
International Journal of Database Theory and Application

Vol.8, No.4 (2015), pp.169-178

http://dx.doi.org/10.14257/ijdta.2015.8.4.17

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Storing and Updating XML Data Tree based on Linked Lists

Teng Lv
1
 and Ping Yan

2, *

1
School of Electronic and Communication Engineering, Anhui Xinhua University,

Hefei 230088, China
2
School of Science, Anhui Agricultural University, Hefei 230036, China

Lt0410@163.com, want2fly2002@163.com

Abstract

XML has become the de facto standard for data exchange and transformation on the

World Wide Web and is widely used in many applications of various fields, so it is urgent

to develop some efficient methods to manage, store, query, and update XML data. There

are two main methods to do this: the first method is a native approach which uses native

XML databases to store XML data, and the second method use other mature commercial

databases approaches to store and manage XML data considering the advantages of

mature technologies of the commercial databases, especially use relational databases to

store, query, and update XML data. For relational databases approach, although it can

take advantage of mature technologies of relational databases, it needs to map XML data

to relational data. In this paper, we research the problem of how to store XML data so

that storing and updating of original XML data can be efficient than relational approach.

We proposed a method to store XML data into linked lists with inverted index, in which

the relationships between nodes of XML data tree are preserved by the links in linked

lists. Inverted index are created for linked lists for efficiently querying and updating XML

data tree. Two kinds of updates are considered including inserting a new node in or

deleted an existed old node from XML data tree. Theoretical analysis of our algorithms

shows that the methods proposed in the paper are efficient.

Keywords: XML, store XML, update XML, insert XML, delete XML

1. Introduction

XML (Extensible Markup Language) has become the de facto standard for data

exchange and transformation on the World Wide Web and is widely used in many

applications of various fields. With more and more XML data used in different

applications, it is a natural problem of how to efficiently manage, store, search, and query

XML data. Academic researchers and industry engineers have used two main methods of

managing, storing, searching, and querying XML data: the first way uses native XML

databases to store and manage XML data directly, such as Refs.[13,14], and the second

way[4,5,12,15] used other mature commercial databases to store and manage XML data

considering the advantages of mature technologies of the commercial databases, such as

query optimization, normalization theories, index technologies, etc. Although the mature

databases approach has the above advantages, it has to map XML data to the model in

respect databases in order to store it in the mature databases[9]. Furthermore, to search or

query XML data, the original XML queries such as XPath or XQurey have to be

transformed to SQL(Structure Query Languages) or OQL(Object Query Languages)

queries, and the results of SQL or OQL queries have to be transformed to XML formats

again, which increase of query cost and leads to low query efficiency. For native

* To whom correspondence should be addressed. E-mail: want2fly2002@163.com, Tel:+86-551-

15155139852.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

170 Copyright ⓒ 2015 SERSC

approach, there is no such problems because it stores and queries XML data directly but

with low query and update efficiency.

In this paper, we research the problem of how to store XML data so that updating,

storing, and querying XML data are efficient. We first store each non-leaf node of

XML data file in a set of linked list, in which the relationships between parent and

child nodes (and also ancestor and descendent nodes) are preserved. Then inverted

indexed are designed for all the linked lists to gain high querying and updating

efficiencies. After that, updating XML data file are researched and two algorithms

are given for inserting new nodes and deleting existed nodes of XML data file,

respectively.

Related Work. Several solutions for storing XML data have been proposed both

in academic and commercial community. These storage approaches can be classified

according to the type of system or model on which XML document representation

rely.

The first type uses mature database technologies to store XML documents. The

primary choice is to use relational databases[3,16], in which a collection of

relational tables are used to represent both XML data and their relationships and

XML documents should be partitioned into rows and columns of relational tables.

However, this choice can cause performance overhead mainly due to translation of

tree structure of XML to tables of relational databases and vice versa. Another

choice is to use object-oriented databases[10] to store XML documents, in which

XML data are stored as collections of object instances. This choice can take

advantage of object-oriented merits, such as inheritance and capsulation, however,

how to organize XML data into an object is not natural and in some cases it is not

flexible and efficient. To combine advantages of relational and object-oriented

databases, object-relational databases are used to store XML data[17], but with

disadvantages of both relational choice and object-oriented choice as mentioned

above.

The second type uses native XML databases to store XML documents[7] in which

XML documents are stored and retrieved according to a native XML model which

defines XML data as well as its structure and schema. But native XML approach

usually has low query efficiency. To overcome above disadvantages, Refs.[1,2,6,11]

store XML documents based on various partition method. They can be used to

improve XML queries efficiency because only relevant XML data needed to be

accessed when queries are simplified to specific paths. For XML node labeling

methods, Ref.[8] proposed a labeling scheme based on the concept of the complete

tree whose space requirement of labeling scheme is superior to others in most cases.

