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Abstract 

The knowledge transfer learning can generalize across domains where the types of 

objects and variables are different. Previous studies ignored connectivity and creativity of 

domain knowledge. Thus, these studies just transfer knowledge from a source domain to a 

target domain that not effectively use the knowledge from other domains. We proposed a 

method, called Multi-domain second order knowledge integration (MSKI), for integrating 

to address this problem. We hybridize and create new knowledge, which is formalized into 

an uncertain hypergraph. Then, we proposed a method to mine frequent sub-hypergraph 

from the uncertain hypergraph (MFS-UHG). The frequent sub-hypergraphs are pivot 

knowledge, which has to be transferred with high priority. We embed the pivot knowledge 

in the progress of MLN structure learning. The experimental evaluation on four domain 

datasets shows that the MSKI outperforms state-of-the-art MLN-based transfer learning. 

 

Keywords: Knowledge transfer, Knowledge integration, Uncertain hypergraph, 

Frequent sub-hypergraph mining 

 

1. Introduction 

Different with transfer learning on features and parameters within a single domain, 

transfer learning on knowledge transfers the relationship between data from a source 

domain to a target domain, where the data are non-i.i.d (non independent and identically 

distributed) [1]. The transferred relationships include some concepts, such as transitivity 

and homophily. This process is very similar to the human learning process in which 

humans are even able to apply knowledge learned from one domain to another entirely 

different one [2]. Researches on knowledge transfer learning are mainly based on 

statistical relational learning, such as Markov Logic Network (MLN). Mihalkova and 

Mooney proposed an algorithm TAMAR and algorithm SR2LR that transfers relational 

knowledge with MLN across relational domains [3,4]. Davis and Domingos proposed an 

approach to transferring relational knowledge based on a form of second-order MLN [2].  

However, previous works on knowledge transfer learning transfer knowledge in a one-

to-one fashion, i.e., only from a single source domain to a single target domain. The 

knowledge transferred from a single source domain may not be enough to solve new 

problems. In contrast, Humans are far better than machines as they can learn knowledge 

from different domains. For example, in scientific innovation, humans get knowledge 

from multiple disciplines and generate new knowledge to solve new problems. What is 

missed in machine transfer learning is the ability to create new knowledge from different 

domains and to transfer pivot knowledge appearing frequently in most of domains.  

In spirit of the idea, we present a new approach to transfer knowledge from multiple 

domains to one domain. Different with multi-task learning which learns a problem 

together with other related problems at the same time, using a shared representation, 

where the data usually are i.i.d and from same domain. Our work aimed to transfer 

knowledge from multiple domains to one domain, where the data are non-i.i.d and across 
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domain (e.g., between domains where the types of objects and variables are different). To 

achieve this intention there are two main problems we should to resolve. One is how to 

integrate existed domain knowledge and create new knowledge instead of just using 

existed knowledge within other domains. Another is how to find the pivot knowledge that 

appearing frequently in most of domains. These pivot knowledge should be transferred 

with high priority.  

To tackle these problems, we proposed a method Multi-domain Second-order 

Knowledge Integration (MSKI), for integrating, hybridizing and creating new knowledge. 

The MSKI receive knowledge from multiple domains with form of uncertain hypergraph, 

and integrate these knowledge into a large uncertain knowledge hypergraph. Then, we 

propose a method to mine frequent sub-hypergraphs from the uncertain hypergraph. The 

frequent sub-hypergraphs can be viewed as pivot knowledge that should be transferred 

with high priority. Finally, we embed these pivot knowledge in the progress of MLN 

structure learning to transfer knowledge to the target domain. In addition, we analyzed 

MLN-based transfer learning mechanism and the reduction of search space by using our 

method. An experimental evaluation on four datasets shows that our method MSKI-MFS-

UHG (MMU) is significantly outperforms the state-of-the-art single-task MLN-based 

transfer learning. 

