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Abstract 

Most time series big data is with noise and uncertain. To abstract the key information 

effectively and quickly, the estimation is one of the feasible methods for the uncertain big 

data. The Kalman filter with adaptive method by part of samples can give the 

high dimensional characteristics, reduce the computing cost and data uncertainty, but 

encounter the irregular estimation. The number of sample and the performance of the 

abstracted information have the tradeoff, which means we can use the suitable number of 

sample to abstract the key information of the series data. This paper discusses how to find 

the suitable sampling points for the time series data and the simulations show that the key 

dynamic information of time series big data can be guaranteed with the compression 

amount number of sample data.  

 
Keywords: Dynamic Guaranteed Cost compression; Time series big data; Kalman 

filter; estimation performance; estimation covariance 

 

1. Introduction 

  Among all the definitions offered for “big data”, one of the popular expressiones is 

that it means data that is too big, too fast, and too hard to process. Here, “too big” means 

that organizations increasingly must deal with petabyte-scale collections of data that come 

from click streams, transaction histories, sensors, and elsewhere [1, 2]. “Too fast” means 

that not only the data is big, but it must be processed quickly, for example, to perform 

fraud detection at a point of sale or decide which ad to show to a user on a webpage. In 

other words, most big data is with time series relationship [3, 4]. “Too hard” is a catchall 

for data that doesn’t fit neatly into one of existing processing tools or that needs some 

kind of analysis existing tools can’t readily provide.  

  As we know, one reason of “hard to process” is the data with the noise and 

uncertainty in the most time especially from sensors, except the aforementioned “big” , 

then the “fast” processing of the data becomes more difficult. For the general data mining 

or classification method, the uncertainty is one of the main difficulties to get the 

reasonable results. Therefore for the research work, the big data is a challenging issue in 

the data sequence analysis area. 

To get the useful information effectively and quickly is the key issue for the process of 

the big data. Especially in the field of cleaning noise as well as the compression of huge 

amounts time-series data. Take some Internet company for example, some of the 

operation and maintenance engineer tried to abstract part of monitoring data so as to 

detect abnormal points fast and accurately. Another application is the SF express 

company which forms a "multi-dynamic" type of Saving Algorithm to ensure both cost 

savings and timeliness when distribute express mails. [5] 

Mostly, the first method we can use may be to cut dawn the “big” data in to a “small” 

time interval, and the mean of the interval is calculated to get one point, then the data 

amount is cut down. For example, the data chain with 70 sampling points shown in Fig. 
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1(a), we can cut dawn it into the time interval with 5 sampling points, i.e., [1,2,3,4], 

[6,7,8,9,10,11], etc. In each interval, we calculate the mean of total 5 data and get the 

mean to replace the former five points, which is shown by the “star” in the Figure 1.To 

show clearly, Figure 1 (b) gives one of the time intervals from 26 to 30. The “star” in the 

28 with the mean value 3.27 is obtained and will use to replace the five data in the 

sampling point 26, 27, 28, 29, 30. That means the amount number of data is cut dawn to 

1/5. While from the Figure 1, we can see this method can’t remove the uncertainty of the 

time series data and the extracted data can’t describe the original data effectively. 

The estimation method is one of the effective methods for the uncertain and random 

signal [6, 7]. With the process model and measurement model, we can get the multi-state 

online estimation from the measurement by K to K+1 sampling. Almost all the classical 

estimation methods focus on the data with regular sampling time, which means the 

measurement is sampling and measured with the same interval, and the estimated state is 

obtained and more consistent with the true value. But for the series big data, the data 

chain is very long and the computing cost is too big if we use all the measurement data 

and it is really “hard” to get the “fast” process.  
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(a)              (b) 

Figure 1. The Mean Method for the Long Time Series Chain 
(a) The Data Chain with the Sampling Time from 0 to 70 
(b) The Data Chain with the Sampling Time from 26 to 30 

 Therefore the “fast” estimation method is deserved to be discussed. A method named 

as the irregular estimation method is given in Ref. [8] and Ref. [9] uses this method to 

implement the fast video tracking with less computing cost. Ref. [10] provides a solution 

with randomly selected measurement for the target tracking system, where the irregular 

sampling interval is transformed to a time-varying parameter by calculating the matrix 

exponential, and the dynamic parameter is estimated by the online estimated state with 

Yule-Walker method. 

 Ref. [11] discussed the convergence of the method in [10] and discussed relation of 

the sampling time, the number of the sampling and the performance of the estimation. The 

paper concluded that the reduction of sampling points results in the reduction of the 

measurement information, and causes the performance degrade.  