Our work is concentrated on storing XML data efficiently in order to support

efficient querying, accessing, and updating XML data directly. In this paper, we use

a simple path label for each node to represent its path in the XML data tree. To

capture the overall structure of nodes in the XML data tree, a set of linked list for

each node are constructed to achieve this goal. To support query, access, and update

efficiently, inverted index are constructed for the set of linked list. The advantages

of the method proposed in the paper can support update easily as the nodes are

linked by their parent links and sibling links in the linked lists.

Main Contributions. In this paper, the problem of storing and updating XML

data are researched whose main contributions are followings: (1) We give an

algorithm of storing XML data tree in linked lists with inverted index. (2) Two

algorithms are given to update linked lists with inverted index when insert a new

node or delete an existed node in the XML data tree.

Organization. The rest of the paper is organized as follows. Section 2 gives the

algorithm to store XML data tree into a set of linked lists with inverted index.

Section 3 gives the algorithms to update linked lists with inverted index when insert

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 171

a new node or delete an existed node in the XML data tree. And finally, Section 4

concludes the paper and gives the future direction of the work.

2. Storing XML Data File in Linked Lists with Inverted Index

 An XML data file is usually represented as a labeled XML tree. Considering the

following XML data file:

<A>

<C> vc1</C>

<C>vc2</C>

<D>

 <F>vf1</F>

</D>

<D>vd2 </D>

<E> ve1</E>

<D>

 <F>vf2</F>

 </D>

<D>vd4 </D>

<E>ve2 </E>

Figure 1. An XML Data File

We can depict the above XML data file as an XML data tree such as Figure 2. In

Figure 2, an uppercase letter is used to denote an element type, and an uppercase

letter followed by a number to indicate a specific element node of this element type.

In Figure 2, A, B, C, D, E, and F are all element types, A1 is a specific element

node of type A, which is the root node of the XML tree, B1, B2, and B3 are three

specific element nodes of type B, which are non-leaf nodes of the XML tree. D1 and

D3 are two specific element node of type D, which are non-leaf nodes of the XML

tree. For leaf nodes of XML data tree, C1 and C2 are two specific element nodes of

type C, D2 and D4 are two specific element nodes of type D, E1 and E2 are two

specific element nodes of type E, and F1 and F2 are two specific element node of

type F. For each leaf node, there is a value assign to it, e.g. “vc1” is the value of leaf

node “C1”. For the path of each node, we labeled them as following: For the root

node, it is always labeled as “/1”. For other nodes, it is labeled orderly as its

occurrence order under its parent node prefixed by its parent’s label recursively. For

example, node B1 is the first child node of root node A1, so it is labeled as “/1/1”

because its parent node A1’s label is “/1” and it is the first child node of A1; and D3

is the first child node of B2, so it is labeled as “/1/2/1” as its parent node B2 is

labeled as “/1/2” and it is the first child node of B2.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

172 Copyright ⓒ 2015 SERSC

A1 /1

B1 /1/1

C1 /1/1/1 D1 /1/1/3 E1 /1/1/5

B3 /1/3

D4 /1/3/1C2 /1/1/2 D2 /1/1/4

B2 /1/2

D3 /1/2/1 E2 /1/3/2

F1 /1/1/3/1 F2 /1/2/1/1

“vc1” “vc2” “vd2” “ve1” “vd4” “ve2”

“vf1” “vf2”

Figure 2. An XML Tree of Figure

For an XML tree such as Figure 2, we can store it as linked lists for efficiently

updated, accessed and queried. For each non-leaf node, we construct a linked list, in

which each node has the following form:

NODE

{

 NODE *Parent;

 String ElementType;

 String Path;

 NODE *Next;

 String Value;

};

where *Parent points to its parent node (except for the head node of XML tree),

ElementType is the element type of the node, Path indicates the node’s path which starts

from the root node to the node itself, *Next points to the next child node of the head node

of the linked list (except for the tail node, which points to “NULL” indicating that there is

no more child node of the head node). Value of a node is used to store a value for each

leaf node. But for clarity and without loss of generality, we do not consider the value of a

node. Path of a node is a string separated by “/”. For example, root node A1 of Figure 1

has the following linked list which says that A1 has 3 child nodes: B1, B2, and B3,

respectively, each child node points to its parent node by a pre-link *Parent and linked

together by post-link *Next. For leaf nodes, it is unnecessary to create a separated linked

list as non-leaf nodes do, because leaf nodes are already directly linked by their parent

nodes in the set of linked list and their structure relationships have been captured and

stored in linked lists of their corresponding parent nodes.

