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Abstract 

The electromagnetic anomaly observations before earthquake, have been confirmed by 

many cases of strong earthquakes. The analysis of earthquake magnetic anomaly is an 

effective approach for seismo-precursor detection. Traditional frequent mining methods 

for electromagnetic matrix datasets analysis often find the co-related items. However, 

these methods may miss the items which are differential co-related patters under different 

datasets. Mining these differential co-related patterns is more valuable for inferring 

potential knowledge. In this paper, we develop an algorithm, MSPattern, to mine maximal 

subspace differential co-expression patterns. MSPattern constructs a weighted undirected 

item-item relational graph firstly. Then all the maximal co-related patterns would be 

mined using item-growth method in above graph. MSPattern also utilizes several 

techniques for producing maximal patterns without candidate patterns maintenance. 

Evaluated by real electromagnetic matrix datasets and the gene expression datasets, the 

experimental results show our algorithm can find some potential knowledge for 

earthquake analysis, and MSPattern algorithm is more efficient than traditional ones. The 

performance of MSPattern is also evaluated by empirical p-value and gene ontology, the 

results show our algorithm can find statistical significant and biological differential co-

expression patterns. 

 

Keywords: subspace differential co-expression pattern; matrix; electromagnetic 

anomaly; gene expression 

 

1. Introduction 

The electromagnetic anomaly observations before earthquake, have been confirmed by 

many cases of strong earthquakes. The analysis of earthquake magnetic anomaly is an 

effective approach for seismo-precursor detection. Traditional point detection on the 

ground and near-earth electromagnetic detection onboard electromagnetic satellites are 

more used to observe electromagnetic anomaly. However, above two ways suffer from 

poor maneuverability and limited coverage. Recently, the aero electromagnetic 

observation system, onboard air travelling vehicles, are also used. They can improve the 

drawbacks of above two approaches, and is thus an irreplaceable constitution in a joint 

aeromagnetic field survey network. However, how to get prognostics information from 

avionics earthquake electromagnetic observation system is very important and difficult. 

Since the observed dataset is very huge, thus, data mining can be a powerful technique for 

discover anomalies associated with earthquakes. 
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The observed electromagnetic anomaly dataset can be denoted as a matrix, where the 

column represents the sampling time, the row represents the point on the ground. The 

values in the matrix are observed electromagnetic real-valued number. The mining 

observed electromagnetic anomaly matrix is similar to microarray analysis. Microarray is 

one of the most popular techniques for inferring biological knowledge. It is represented as 

a matrix where each cell represents the real expression value of one gene under one 

experimental condition. Using microarray data can reveal the structure of transcriptional 

gene regulation processes, which is called reverse engineering [1]. The purpose for gene 

expression data analysis is illustrated as follows [2]. (1) Identify genes whose expression 

levels reflect biological processes of interest (such as development of aging). (2) 

Determine how the expression of any particular gene might affect the expression of other 

genes, e.g. several co-expressed genes may be composed to one protein. (3) It can provide 

clues for the function of genes or proteins of unknown role. (4) It can help biologist 

finding potential transcription factors. Therefore, many data mining methods have been 

employed to mine biological information from microarray dataset.  

One of the widely used method to reveal the relationship among genes is clustering 

[1,3], which can identify genes whose expression levels are correlated across many 

conditions. However, using clustering analysis to infer regulatory modules or biological 

function has several inherent limitations [2]. Firstly, some genes that are biologically 

related often are not related in their expression profiles [4]. Secondly, one gene may 

participate in more than one biological process or function. Finally, the relationship 

between clusters cannot be discovered. Frequent pattern mining is another widely used to 

infer co-expression genes in microarray dataset. Traditional frequent pattern mining 

method [5] cannot exploit co-expressed genes efficiently. The reason is that microarray 

dataset has its own characteristic. (1) The number of rows (genes) in microarray dataset 

far exceeds the number of columns (samples). For example, AGEMAP [6] is a highly 

standardized study of gene expression changes as a function of age in mice. AGEMAP 

has a total of 16,896 cDNA clones from only 16 tissues samples from each mouse. (2) 

The items (genes) in one sample are unique. Therefore, [7,8] proposed to use sample 

enumeration method to exploit the co-expressed genes. Another data mining technology, 

association rule mining [9,10] is also used to mine the gene expression dataset. They used 

the association rules to discover the relationship among co-expressed genes. An 

association rule among genes has the form Geneset1=>Geneset2, where Geneset1 and 

Geneset2 are sets of genes, the Geneset1 expressed may result in the expression of 

Geneset2. However, [11] showed that only using association rule cannot infer the 

regulatory modules. Biclustering [12-14] is another method for gene expression data 

analysis, which is a methodology for gene expression data analysis, which can allow for 

mining co-expressed genes across a subset of experimental samples. 