  By the Ref. [8-11], we can see the irregular estimation method with selected 

measurement has the following two advances: 1) the uncertainty is effectively reduced 

and the necessary information is extracted by the estimation processing. 2)  the 

calculation cost is cut down by selecting some of the measurement. While as the Ref. [11] 

had noted that the estimation performance will degrade. Thus the relationship should be 

found between the sampling points and the performance of system is very important, and 

it is necessary to find a tradeoff between the computing speed and the estimating 

performance. 

 Comparing the tracking problem [11-14], this paper discusses the guaranteed cost 

compression for the series big data problem. The dynamic model based on the Newton's 
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law of kinematics is widely used in the maneuvering target tracking, while whether it is 

adaptive to the other series data is need to research. This paper pushes the former works 

and uses the irregular estimation to the series big data, and studies the performance 

estimation including the calculation time and the estimation covariance, by which found a 

tradeoff between the computing speed and estimation performance.  

   This paper is organized as follows: Section 2 gives the models under irregular 

sampling. Section 3 gives the estimation method based on Kalman filter. The simulations 

and experiments are provided in section 4. Finally, concluding remarks are given in 

Section 5. 

 

2. The Adaptive Dynamic Model 

In generally, the dynamic model is used for the target tracking problem. x , x and x  

is described as the position, velocity, and acceleration of the target, respectively. 

Specifically, ( ) ( )x t a t . The state vector is always taken to be [ , , ]x x x x   along the 

generic direction, unless stated otherwise explicitly. As to the other time series data chain, 

we can regard x as the real value, and the velocity, and acceleration comparing the 

measurement with noise. 

Set i i k ith t t  , where it is the sampling time of current measurement, and i kt   is the 

sampling time of next measurement. We get the discrete-time equivalent as the following 

( ) ( ) ( ) ( )i k d i i d ix t A t x t w t                                         (1)  

where  
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where  ( ) ( ) ( ) ( )i i i ix t x t x t x t  ,the parameter  is so called the reciprocal of the 

maneuver frequency for the target tracking. While for other time series data,  should be 

decided by the changing characteristics of the data. Then we rewrite the discrete state–

space model of the tracking system as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i k d i i d i

i i i i

x t A t x t w t

z t H t x t v t

  

 
                                          (5) 

where  ( ) ( ) ( ) ( )x k x k x k x k  is the state of the system to be estimated and whose initial 
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mean and covariance are known as 0  x and
0P , ( )d iw t and ( )iv t are white noise with zero 

mean and independent of the initial state 
0x , ( )iz t is the measurement vector, ( )iH t is 

measurement matrices and ( )iv t is measurement noise with known variance R. We can see 

the same sampling interval is just a particular case of the random sampling problem. 

Therefore the model of the randomly sampling tracking is a general one.  

How to decide the maneuver frequency and the variance of the acceleration 2

a in (2) 

and (3) is called as modeling the dynamic characteristic. Unlike the Singer model and 

current model, we assume  and 2

a are not constant but variable and be expressed 

as
i and 2

 a i . From the processing model of (5), we have the discrete time equation of the 

acceleration as  

( ) ( ) ( )a

i k i i ia t a t w t                                       (6) 

where   
i ith

i e
 

                                                   (7) 

and
1( )a

iw t 
is a zero-mean white noise sequence with the variance  

2 2 2

  (1 )aw i a i i                                               (8) 

For a first-order stationary Markov process (6), we can get the parameter 
i  

and 2

awi by 

the statistics relation between the autocorrelation function (0)r , (1)r of ( )ia t  with by the 

Yule-Walker method [16]. Next we can get 
i  and 2

 a i  
by 

2
2

2 

ln
, 

1
awi i

a i i
ii

th
 

 


 


, then get the system parameters ( )d iA t and ( )d iQ t in process 

function (2)-(3).  

 

3. The Estimation Method for the Series Big Data  

 The following is the algorithm in the predictor–corrector form by Kalman filter, which 

is convenient for implementation: 

1) Initialization: 0i   

0 0 0
ˆ( | )x t t x , 0 0 0( | )P t t P , 0 , 

2

0a , 0 0 0 0( )r t x x  , 0 1 0( )r t x        (9) 

2) Recursion: :i i k   

a) We first create a uniform distribution random number Sa with the range from 

0 to 1, then the following algorithm is used to choose the next measurement to be 

processed. Set 0k   and a positive constant A, where (0,1)A . 