 

2. Uncertain Hypergraph 

In this section, we introduced and formalized uncertain hytpergraph (intergraded 

knowledge). Different with previous study about mining sub-graphs in an uncertain 

graph database [5,6] or in a hypergraph database [7]. We present a new problem 

about Mining Frequent Sub-hypergraphs (pivot knowledge) in an Uncertain 

HyperGraph (MFS-UHG) and analyzed the complexity of this problem. 

 

2.1. Formalization of Uncertain Hypergraph 

As all graphs can be viewed as a hypergraph, the definition of uncertain graph [8] 

can be extended to uncertain hypergraph directly. 

DEFINITION 1. An uncertain hypergraph can be represented by a 7-tuple, 

(( , ), , ,N ,N , , )H V E V E V EV E P P   , where ( , )V E  is an undirected hypergraph, V  is a 

finite set of vertices, and E is a family of nonempty subsets of V  such that 

e E e V  . NV
 and NE  are the sets of vertices and hyperedges. : NV VV   is 

vertex labeling function. : NE EE   is hyperedge labeling function. : [0,1]VP V   

is a function assigning existence probability values to vertices. : [0,1]EP E   is a 

function assigning existence probability values to ie  while the set 1 1{ , , , }i i ijv v v  in 

ie E  already exists. 

DEFINITION 2. An exact hypergraph (( , ), , ,N ,N )H V E V EG V E        is 

implicated by an uncertain hypergraph (( , ), , ,N ,N , , )H V E V E V EV E P P   , denoted 

by H HG  , if and only if V V   and ( )E E V V     . The probability of an 

uncertain hypergraph H  implicating an exact hypergraph 
HG  is 
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Theorem 1. For any uncertain hypergraph ( ),( ( ),2 , )H

H

Imp

H HImp P

   is a 

probability space. (proof omitted) 

 

3. Frequent Sub-Hypergraph Mining 

The different between our problem and [8] are as follows: (1) this paper is aimed at 

formalizing uncertain hypergraph rather than uncertain ordinary graph. (2) this study is 

focused on mining frequent sub-hypergraph from a single uncertain large hypergraph 

instead of a graph database. 

DEFINITION 3. An exact hypergraph (( , ,, N), , N )H V E V EG V E    is sub-

hypergraph isomorphic to another exact hypergraph (( , ), , ,N ,N )H V E V EG V E         

denoted by H HG G , if there exists an injection :V V   such that 

(1) ( ) ( ( ))H HG G

V Vv v  

  for every v V , (2) { ( ) : }v v e E    for every e V  if 

e E , (3)      : ( )v v e v     for every e E . 

DEFINITION 4. A connected exact hypergraph C

HG  is asub-hypergraph in a 

large uncertain hypergraph L

H  if C

HG  is sub-hypergraph isomorphic to at least one 

implicated hypergraph in L

H . 

We apply Minimum Number of vertex Images (MNI) support [9] to hypergraph. 

DEFINITION 5. Let HG  and HG   be two certain hypergraphs and let F  be the 

set of all sub-hypergraph isomorphism of 
HG  to HG  . The MNI support of 

HG  w.r.t 

HG   is defined as min |{ | : ( ) }|e E e E f F f e e
      . 

DEFINITION 6. Given a large uncertain hypergraph L

H , let ( )L

HImp   be a set 

of all certain hypergraphs implicated by L

H . The support of a sub-hypergraph in 

L

H  is a probability distribution: 

, where 1 2, , , ms s s  are the supports defined by definition 5. 

DEFINITION 7. Let { Imp}L

Hg G  , the MNI expected support of a sub-

hypergraph S  in L

H  is  

If ( )esup S  is greater than threshold, then S  is a minsup expected frequent sub-

hypergraph. 