However, most traditional analysis of gene expression data focuses on the discovery of 

genes with co-expression. These techniques may not detect differential co-expression 

(DC) patterns which show highly correlated expression in one dataset or biological state, 

but not in another. Mining DC patterns is more valuable for disease detection. 

Biologically speaking, the differential co-expression pattern may indicate the disruption 

of a regulatory mechanism possibly callused by the disregulation of a pathway [15]. 

Recently, discriminative patterns have been shown to be useful for classification 

analysis [16-19], which has the potential to be used for finding groups of genes that are 

individually not informative but are highly associated with a phenotype when considered 

as a group [20]. Differential co-expression has previously been studied primarily to find 

the patterns in different co-expression between two sample groups. [21] proposed to 

discover gene-pairs with sufficiently different correlations. Based on above methods, 

mining larger differential co-expression gene patterns has been studied [22]. However, 

due to the definition limitation, all of above studies measure differential co-expression of 

a set of genes over all the conditions in each of the two classes, which is a full-space DC 
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patterns [23]. As analyzed in [23], discovering subspace DC patterns is more valuable 

than traditional DC patterns. Therefore, [23] proposed a general algorithm, SDC, to mine 

subspace differential co-expression (SDC) patterns, which are co-expressed over a large 

percent of the conditions in one microarray dataset, but in a much smaller percent of 

conditions in the other microarray dataset. 
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Figure 1. The Overview of SDC Algorithm Mining Maximal SDC Patterns 

However, using SDC algorithm to mine subspace differential co-expression patterns 

presents the following drawbacks. Firstly, it adopts the Apriori framework to generate 

SDC patterns, which is very time-consuming. Secondly, according to the definition of 

SDC, SDC generates subspace differential co-expression patterns needing to mine twice. 

One is to mine SDC patterns which are co-expressed a large percent of the conditions in 

dataset A and less percent of conditions in dataset B. The other is to mine SDC patterns 

which are co-expressed a large percent of the conditions in dataset B and less percent of 

conditions in dataset A. The overview of SDC algorithm is shown in Fig. 1. Finally, in 

order to prune non-interesting patterns, all the candidate patterns are maintained in 

memory for checking, which must reduce the space usage.  
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Figure 2. The Process of MSPattern Discovering Maximal SDC Patterns in 
Two Microarray Datasets 

According to above analysis and in hopes of overcoming the limitations of traditional 

subspace differential co-expression pattern mining method, we propose an efficient 

mining algorithm, MSPattern, to infer Maximal Subspace differential co-related Pattern. 

Instead of using double checking method to generate SDC patterns, we propose to mine 

SDC patterns in a weighted undirected gene-gene relational graph. The process of 

MSPattern mining subspace differential patterns in two microarray datasets is illustrated 

in Fig. 2. Our MSPattern algorithm can be extended to discover maximal SDC patterns 

without candidate maintenance in multiple microarray datasets. The contributions of this 

paper are summarized as follows: 

 We propose to mine SDC patterns in the weighted undirected gene-gene relational 

graph, which can avoid traditional double times checking method.  

 Instead of using Apriori framework to mine SDC patterns, MSPattern is proposed 

by using depth-first and gene-growth method to generate SDC patterns efficiently. 



International Journal of Database Theory and Application  

Vol.8, No.3 (2015) 

 

 

380   Copyright ⓒ 2015 SERSC 

 Without using traditional candidate maintenance-and-test scheme to generate 

maximal patterns, MSPattern uses efficient pruning technique to generate maximal 

SDC patterns without candidate SDC patterns maintenance. 

 MSPattern algorithm can mine SDC patterns in multiple microarray datasets. 

