced in detail. After collecting the RDF 

triples and the “owl:sameAs” statements from DBpeida, YAGO and LGD, some 

properties in five representative domains are aligned with JaroWinkler, Levenshtein, 

FaITH and our method. The experimental results show that our method can 

guarantee freedom from the interference of property naming rules in different 

datasets, so that the property alignment based on similarity between functions can 

retrieve some matching properties that other methods cannot find, and can identify 

the unmatched properties that are returned by other methods. Besides that, our 

method requires fewer entity co-reference links than the link statistical approach 

introduced in [24]. Meanwhile, our method also has some deficiencies, such as the 

dependence on “owl:sameAs” links and the large calculating quantity. In the future, 

we will continue to investigate the property alignment of linked data from the 

following two directions. The first direction is to combine SimFun with other 

methods so as to improve the performance of property alignment by taking 

advantage of their superiorities.  The second direction is to find some ways to 

decrease the computational quantity on the premise of approximation performances. 
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