A /1 B /1/1 B /1/2 B /1/3 NULLA[0]:

Figure 3. A Linked List of Figure 2

The overall linked lists are given in Figure 4 (values of leaf nodes are omitted

here).

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 173

A /1 B /1/1 B /1/2 B /1/3 NULL

B /1/1 C /1/1/1 E /1/1/5 NULL … …

B /1/2 D 1/2/1 NULL

B /1/3 D /1/3/1 E /1/3/2 NULL

A[0]:

B[0]:

B[1]:

B[2]:

D /1/1/3 F 1/1/3/1D[0]: NULL

D /1/2/1 F 1/2/1/1D[1]: NULL

Figure 4. The Linked Lists for Figure 1

To improve update, access, and query efficiency, we can create inverted index on head

nodes of the set of linked list based on what child nodes are contained in each head node.

From Figure 5, we can easily accessed element type C just go through index “C:{B[0],

B[1]}”, i.e. the 2
nd

 and 3
rd

 linked list B[0] and B[1] of Figure 4 without traversing other

linked lists.

]}1[],0[{""

]}2[],0[{""

]}1[],0[{""

]}0[{""

]}0[{""

DDF

BBE

BBD

BC

AB











Figure 5. The Inverted Indexed Linked Lists for Figure 4

 Now, we give the algorithm to create linked lists with inverted index to store

XML data file as following:

Algorithm 1. Create linked lists with inverted index for an XML data tree T:

CreateLists(T)

{

For each node h of T While (NotLeaf(h)) //leaf nodes has already been included in their

parent nodes

{

h[k++]=CreateList(T, h);

}

}

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

174 Copyright ⓒ 2015 SERSC

where CreateList() is a function to create a linked list for a non-leaf node h for a given

XML data tree as follows:

CreateList(T, h)

{

New NODE Lh; //First create a head node

Lh->Parent=NULL;

Lh->ElementType=h;

If (h is not visited) Then //it is a head node of the tree

Lh->Path=”/1”;

Else //it already has a path

 Lh->Path=Lh->Parent->Path+”/”+Order(h); //Order returns h’s order as a child of its

parent node

Lh->Next=NULL;

AddNodes(T, h, Lh);

}

where AddNodes() is a function to add child nodes for a linked list for a given head

node Lh and XML data tree as follows:

AddNodes(T, h, Lh)

{

If (m=GetFirstChild(T, h)) Then //Insert its first child node

{

New NODE Lm; //Create a child NODE Lm

Lm->Parent=Lh;

Lm->ElementType=ElementType(m);

Lm->Path= Lm->Parent->Path+”/1”;

Lm->Next=NULL;

Lh->Next=Lm;

AddLists(Lh, Lm);

}

Else Break;

While(k=GetNextChild(T, h)) Do //Insert other child nodes if existed

{

Lm=GetCurrentChild(T, Lh);

New NODE Lk; //Create a child NODE Lk

Lk->Parent=Lh;

Lk->ElementType=ElementType(k);

Lk->Path= Lk->Parent->Path+”/”+Order(k); //Order returns k’s order as a child of its

parent node

Lk->Next=NULL};

Lm ->Next=Lk};

AddLists(Lh, Lk);

where AddLists() is a function to add a linked list Lh into the inverted indexed linked

list according to its child element. A list is created to store such information:

AddLists(Lh, Lm)

{

If Lh is not in Lm list Then //If not existed then create it

New List Lm;

Else //If existed then just insert

Lm.Add(Lh);

}

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 175

Complexity Analysis. Suppose there are n non-leaf nodes and each has c child nodes

on average in the XML tree. CreateLists(), CreateList(), AddNodes(), and AddLists()

all can be executed in constant time O(1), and CreateLists() executes n times and

AddNodes executes c times for each non-leaf nodes, so the overall complexity of

Algorithm is O(c+n). Suppose the nodes and edges are N and E for the given XML tree,

as n and c is not greater than N and E, respectively, so the final complexity of Algorithm

is O(N+E).

3. Updating XML Data File in Linked Lists with Inverted Index

When an XML data file is updated, the linked lists with inverted index should be

updated accordingly. The first kind of update is to insert a new node in XML data file. We

should know the new inserted element type, its parent element, its order as child node of

its parent node, etc. The following algorithm gives the details of how to update the

corresponding linked lists Lh[k] when a new node is inserted in a given XML data tree.