( )

Pr( ) ( ) (1 ( ))Pr Pr

( ) (1 ( ))Pr Pr

V VH H
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Lemma 1. It is an NPC problem to mine all expected frequent sub-hypergraphs in 

an uncertain large graph. (Detailed proof can be found in the appendix)  

Theorem 2. It is an NPC problem to mine the patterns of all frequent sub-

hypergraphs in an uncertain large hypergraph for an arbitrary expected support 

threshold. (Proof see appendix) 

 

4. Knowledge Integration 

In this section, we propose a method, called Multi-domain Second-order Knowledge 

Integration (MSKI), for integrating, hybridizing and creating new knowledge, which is 

generated an uncertain hypergraph from different domains.  

In order to integrate knowledge effectively and realistically, we select the Second-

Order Logic Template (SOLT) [2] as the representation of knowledge. Consistent with the 

idea of MLN, we consider that a SOLT is not always true. We can associate it with a 

probability for expressing domain generalization possibility. Our knowledge integration 

method has five stages: selection, mapping, conversion, connection, and mutation.  

Selection: This step chooses some high frequency First Order Logic (FOL) to simplify 

the complexity of the integration. We use motifs as FOLs created and selected by 

algorithm LSM.  

Mapping:  It is impossible to integrate motifs from different domains, unless each pair 

of motifs has at least one same predicate and constant symbols.  

So we use the algorithm proposed by [3] to get a predicate mapping. We mark 

hyperedges and vertices in our motifs with the same label according to mapping. For 

example, one of the mappings is R actor adviseBy workUnder    which 

means the three different predicates from different domains can be mapped to R .  

Conversion: Directly integrating these motifs will lead to a complex uncertain 

hypergraph and break the probability integrity. The probability integrity in our semantic 

environment means that the basic unit of the probability is a formula rather than a 

predicate.  

Therefore, we treat motifs as an entirety with a probability (the ratio of the number of 

true grounds to the number of all possible grounds), and convert the FOLs to SOLTs by 

replacing predicate names with variables.  

Connection: We embed new knowledge into existing knowledge by overlap the largest 

common part of them.  

Mutation: It will generate more and more hyperedges through the connection process 

while do not create any new structure of the knowledge. Thus, we have to mutate the 

remaining of knowledge and eliminate the hyperedges with low probability.  

An example of integration process is shown in Figure 1. Suppose we selected three 

FOLs 1 2 3, ,F F F . Each FOL can be viewed as a hypergraph shown in Figure 1(a), (b), (c). 

The hypergraph Fig.2(a) can be converted into a hyperedge Figure 1(d). Both of them 

have the same probability and are formed by couples of vertices transferred from 

predicate hyperedges in Figure 1(a). The label of the hyperedge Fig.1(d) is the Depth First 

Search(DFS) cannoail code. 

According to the conversion above, we can transfer the motifs from multi-domains to 

the relevant SOLT hyperedges. As shown in Fig.1(d) and Figure 1(e), they represent two 

SOLT hyperedges from the same domain IMDB. In order to integrate Figure 1(e) into 

Figure 1(e), we found the maximum common vertexes 1, 1, 2, 2P P P P  by gradually 

comparing their sub-hypergraphs' DFS cannoail codes that represent their relation of 

constants variable in motif and embed them into a new hypergraph Figure 1(g). Then we 

added the hyperedge Figure 1(f) converted from domain UW-CSE to hypergraph 

Fig.1.left(g) to generate a hypergraph Figure 1(h). 
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We adopt three mutation operations to create new knowledge. (1) Non-common part of 

hyperedge is deleted with a given probability dP . (2) Non-common part of hyperedge 

priority is embedded in the common part of hypergraph with a given probability cP . (3) If 

some vertices have the same SOL predicate type in the non-common part of hypergraph 

and are dissatisfied with operation (2), they can be randomly embedded in the non-

common part of hypergraph. An example of knowledge mutation is shown in Figure 2 It 

will generate two possible mutated uncertain hypergraph Figure 2(d) or Figure 2(e) by 

adding SOLT hyperedge Figure 2(b) to uncertain hypergraph Figure 2(a). 