 

2. Problem Definition 

The subspace differential co-expression algorithm is proposed to mine the microarray 

dataset, which is a matrix. The observed electromagnetic anomaly matrix data is similar to 

microarray data. The differences are the column represents the sampling time, the row 

represents the point on the ground. The values in the matrix are observed electromagnetic 

real-valued number. The mining observed electromagnetic anomaly matrix is similar to 

microarray analysis. The mining purpose of above datasets is to mine subspace 

differential co-expression patterns.  

The microarray is denoted as D C G  , where the column C represents the 

different experimental conditions, and the row G represents genes. The element 

value of 
ijD  is a real value which is the expression level of gene i under condition j. 

|D| is the total number of experimental conditions in D. Given two microarray 

datasets, A and B, where A D and B D . In this paper, each gene expression value 

in real microarray data would be discretized as one of the three values: 1, -1 and 0, 

which denotes up-expressed, down-expressed and non-expressed, respectively, as 

shown in Table 1. Therefore, the relations between gene X and gene Y can be 

respectively defined as shown in the following definition.  

Definition 1. The relations between genes X and Y are shown as follows. (1) If 

X=1 and Y=1, or X=-1 and Y=-1, X and Y are positive co-expression which is 

denoted as XY. (2) If X=1 and Y=-1, or X=-1 and Y=1, X and Y are negative co-

expression which is denoted as X-Y. (3) If X=0 or Y=0, X and Y are non-expressed. 

Therefore, any pair of genes in one pattern must be positive co-expression or 

negative co-expression. For clarity, the samples, under which the genes are co-

expressed, are claimed as co-expressed samples. In this paper, we mine subspace 

differential co-expression patterns between two microarray datasets by using the 

following definition [23]: 

Definition 2. Given one gene set P ( P G ), the support of subspace differential co-

expression pattern P is defined as follow: ,

( )( )
( ) max

| | | |i j

B i jA

p p P

N p pN P
SDC P

A B
  

 
, where 

NA(P) is the number of conditions under which P is co-expressed in A, NB(pipj) is the 

number of conditions under which the given 2-size subset pipj of P is co-expressed in B 

and the type of pipj’s co-expression in B is the same as in A. ,

( )
max

| |i j

B i j

p p P

N p p

B
  is the 

maximal percent of samples in dataset B on which a size-2 subset of P is co-expressed. 

Table 1. Microarray Dataset A 

 

 

 

 

 S1 S2 S3 S4 S5 

G1 1 -1 1 -1 0 

G2 1 -1 1 -1 -1 

G3 1 -1 1 -1 0 

G4 1 -1 1 -1 0 

G5 0 1 0 0 1 

G6 1 0 0 0 1 
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Table 2. Microarray dataset B 

 S1 S2 S3 S4 S5 

G1 0 0 0 1 1 

G2 0 1 1 0 1 

G3 0 0 0 0 1 

G4 1 1 -1 0 -1 

G5 1 1 -1 1 -1 

G6 1 1 -1 1 -1 

 

According to the above definition, mining all the SDC patterns in two microarray 

datasets needs to run procedure twice. One is to discover a set of genes which are co-

expressed on a much larger percent of conditions in dataset A compared to the co-

expression on any size-2 subset of P in dataset B. The other is to mine a set of genes 

which are co-expressed on a much larger percent of conditions in dataset B compared to 

the co-expression on any size-2 subset of P in dataset A. In this paper, a pattern is 

interesting if its subspace differential co-expression support is no less than a user-defined 

minimum threshold. Our goal is to mine maximal SDC patterns without candidate 

maintenance in two matrix datasets. The detail of how to produce such SDC patterns will 

be illustrated in the next section. 

 

3. Mining Maximal SDC Patterns 
 

3.1 Construct the Weighted Undirected Gene-gene Relational Graph 

Based on the definition of SDC, if one pattern satisfies the SDC support threshold, 

any subset of such pattern must satisfy the threshold. Therefore, SDC pattern has the 

anti-monotonicity property, which motivates us to generate maximal SDC pattern by 

depth-first method. However, SDC support is different from traditional support. It 

needs to compute the maximal percent of samples in the other dataset on which a 

size-2 subset of this pattern is co-expressed. If we adopt traditional depth-first 

method to mine maximal SDC patterns, it would be very time-consuming. Therefore, 

we first generate all the patterns which contain a pair of genes. And the co -

expressed samples in each dataset would be stored. The reason is that larger pa tterns 

can be generated by using the weighted value. The detail of mining procedure will 

be illustrated in the Section 3.2.  