Algorithm 2. Update inverted indexed linked list when insert a new node in XML data

tree T:

InsertNode(T, p, e, o, Lh[k]) //Parent node p, new node e, order o of e as child nodes of

p

{

For i=1 to k //Insert a new node e in linked list Lh[k]

{

 If (Lh[k]->ElementType= p) Then //Find the proper parent node

 {

 For i=1 to o-1 //Find the proper position to be inserted

 {

 If Not(m=Lh[k]->Child) Break; //Exception handle

{

n=m->Next; //insert the new NODE e

m->Next=e;

e->Parent=p;

e->Next=n;

e->ElementType=e;

e->Path=p->Path+(Postfix(Path(m))+Postfix(Path(n))/2; //Reassign a pathBreak;

}

}

}

}

AddLists(Lh[k], e); // Update inverted index of linked lists

}

In Algorithm 2, we reassign a new path for the inserted new node e as following: its

last symbol is the average of the last symbol of its previous and next sibling node, e.g. if

m->Path=”/1/2/3” and n->Path=”/1/1/4”, then the last symbol of the path for node e is

(3+4)/2=3.5, so e->Path=”/1/1/3.5”.

Complexity analysis. From Algorithm 2, we can see that insert a new node only

require O(ko), which is a constant time as k and o are two constant number, so the

complexity of Algorithm 2 is O(1).

The second kind of update is to delete an existed node in an XML data file. When the

node is not a leaf node, the delete process can no be finished because it contains other

nodes. To delete a non-leaf node and their descendants, we can delete its leaf nodes

iteratively. The following algorithm gives the details of how to delete the corresponding

node in the linked lists Lh[k] when an existed non-leaf node is deleted from a given XML

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

176 Copyright ⓒ 2015 SERSC

data tree. We should know the related information such as deleted element type and its

parent element, etc.

Algorithm 3. Delete an existed node from inverted linked list:

DeleteNode(T, p, e, Lh[k])

{

If NotLeaf(e) Then Break; //node e is not a leaf-node so cannot be deleted.

For i=1 to k //Delete a NODE e from linked list Lh[k]

{

 If (Lh[k]->ElementType= p) Then //Find the proper parent NODE

 {

 While(m=Lh[k]->Next) // Find the NODE e to be deleted

 {

 If (e==m) Then

{

 n=m->Next; //Delete NODE e

s=m->Parent;

s->Next=n;

DeleteLists(Lh[k], e); //Update inverted linked list

Break;

}

 Else k++;

}

}

}

}

where DeleteLists() is a function to update inverted linked list if necessary as follows:

DeleteLists(Lh[k], e)

{

While(m=Lh[k]->Child)

{

 If m= e Then

Break; //Same element types of e in the list, so do not change the lists

 }

For i=k+1 to n

{

 e[i-1]=ElementType[i]; //No same elements types in lists so delete corresponding

array of element e

}

}

Complexity Analysis. From Algorithm 3, we can see that delete an existed node only

require O(k(n-k)o), which is a constant time as k, n, and o are all constant numbers(o is

the order of the deleted element in the XML data tree), so the complexity of Algorithm 3

is O(1).

4. Conclusions and Future Work

This paper proposed a new storing method to store XML data in linked lists with

inverted index which can support update of original XML data efficiently. Two kinds of

update are considered in the paper: the first update is to insert a new node in the XML

data file, and the second one is to delete an existed node from the XML data file. From

theoretical analysis, all of the two update jut need a constant time to achieve their

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

Copyright ⓒ 2015 SERSC 177

respective goals, which is very efficient and can be used in real applications such as there

is a large number of nodes in an XML data file.

How to label nodes in linked lists is an interesting future work. This paper just uses a

simple path to label a node in linked lists whose efficiency may be improved by methods

such as path compression. The key challenge is how to label and compress paths without

losing structure information between nodes of XML data file.

Acknowledgement

The work is supported by Introduction of Talents Foundation and Academic Leader Foundation

of Anhui Xinhua Unversity (2014XXK06), National Natural Science Foundation of China (No.

11201002) and Natural Science Foundation of Anhui Province (No.1208085MF110).

References

[1] Sonic Software Corporation. http:// www.sonicsoftware.com/products/sonic_xml_server/ index.ssp.

[2] Software AG. http://www1.softwareag.com/ corporate/products/tamino/default.asp.