Figure 1. An Example of Knowledge Integration of Three Motifs from Two 

Domains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An Example of Knowledge Mutation 
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5. Mining Frequent Sub-Hypergraph 

In this section, we propose a hypergraph DFS canonical coding scheme to avoid 

redundant search for candidate sub-hypergraphs. Then, we design an exact algorithm for 

computing MNI support for small instances and an approximation algorithm for 

efficiently computing the MNI support. 

 

5.1. Hypergraph DFS Cannoail Code 

One of the most promising ways to avoid a redundant search is to define a canonical 

description of a graph. However, a canonical form of ordinary graph cannot be applied to 

hypergraphs directly, because the way of depth-first search in hypergraphs is different 

from that in ordinary graphs. Therefore, we need to extend the ordinary graph canonical 

algorithm onto hypergraph. 

 

5.1.1. Hyperedge Set: After performing a depth-first search in a hypergraph, we 

construct a DFS hypergraph. It is clear that one hypergraph can have several different 

DFS hypergraphs with different starting points and growing edges. 

For example, hypergraphs in Fig.3(b)-(d) are isomorphic to that in Fig.3(a). We use 

subscripts to label this order according to their discovery time. If i j , then iv  is 

discovered before jv
. The thickened hyperedges in Fig.3(b)-(d) represent three different 

DFS hypergraphs for the hypergraph in Fig.3(a). 

Due to different ways of traversing the hypergraph, hyperedge set cannot be simply 

divided into forward ones and backward ones as ordinary graph. We classfiy hyperedge 

set into four types: a single hyperedge having only one vertex; a F&B hyperedge linking 

both the traversed vertices and the new vertices;  a forward hyperedge only connecting the 

new vertexes; a backward hyperedge only connecting the traversed vertices. 

For simplicity, 0{ , , , , , , }i j nv v v v 
 is an ordered set representing a hyperedge. 

We define , 0{ | , , , { , , , , , , }}f I i j nHE e i j i j e v v v v   
 as the forward edge set in 

I

HG , and , 0{ | , , , { , , , , , , }}b I i j nHE e i j i j e v v v v   
 as the backward edge set 

in
I

HG . The thickened black hyperedges in Fig.3(b)-2(d) represent the forward ones; the 

blue hyperedges represent the F&B; the dash hyperedges represent the backward; the red 

color represents the single. If any adjacent elements in the set satisfies i jv v
, it is 

forward, otherwise it is backward. If exist i  and j  satisfying k iv v  for every k i , 

k jv v
 for every k j , and i j , then it is F&B. If the set has only one vertex, it is 

single. 
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Figure 3. Depth-First Search Hypergraph and its 
Forward/Backward/F&B/Single  Hyperedge Set 

Table 1. Hypergraph DFS Code for Fig.3(b), (c), (d) 

H.N (b) (c) (d)   

0 ({0},{X},a) ({0,1,2},{Y,X,Z},b) ({0,1,2},{Z,X,W},h)   

1 ({0,1},{Y,X},c) ({0,3},{Y,X},c)  ({1,3},{X,X},i)   

2 ({1,2,3},{Y,X,Z},b) ({3},{X},a) ({3,4,5},{X,Y,Z},b)   

3 ({3,4,5},{Z,X,Y},b) ({0,4,5},{Y,W,X},e) ({4,6,1},{Y,W,X},e)   

4 ({4,6,5},{X, W,Y},g) ({5,1},{X,X},i) ({4,7},{Y,X},c)   

5 ({6,7,8},{W,Z,X},h) ({5,6,7},{X,Z,W},h) ({7},{X},a)   

6 ({8,2},{X,X},i) ({7,8,9},{X,X,Y},h)  ({5,8,9},{Z,Y,X},b)   

7 ({8,9,1},{X,W,Y},e) ({9},{Y},a) ({9,8,2},{X,Y,W},g)   

8 ({6,10,11},{W,X,Y},e)  ({9,2},{Y,Z},f) ({8,10,11},{Y,X,X},d)   