       If Sa A , then 1k k   

If Sa A , then the next measurement is picked with an integer k . 

b) System update: 
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and the variance of the ( )d iw t  as 
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c) State prediction: 

        ˆˆ ˆ( | ) ( ) ( | )i k i d i i ix t t A t x t t                               (13) 

ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( )T

i k i d i i i d i d iP t t A t P t t A t Q t                           (14) 

d) State updation: 
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e) Parameter Adaptation:  

When 0i K , the maneuver frequency i is set to 0 and the covariance of the noise 

2
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2
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then use Eq. (10) - (12) to get the system parameter ( )d iA t and ( )d iQ t . 
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Note1: (0)kr and (1)kr are the autocorrelation functions, which need to have statistical 

data. In the simulation, we set the two parameters change after 4-20 steps. Here we 

set
0 4k  . 

Based on the closed-loop estimation algorithm [10], we can see the parameter used to 

estimate state is an estimated one and similarly, the estimated states to calculate the 

parameters
i and

2

 a i have estimation errors, too. So it’s important to guarantee the 

convergence of the estimation of the states and parameters. From paper [9], we can see if 

one step predictive covariance is bounded, i.e.,
0( | 1) |P k k P   ,  ( 1| )P k k must be 

bounded with the fact
0

ˆ ( ) |dQ k Q . And ( 1)K k   must be a bounded matrix and 

ˆ( 1| 1)x k k  must be bounded, too. 

Note3: we set 2

 a a bounded value 10000 to avoid system divergence.   

Note4: We update the model parameters and  a when 0  only, because if 0  , we 

can’t get a reasonable
i by ln i k

i

i kth


 






 and
i is obtained as a complex number, which is an 

improper case for the problem discussed here.  

 

4. Simulation Results 

Based on the algorithm developed here we will analyze the relation between the 

estimation performance and the number of selected sampling points, and define the 

following Compression Sampling Rate (CSR)  

the number of selected sampling points

the  total number of the sample
CSR                      (19) 

We can see lower CSR means a higher compression rate. 

Two cases are discussed in the following: Case 1 is the classical tracking problem. At a 

simulation planar, a target with long trajectory is traced and tracked quickly with suitable 

number of the sampling data. Case 2 is to study the financial time series data by the 

developed estimation method, the fast estimation is executed and the data is compressed 

with the guaranteed cost.  

Case 1. 

The proposed algorithm is applied to a two dimensional planar tracking problem to 

verify the performance through a series of simulation runs. The measurement noises are 

generated as white Gaussian random numbers with variance R. We assume R is a given 

parameter, as 25R  .The initial state estimate 0x and covariance
0P are assumed to be 

 0 0 0 0 0 0 0x  and 
0 (10,10,10,10,10,10)P diag . The actual trajectory of 

the target (contents 3221points) is shown in Figure 2. Due to the measurement noise we 

can only get the trajectory sequence with noise shown in Figure 3, where the “star” is 

described the each sampling measurement, and the solid line is the actual trajectory. 
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Figure 2. The Actual Trajectory of               Figure 3. The Measurement of    
the Target                                                     the Target 
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  By changing the parameter of A we can get different CSR results. A is set between 0-1. 

Larger A means fewer points, while smaller A means more points. Based on the developed 

algorithm about guaranteed cost compression method, we give the estimation results 

about different A with 0.2, 0.4, 0.6, 0.8, i.e., CSR with 79.8%, 61.6%, 40.7%, 18.9% for a 

sample with 3221 points.   

  To better illustrate our results, we give the comparison of the real and the estimates 

trajectories. The estimations of horizontal and longitudinal axis are shown in Figure 4 and 

Figure 5, respectively. The location estimation errors show in Figure 6 and Figure 7, 

respectively. We can see when A is a less value, the covariance will be larger, while the 

CSR is higher and the selected sampling points is less. 
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Figure 6. Different CSR of the 
horizontal estimate error of 
trajectory with 3221 points 

Figure 7. Different CSR of the 
longitudinal estimate error of 

trajectory with 3221 points 

To illustrate how the compression sampling rate affects estimation performance, we 

choose the estimated covariance as a metric.  
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Table 1 gives some of the estimated covariance under different compression sampling 

rate (CSR) for different trajectory and Figure 8 gives the graph representation of Table 1.  
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Table 1. Relation between Compression Sampling Rate and Estimated 
Covariance 

Estimated 
Covariance 

CSR 

11.50% 20.80% 29.96% 39.50% 49.82% 59.10% 67.10% 70.91% 81.69% 87.10% 100% 

The 
trajectory    

with 
long 
chain 

681 points 55.050  49.927  30.120  30.957  33.280  23.611  22.316  24.000  20.882  18.388  16.474  