In our method, we mine SDC patterns by using weighted undirected gene-gene 

relational graph (WUGraph), which is similar to the weighted directed range multigraph 

in [13,14]. The definition of WUGraph is shown as following: 

Definition 3. The weighted undirected gene-gene relational graph R={E, V, W}, each 

vertex Vi in the graph represent an unique gene, there exists an edge Eij between a pair of 

genes Vi and Vj only if both genes are co-expressed and weighted item set Wij of a pair of 

genes is the samples under which are co-expressed in both vertexes genes. For clarity, Wij 

is denoted as ViVj.Sample. 

When mining SDC pattern in two microarray datasets, SDC pattern may have two co-

expressed samples: one is a large percent of the samples in one microarray dataset, the 

other is a much smaller percent of samples in the other microarray dataset. For clarity, 

above samples are denoted as PSample and NSample, respectively. Therefore, all the co-

expressed samples would also be stored. For example, SDC(G1G2)=0.8-0.2=0.6, the co-

expressed samples of G1G2 between dataset A and dataset B are S1S2S3S4 and S5, which are 

denoted as G1G2.PSample= S1S2S3S4 and G1G2.NSample=S5; SDC(G4G5)=0.2-0.8=-0.6, 

G4G5.PSample=S1S2S3S5 and G4G5.NSample= S5. Such co-expressed samples of a pair of 

genes are denoted as PSample/NSample in the WUGraph.  
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According to the definition 2, the SDC value of a pair of genes may be positive or 

negative when mining two microarray datasets. The reason is that, if the SDC value 

is positive, P is co-expressed over a large percent of the conditions in dataset  A, but 

in a much smaller percent of conditions in dataset  B; on the contrary, if the SDC 

value is negative, P is co-expressed over a large percent of the conditions in dataset  

B, but in a much smaller percent of conditions in dataset  A. For clarity, the co-

expressed samples between a pair of genes in the WUGraph are denoted as 

“aPSample/NSample, bPSample/NSample”. For example, supposed the SDC support 

is 0.6, the WUGraph which is constructed from Table 1 and Table 2, is shown in Fig. 

3.  
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Figure 3. The Constructed WUGraph from Table 1 and Table 2 

3.2 Mining maximal SDC Patterns in Two Microarray Datasets 

In this section, we discuss mining maximal SDC patterns in two microarray 

datasets. We present two algorithms. The first algorithm, DEP, is rudimentary. The 

second algorithm, MSPattern, exploits several effective techniques to achieve 

efficient mining maximal SDC patterns without candidate maintenance.  

 

3.2.1 A Rudimentary Algorithm: In this section, we will introduce how DEP 

algorithm finding all the SDC patterns by using gene-growth method from above gene 

pairs. Before the algorithm is presented, let us analyze previous algorithm for mining SDC 

patterns. Traditional algorithm to mine SDC pattern needs to mine twice times. One is to 

generate patterns which are co-expressed over a large percent of the conditions in dataset 

A, but in a much smaller percent of conditions in dataset B. The other is to mine patterns 

is co-expressed over a large percent of the conditions in dataset B, but in a much smaller 

percent of conditions in dataset A. Such double checking method is less efficient and more 

time consuming. 

DEP algorithm exploits a fundamental different approach from previous works. It 

mines SDC patterns between two datasets simultaneously. The algorithm of DEP is 

outlined in Algorithm 1 and illustrated as follow. The process of DEP mining 

maximal SDC patterns in two datasets: Table 1 and Table 2, is illustrated in Fig. 4. 

It shows that DEP needs to produce all the SDC patterns firstly. Then the maximal 

ones would be output based on definition. 
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Figure 4. The Process of DEP Mining Maximal SDC Patterns 

Algorithm 1: DEP algorithm 

Input: Two microarray datasets: D1 and D2, the minimum subspace differential 

co-expression  threshold: min_sup, the minimum number of pattern: min_num, 

WUGraph: L, the current extending SDC pattern: ex_pattern, the complete set of all 

the SDC patterns: all_pattern. 

Output: The complete set of all the maximal subspace differential co-expression 

patterns. 