9 ({11},{Y},a) ({8,10,11},{X,X,Y},d) {11,12,2},{X,Y,W},e)   

10 ({11,3},{Y,Z},f) ({11,12,7},{Y,X,W},g)  ({12},{Y},a)   

11 ({10,12,5},{X,X,Y},d) ({12,11,2},{X,Y,Z},b) ({12,5},{Y,Z},f)   

 

We define four partial orders, ,f I  on ,f IHE , ,b I  on ,b IHE , ,s I  on ,s IHE  and 

,fb I  on ,fb IHE . Assume 
1 1 1 11 0{ , , , , , , }i j me v v v v , 

2 2 2 22 0{ , , , , , , }i j ne v v v v . 

Then, (1) 1 , 2 1 2 ,, ,s I s Ie e e e HE  , if and only if 
1 20 0 . (2) 1 , 2 1 2 ,, ,f I f Ie e e e HE  , 

if and only if 1 2max( ) max( )i i . (3) 1 , 2 1 2 ,, ,b I b Ie e e e HE  , if and only if either of 

the following holds: 1 2( ) ,0 min( , ), ,i t t m n k k for k t     . 1 2t t  

1 2( ) 0 ,ii k k for k m and n m    . (4) 1 , 2 1 2 ,, ,fb I fb Ie e e e HE   if and only if 

1 2max( ) max( )i i . 

Theorem 3. The relation ,HE I  defined by combining the partial orders (1-4) is a 

linear order on HE. (proof omitted) 
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5.2. Hypergraph DFS Code and Lexico Order 

 

5.1.1. Hyperedge Set: 

Definition 8. Given a DFS numbering for a hypergraph 
HG , a hyperedge 

sequence ( , ) ( )H iG I e  can be constructed based on , 1i HE I ie e  , where 

0, ,| | 1i HE   . ( , )HG I  is defined as a hypergraph DFS code. 

The Hypergraph DFS code for Fig.4 (b), (c), and (d) as shown in table 1. In order 

to construct a DFS lexicographic order of hypergraph, we denoted a hyperedge with 

label 
0( , , )nl v v  as 

0{ , , }nv v , vertices as labels 
0{ ( ), , ( )}nl v l v ; combined all of 

them into a 3-tuple: 
0 0 0({ , , },{ ( ), , ( )}, ( , , ))n n nv v l v l v l v v . 

Definition 9 (DFS LexicoHyperGraphic order) Define two linear orders 
VL

, 
EL

 

in the vertex label set (VL) and hyperedge label set (EL) respectively. The 

LexicoHyperGraphic combination of 
VL

, 
EL

 and ,HE I  is a linear order 
he

 on the 

set 
IHE VL EL  . DFS LexicoHyperGraphic order is a linear order defined as 

follows. If 0 1( , ) ( , , , )H mcode G I        and 

0 1( , ) ( , , , ), ,H ncode G I Z           then    if and only if either of the 

following is 

true. (1) ,0 min( , ), ,j j i he ii i m n for j i        (2) 0j j for k m   

and n m . 

Definition 10(Minimum DFS code) Given a hypergraph 

HG , ( ) { ( , ) |H HZ G code G I  , }HI I is DFS tree for G , based on 

DFSLexicoHyperGraphic order, the minimum one, min( ( ))HZ G , is called Minimum 

DFS code of 
HG . It is also the canonical label of 

HG . 

Theorem 4. Given two hypergraphs HG  and HG  , HG  is isomorphic to HG   if and 

only if min( ) min( )H HG G  . (proof omitted) 

 

5.2. Approximation Algorithm for Computing Expected Support 

Given a sub-hypergraph S , an uncertain hypergraph L

H , a certain hypergraph 
L

HG

 obtained by removing uncertainly all vertices and hyperedges from L

H . Let the 

set 1 2{ , , , }mED S S S   be all embeddings of S  in L

HG

. According to definition 

8, we must compute over all 
| |

2 H
E  implicated graphs of L

H  to get the result of 

( )MNIesup S . 