[3] L. J. Chen, P. A. Bernstein, P. Carlin, D. Filipovic, M. Rys, N. Shamgunov, J. F. Terwilliger, M. Todic,

S. Tomasevic and D. Tomic, “Mapping XML to a wide sparse table”, Proceeding of IEEE 28th

International Conference on Data Engineering, (2012); Arlington, Virginia, USA.

[4] A. Deutsch, M. Fernandez and D. Suciu, “Storing semi structured data with STORED”, Proceedings of

ACM SIGMOD International Conference on Management of Data, (1999); Philadelphia, Pennsylvania,

USA.

[5] A. Schmidt, M. L. Keysten, M. Windhouwer and F. Wass, “Efficient relational storage and retrieval of

XML documents”, Proceedings of the Third International Workshop on the Web and Databases, (2000);

Dallas, Texas, USA.

[6] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. J. Shekita and C. Zhang, “Storing and

querying ordered XML using a relational database system”, Proceedings of the ACM SIGMOD

international conference on Management of Data, (2002); Madison, Wisconsin, USA.

[7] T. Lv and P. Yan, Information and Software Technology, vol.4, no.48, (2006).

[8] P. Bohannon, J. Freire, P. Roy and J. Simeon, “From XML schema to relations: A cost-based approach

to XML storage”, Proceedings of the 18th International Conference on Data Engineering, (2002); San

Jose, California, USA.

[9] F. Tian, D. J. DeWitt, J. Chen and C. Zhang, ACM SIGMOD Record, vol.1, no.31, (2002).

[10] J. McHugh, S. Abiteboul, R. Goldman, D. Quass and J. Widom, ACM SIGMOD Record, vol.3, no.26,

(1997).

[11] N. D. Widjaya, D. Taniar and J. W. Rahayu, “Inheritance Transformation of XML schema to object-

relational database”, Proceedings of 4th International Conference on Intelligent Data Engineering and

Automated Learning, (2003); Hong Kong, China.

[12] C. Kanne and G. Moerkotte, “Efficient storage of XML data”, Proceedings of the 16th International

Conference on Data Engineering, (2000); San Diego, California, USA.

[13] A. Arion, A. Bonifati, I. Manolescu and A. Pugliese, World Wide Web, vol.1, no.11, (2008).

[14] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis, G. M. Lohman, R. Lyle, F. Ö zcan, H.

Pirahesh, N. Seemann, T. C. Truong, B. V. der Linden, B. Vickery and C. Zhang, “System RX: one part

relational, one part XML”, Proceedings of the ACM SIGMOD International Conference on Management

of Data, (2005); Baltimore, Maryland, USA.

[15] H. Georgiadis and V. Vassalos, “Xpath on steroids: exploiting relational engines for xpath performance”,

Proceedings of the ACM SIGMOD International Conference on Management of Data, (2007); Beijing,

China .

[16] R. Murthy, Z. Liu, M. Krishnaprasad, S. Chandrasekar, A. Tran, E. Sedlar, D. Florescu, S. Kotsovolos, N.

Agarwal, V. Arora and V. Krishnamurthy, “Towards an enterprise XML architecture”, Proceedings of

the ACM SIGMOD International Conference on Management of Data, (2005); Baltimore, Maryland,

USA.

[17] R. Lin, Y. Chang and K. Chao, “A Compact and Efficient Labeling Scheme for XML Documents”,

Proceedings of 18th International Conference on Database Systems for Advanced Applications, (2013);

Wuhan China.

International Journal of Database Theory and Application

Vol.8, No.4 (2015)

178 Copyright ⓒ 2015 SERSC

Authors

Teng Lv, born on April 1975, Datong, Shanxi Province, China

Current position, grades: an associate professor in Anhui Xinhua

University, PhD.

University studies: BSc degree in Computer Science from Artillery

Academy (1997), MSc degree in Computer Science from Artillery

Academy (2000), Ph.D degree in Computer Science from Fudan

University (2003)

Scientific interest: His research interest fields include Data

management

Publications: more than 70 papers published in various journals and

referenced conferences
Experience: He has teaching experience of 10 years, has completed 4

scientific research projects

Ping Yan, born on December 1972, Urumqi, Xinjiang Uygur

Autonomous Region, China

Current position, grades: a professor in Anhui Agricultural University,

PhD.

University studies: BSc degree in Applied Mathematics from

Xinjiang University (1994), MSc degree in Applied Mathematics

from Xinjiang University (1999), Ph.D degree in Applied

Mathematics from Fudan University (2002)

Scientific interest: Her research interest fields include neural

networks and data management

Publications: more than 50 papers published in various journals and

referenced conferences
Experience: She has teaching experience of 20 years, has completed 6

scientific research projects