Initialization: ex_pattern=  , L=  , all_pattern=  ; Global g=  , Bool 

flag=TRUE; 

Method: DEP(D1, D2, min_sup, min_num, L)  

(1)if L= , 

(2)  Scan D1 and D2, store all the gene pairs whose SDC support are not less than 

min_sup; 

(3)  Construct the WUGraph: L, g is pointed to the first node of gene link; 

(4)end if 

(5)Call PatternMining(D1, D2, min_sup, min_num, L, ex_pattern, all_pattern); 

(6)Call FinalOut(all_pattern); 

(7)Exit; 

Procedure PatternMining(D1, D2, min_sup, min_num, L, ex_pattern, all_pattern) 

(8)if ex_pattern= , 

(9)  if g≠ , 

(10)   ex_pattern=g; 

(11)   g=g->next; 

(12) else 

(13)   exit; 

(14) end if 

(15)Finding all the candidate gene set C, which link to all the genes in ex_pattern; 

(16)for each candidate gene c in C, do 

(17)  for each gene p in ex_pattern, do 

(18)   if ex_pattern has one gene and 
|ex_pattern.PSample| |ex_pattern.NSample|

- >0
|C| |C| ,  

(19)      flag=TRUE; 

(20)   else if  

|ex_pattern.PSample| |ex_pattern.NSample|
- <0

|C| |C|  
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(21)      flag=FALSE; 

(22)    end if 

(23)    if ex_pattern has more than one gene and flag=TRUE and SDC(cp)>0, 

(24)      ex_pattern.PSample= 

cp.PSample∩ex_pattern.NSample; 

(25)      ex_pattern.NSample= 

max(ex_pattern.NSample, cp.NSample); 

(26)      if 

|ex_pattern.PSample| |ex_pattern.NSample|
-

|C| |C| < min_sup 

(27)        break; 

(28)      end if 

(29)    end if 

(30)    if ex_pattern has more than one gene and flag=FALSE and SDC(cp)<0, 

(31)      ex_pattern.NSample= 

cp.NSample∩ex_pattern.NSample; 

(32)      ex_pattern.PSample= 

max(ex_pattern.PSample, cp.PSample); 

(33)      if 

|ex_pattern.NSample| |ex_pattern.PSample|
-

|C| |C| < min_sup 

(34)       break; 

(35)      end if 

(36)    end if 

(37)  end for 

(38)   if p= and the number of genes in ex_pattern is not less than min_num, 

(39)    Store ex_pattern to all_pattern; 

(40)  end if 

(41)  Call PatternMining(D1, D2, min_sup, min_num, L, ex_pattern, all_pattern); 

(42)end for 

(43)return; 

Procedure FinalOutput(all_pattern) 

(44)for each SDC pattern pattern1 in all_pattern 

(45)  if there could not find another SDC pattern pattern2 which is the superset of 

pattern1, then 

(46)    Output(pattern1); 

(47)  end if 

(48)end for 

(49)return; 
 

3.2.2 The MSPattern Algorithm: In order to mine maximal SDC patterns efficiently, 

we develop MSPattern algorithm for finding all the maximal SDC patterns without 

candidate maintenance by using gene-growth method from the weighted undirected gene-

gene relational graph which is constructed from two microarray datasets. The general idea 

of gene-growth method is that, if one gene can be extended to the current extending 

pattern, all the new generated edges should be checked according to the SDC pattern 

definition. 

Definition 4. Supposed Gi…Gj be the current extending SDC pattern between 

dataset A and dataset B. If a gene Gm is a candidate gene, it should be satisfied one 

of the following formulas:  

(1) SDC(Gi…Gj)>0 and 
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As mentioned in Section 3.1, the SDC support of a pair of genes may be positive 

or negative, which illustrates mining SDC patterns from dataset A to B, or from 

dataset B to A, respectively. Therefore, if the SDC support of firstly extending gene 

pair is positive, the SDC support between candidate gene and any gene of the 

extending pattern should also be positive. If the SDC support of firstly extending 

gene pair is negative, the SDC support between candidate gene and any gene of the 

extending pattern should also be negative. 