Due to the exponential time complexity. We proposed an approximation 

algorithm to efficiently compute ( )MNIesup S . 

The idea of the algorithm is similar with literature [6], but the difference is that it 

uses the fully polynomial randomized approximation scheme (FPRAS). The FPRAS 

is based on binary variable and Poisson experiment. However, according to the 

definition of ( )MNIesup S , the variable is not binary but ranges in [0,1,2, ,max( ))MNI . 

 

Algorithm 1: APPROX-MNI-SUP 

Input: 1 2, ,{ , , , }, ,L

H tS S S S     

Output: ( )MNIapproximate esup S  

1  ( ) 0MNIesup S   

2  1 2( ) nConstruct Disjunctive Normal Form DNF formula F C C C     
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3  2 2 2ln(2 / ) / 2N r t    

4  
1 1Pr( ) Pr( ) Pr( )nZ C C C     

5  
1
| |

t

ii
U SC


  

6  0, 0X Y   

7   for 1j   to N do 

8                  i is a random integer follow by probability  | | /iSC U  

9                 is a random truth assignment satisfying  
iC  

10         if 1idoesn t satisfy C for all j i     then 

11                ( ) Pr( )m MNI     

12                Y Y m   

13 end 

14 return  

 

Theorem 5. Suppose 
1, , mX X  is i.i.d random variables, 

satisfying {1,2, , }iX r  , Pr( )i kX k P  . Let 
1 1

, =E[ ] [ ]
m m

i ii i
X X X E X

 
   . 

If 2 2 2ln(2 / ) / 2n r t      , then
1

Pr(|1/ | )
m

ii
m X   


   , that is n  samples 

provided a ( , )   approximation. 

The analyzed of time complexity of APPROX-MNI-SUP as follow. Lines 7 to 13 

is loop for 2 2 2ln(2 / ) / 2N r t    times, we have to compute ( )MNI   for 2 2( )O k c  

times in line 11, where c  is the number of hyperedges in S . The expected time 

complexity of APPROX-MNI-SUP is 2 2( )O k c N . 

The complete algorithm MFS-UHG is similar with gSpan[10]. The distinctions 

are our support computing, the way of hypergraph DFS code growing and code 

pruning. Due to space limitation, we omit the describtion of MFS-UHG. Sub-

hypergraph isomorphism is an NP-complete problem. Therefore, the runtime of 

MFS-UHG should be exponential. If measured by the number of sub-hypergraph 

and hypergraph isomorphism tests, the runtime can be bounded by ( )O kF rF , 

where k  is the maximum number of duplicate codes of a frequent sub-hypergraph 

that grow from other minimum codes. F is number of frequent sub-hypergraphs. 

 

6. Knowledge Transfer 

The pivot knowledge mined and refined from source domains needs to be transferred 

for improving the target domain learning. A method of transfer knowledge is declarative 

bias. Davis and Domingos proposed to make use of declarative bias of Inductive Logic 

Programming (ILP) system to restrict the search space, further, refining the clauses picked 

by the greedy procedure to better match the target domain [2]. Similar to this system, 

there are two steps to transfer knowledge to the target domain.  

Second Order Template (SOT) generalization: We pick the refined pivot knowledge 

that has at least one true ground in the target domain, and replace all labels of pivot with 

the target predicate.  

Declarative bias: We try all combinations of sign flips of literals in a clause and 

greedily form a best MLN, which gives the highest WPLL. The MLN serves as the seed 

network during Markov logic structure learning (MSL) [11]. The beam search can 

greedily produce a candidate clause from the seed network to match the target domain 

better. This process can find more clauses in accordance with the target domain.  
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Theorem 6. Suppose the target domain has N  predicates, the thj  extension of a 

formula that composed by i  predicates has j

iD  type consistent mapping (if we do 

not consider the trim of equivalent modulo variable renaming during the search 

space generating). Suppose a SOT 
aF  has n  predicate variables. It FOL generation 

of the target domain is a set ( )G aF . The thi  of ( )G aF  has 
im  FOL predicates. Let A  be 

a set of SOT mining from source domains. If using strict declarative bias (only use 

the FOL generation from source domains as structure MLN of target domain) to 

transfer A  to a target domain $G$, then the formula search space reduction of target 

domain is 

Although the above analyses are under strict restrictions, this result reflects that 

these method of transfer learning can reduce the clause search space greatly. 