961 points 39.221  31.114  24.508  23.014  24.304  17.327  14.642  16.510  15.675  19.223  11.603  

1491 points 35.246  26.237  34.237  14.984  12.530  19.475  19.163  16.454  11.894  24.259  8.528  

1801 points 21.744  59.510  42.379  33.870  24.069  22.937  18.071  19.546  15.684  14.861  13.534  

2001 points 23.395  21.078  17.459  12.296  15.273  10.114  8.332  10.481  7.519  10.768  8.166  

2401 points 18.563  18.563  15.691  12.283  11.616  12.187  8.889  7.805  7.675  11.845  12.392  

2991 points 37.773  30.932  25.044  18.807  16.890  15.127  15.116  14.600  12.740  13.120  11.615  

3221 points 33.656  26.557  40.435  16.025  18.523  11.079  12.373  10.824  11.226  10.407  9.437  

3601 points 31.421  26.691  23.319  19.443  21.539  17.420  16.038  14.807  12.092  11.533  10.494  

4161 points 23.270  15.040  18.726  10.897  19.695  15.256  11.767  15.133  10.549  9.934  8.403  

4601 points 36.265  25.756  22.357  26.463  18.336  15.815  15.976  16.582  13.855  12.488  11.144  
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Figure 8. The Estimation Covariance of the Location of Sampling  
Points of different Trajectory with Long Chain 

Figure 8 also gives the mean value of estimation covariance of the different trajectory 

by the “circle”. We can see the sampling rate doesn’t have much impact on the estimated 

covariance especially larger than 59.10% CSR (this point is shown in the Figure 7 by the 

vertical dashed line), so we can conclude that there exist the tradeoff between the 

computing speed and the estimating performance when CSR is about 59.10%. The lower 

sampling rate means the less measured data is get, and the less useful information can be 

provided, but the estimation process is faster.   

Case2. 

To illustrate the developed method has the wide applicability, not only the classical 

tracking problem, but the other time series big data, we then use the developed method to 

extract the useful information of the finance forex data quickly. We use the opening price 

data of the AUD/CAD exchange rate from 0:00 August fifth 2013 to 16:25 August ninth 

2013, every five minutes comes one data (the data set contains 1350 in total). By the 

developed compression method, the estimation covariance of the forex data is shown in 
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Table 2 with the different CSR. Figure 9 gives the graph representation of the Table 2. 

We can see with the CSR from 11.19% to 100%, the different estimation covariance is 

obtained. Table 2 shows that CRS hasn’t developed the estimated covariance very much 

from 60%, which means if the estimation about 0.12 is enough, the computing can be cut 

down to 60% of the whole computing cost. 

We then use the calculating mean value method shown in Figure 1 to consider the 

mean value of every six data of the forex data and get the covariance 0.091. That means 

the compute cost decreased to about one sixth comparing the total computing cost (the 

CSR is about 16.66%). While we can see in the Table 2, with the fewer computing cost 

(for example CSR=11.19%), the developed method can get the covariance 0.040. 

Therefore in terms of the guaranteed cost compression, the developed method here can 

get the better estimation performance with lower computing cost.  

Table 2. Relation between Compression Sampling Rate and the Estimated 
Covariance of Forex Data 

 

CSR 100% 90.96% 79.03% 69.48% 60% 50.52% 41.10% 30.30% 20.20% 11.19% 

cov 0.009  0.010  0.011  0.011  0.012  0.014  0.015  0.018  0.024  0.040  
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Figure 9. The Estimation Covariance of AUD/CAD Exchange Rate 

5.  Conclusions 

The main contribution of this paper is to give a method to randomly select the next 

measurement and analysis how the randomly selected measurements and compression 

sampling rate will effect the estimation performance. We found that by the developed 

guaranteed cost compression method, only some measurements needed and computing cost 

is reduced greatly. But we can also see with the larger CSR lead to the worse estimation 

performance because the less useful information is used. Thus we conclude that a tradeoff 

between the computing speed and the estimating performance is existed. The future work 

will focus on how to find the tradeoff point based on the series big data, not only by the 

estimation covariance, but by the characteristic of the measurement. 

What we like to discuss further is that though the amount of the data used in this paper 

is not too “big”, only have several thousands of number. While the cut-down-amount is 

shown by percentage, which means if we can cut down the forex data with 1350 points to 

60%, we also can cut down the data amount to 60% when we process the “real” big data 

with petabyte-scale. 
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