 

7. Experiment 

In this section, we carried out experiments to investigate whether our algorithm is 

better than other approaches. This experiments use four different datasets to evaluate the 

algorithms that are described in this paper. These datasets are publicly available at 

http://alchemy.cs. washington.edu. The details are shown in Table 2.  

Table 1. Data Set 

Data Set Consts Types Preds True Gliterals Total Gliterals 

IMDB 316 4 10 1540 32615   

UW-CSE 1323 9 15 2673 678899   

WebKB 1700 3 6 2065 688193   

Yeast 3079 5 10 42558 687422   

 

IMDB dataset. Mihalkova and Mooney created from the IMDB.com database, 

describes a movie domain [3]. It contains relationships among movies, actors and 

directors. For instance, WorkedIn(person,movie), Actor(person), etc. The data is split into 

five disjoint folds. UW-CSE dataset. Richardson and Domingos describes the 

Department of computer Science and Engineering at the University of Washington [12]. 

Its predicates describe students, faculty, and their relationships.the data is split into five 

folds. WebKB dataset. The dataset contains web pages from four universities labeled 

according to the entity they describe.The data from each university is treated as a separate 

fold. Yeast dataset. This dataset contains information on protein interactions and protein 

complex data. We used the version of the data from literature [2], which is split into four 

disjoint subsamples which are used as folds.  

In the first baseline, we applied TARMAR to multi-task transfer learning fasion 

directly. However, the TARMAR is designed to transfer knowledge from single domain 

to a target domain. Therefore, we combined the databases from different domains by 

hand, then transferred the integrated knowledge to target domain. The second baseline is 

the DTM algorithm. We chose ten best SOLTs from each domain transferred mutually. In 

order to increase the accuracy of transfer, the integrated forty SOLTs would be transferred 

into a target domain. The third baseline is the state-of-the-art MLN structure learning 

algorithm LSM [13].  

Each dataset was divided into four independent folds, on which we performed leave-

one-out cross-validation, training on every subset of three folds and testing on the fourth. 

The results represent averages over the four folds from each domain. Note that the 

| |
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original IMDB and UW-CSE dataset have five fold, as [14] we used only the first four 

folds in order to maintain consistency with our use of WebKB and Yeast. MSL structure 

refinement was time-limited to 48 hours for each trial. The LSM parameter values follow 

the set of [13]. The MSKI-MFS-UHG (MMU) parameter values were 0.1, 0.5.d cP P   

The probability (frequency of domain generalization possibility) on a hyperedge (SOT) is 

usually small. Thus, we set the support threshold with the form of percentile 0.2. For both 

datasets, we performed inference over the groundings of each predicate to compute their 

probabilities of being true, using the groundings of all other predicates as evidence. This 

accounts for the differences in our results from those reported by [15] and [13]. For 

evaluating the result of the contrast experiment, we use the two metrics employed by 

literature [11], the area under the precision-recall curve (AUC) and the conditional log-

likelihood (CLL).  

Table 2. Some Frequent SOTs 

r(x,y)r(y,x) s(y,z) s(z,x) r(z,y) t(x,z) 

r(x,y)r(x,z)s(x,x)t(x,y)p(x) 

r(x,y) r(z,y) s(x,z) s(x,x)t(x) 

r(x,y)r(z,y)s(x,x)s(x,z) 

 

In practically, we get average 27 hyperedges after MSKI from three domains in turn. 

Thus, the time consuming of our MMU is not too much. The following formulas are some 

pivot structure of knowledge mining from the integrated knowledge hypergraph. These 

SOT are break the length limitation of DTM, which have only two or three literals, and 

expanded seed network of DTM and candidate motifs of LSM.   

Table 3. Experimental Results Comparing MMU to MSL, LSM, TRMAR and 
DTM 

Algorithm AUC CLL 

I U Y W I U Y W 

MMU(LSM) 0.71 0.21 0.19 0.51 -0.05 -0.03 -0.33 -0.10 

MMU(MSL) 0.51 0.20 0.17 0.49 -0.11 -0.03 -0.34 -0.13 

DTM(C) 0.46 0.19 0.15 0.41 -0.15 -0.04 -0.39 -0.30 

DTM(I) - 0.15 0.13 0.42 - -0.05 -0.42 -0.42 

DTM(U) 0.39 - 0.14 0.43 -0.18 - -0.41 -0.61 

DTM(Y) 0.35 0.16 -  -0.24 -0.06 - -0.37 

DTM(W) 0.32 0.17 0.15 - -0.23 -0.04 -0.44 - 

TRAMAR(I) - 0.12 0.11 0.45 - -0.08 -0.45 -0.39 

TRAMAR(U) 0.64 - 0.10 0.41 0.09 - -0.47 -0.45 

TRAMAR(Y) 0.26 0.10 - 0.42 -0.6 0.09 - -0.37 

TRAMAR(W) 0.35 0.14 0.12 - -0.15 0.05 -0.42 - 

MSL 0.38 0.18 0.16 0.41 -0.17 -0.04 -0.39 -0.63 

LSM 0.71 0.21 0.17 0.55 -0.06 -0.03 -0.34 -0.05 

(The abbr: IMDB(I), UW-CSE(U), Yeast(Y), WebKB(W) ) 
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Table 4 reports the AUCs and CLLs, averaged over all fold. The abbr are IMDB(I), 

UW-CSE(U), Yeast(Y), WebKB(W). For instance, the DTM(I) means that we transfer the 

IMDB(I) to other domains by using algorithm DTM. Specially, DTM(C) means that we 

combine the SOT from other three domains and transfer them to a target domain.  

Clearly, most of transfer learning method yields better results than only structure 

learning MSL. Since the two search strategies of MSL are both incomplete sometimes 

(cannot traverse entire candidate clause search space) and limit by the maximum clause 

length (for reasons of tractability), the search result (FOLs) may not be the optimal 

solution in some complex domains. But transfer learning method can match the target 

domain better for it can use declarative bias to reach the search space that MSL may not 

searched.  

The DTM is slightly better than TRMAR in UW-CSE and Yeast datasets, since both 

DTM and TRMAR are using similar structure of formula learning form source domains. 

Despite the high time complexity, the CLLs of MMU(MSL) is close to the MMU (LSM) 

due to the expanded seed network. Our MMU (LSM) is better than other methods that 

include state-of-the-art MLN structure learning algorithm LSM and MLN-based transfer 

learning algorithm DTM and TRMAR. It is mainly because our method not only transfer 

the structure of formula learning form source domains but also transfer new structure of 

formulas through knowledge connection and mutation. In other words, our method can 

reach more important search space than other methods. 

 

8. Conclusion and Future Work 

We have shown that our MSKI can integrate, hybrid and create new knowledge, which 

is formalized into an uncertain hypergraph. Then find the frequency sub-hypergraph 

(pivot knowledge) of the large uncertain hypergraph by using hypergraph DFS code to 

deal with the hypergraph isomorphism and candidate sub-hypergraphs search space 

problems. Transfer these pivot knowledge with high priority can reduce the searching 

space of clause greatly. Our experiments indicate that our method outperforms state-of-

the-art single task MLN-based transfer learning. Much more remains to be explored, 

including expand our algorithm to directed uncertain hypergraph for more accuracy 

represent of SOLT, design more efficient knowledge integration methods by pruning 

some knowledge that has less correlation with target domain, and further applications. 
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