Then we will introduce how MSPattern mines maximal SDC patterns without 

candidate maintenance. Traditional maximal or closed pattern mining without 

candidate maintenance method is backward checking. If there is existed another 

priori candidate gene (priori candidate gene was extended by the current extending 

pattern) which contains the information of the current extended candidate gene, the 

current extended gene would be pruned [14]. However, such pruning technique 

cannot be used for SDC pattern pruning. For example, supposed the current 

extending gene is G1, SDC support threshold is 0.4, and the candidate gene of G1 is 

G2(S1S2S3S4-S5), G3(S1S2S3S4-S5) and G4(S1S2S3S4-S5), where the notation “(Si…Sj-

Sp…Sq)” represents the PSample and NSample, respectively. G2 is the prior 

candidate gene of G3 and G3.PSample and G3.NSample are the subset of G2.PSamle 

and G2.NSample, respectively. According to traditional pruning technique, G 2 

should be pruned. However, G4 can be extended to G1G2 to generate 

G1G2G4(S1S2S3S4-S2S3S5) and G1G2G3G4 cannot be generated. The reason is that 

G2G4.NSample is S2S3S5, so SDC(G1G2G3G4)=0.8-0.6=0.2<0.4. Which means 

extending G1G2 cannot generate a SDC pattern that contains G1G3G4(S1S2S3S4-S5). 

Therefore, G2 should not be pruned. Therefore, traditional pruning technique should 

be changed for mining maximal SDC patterns according to the following lemma.  

Lemma 1. Given P be the current SDC pattern, M is the candidate set of P and N 

is the priori candidate set of P. Supposed the current candidate item is Mi, iM M , 

and Nj is a priori candidate item where jN N . If Mi should be pruned, it must 

satisfy all the following conditions. (1) PMi.PSample is the subset of PNj.PSample; 

(2) The number of PMiNj.NSample is not less than PNj.NSample; (3) PMiNj is SDC 

pattern; (4) There should exist one same priori candidate gene Nj, which lets all the 

candidate genes in M satisfy above three criteria. 

Lemma 1 states how to generate maximal SDC patterns without candidate 

maintenance. If one candidate gene is satisfied Lemma 1, other candidate genes 

must satisfy Lemma 1. For example, supposed G1G2G3 and G1G2G4 were generated. 

The current extending SDC pattern is G1 and its candidate genes are G3 and G4, the 

priori candidate gene is G2. G1G3.PSamle is S1S2S3S4 which is the subset of 

G1G2.PSample, and the number of G1G3.NSample is not less than G1G2.NSample. 

G1G4.PSample is the subset of G1G2.PSample, and the number of G1G4.NSample is 

not less than G1G2.NSample. According to Lemma 1, G1G3 and G1G2G4 can both be 

pruned. 
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However, the candidate cannot satisfy all the situations in Lemma 1, but there 

may be existed a priori candidate which can extend the current candidate. Therefore, 

the current candidate can be extended to the current extending SDC pattern, but it 

cannot be output. The following lemma can guarantee MSPattern not outputting 

non-maximal SDC patterns. 

Lemma 2. Given P be the current SDC pattern, M is the candidate set of P and N 

is the priori candidate set of P. Supposed the current candidate item is Mi, iM M , 

and Nj is a priori candidate item where
jN N . If Mi does not satisfy Lemma 1 and 

PMiNj is SDC pattern, Mi can be extended to P and PMi cannot be output. 

According to the above lemmas and definitions, MSPattern algorithm is designed 

for mining maximal SDC patterns without candidate SDC patterns maintenance in 

the memory. It adopts the gene-growth and depth-first technique to generate SDC 

patterns. Algorithm 2 illustrates the framework of our MSPattern algorithm. The 

giving example for mining maximal SDC patterns without candidate maintenance in 

two datasets in Table 1 and Table 2, is illustrated as shown in  Fig. 5. The minimum 

SDC support is 0.6. 

1. Algorithm 2: MSPattern algorithm 

2. Input: Two microarray datasets: D1 and D2, the minimum subspace differential co-

expression threshold: sup, the minimum number of pattern: num, WUGraph: L, the 

current extending SDC pattern: P, 

3. Output: The complete set of maximal SDC patterns. 

4. Initialization: P= , L= ; Global g= ; 

5. Method: MSPattern(D1, D2, sup, num, L, P).  

6. if L= , Scan D1 and D2 to construct the WUGraph: L, g is pointed to the first edge 

of L; 

7. endif 

8. if P= , 

9.  P=g; g=g->next; 

10. else 

11.  break; 

12. endif 

13. Finding all the candidate gene set C of P and the priori candidate gene set E of P; 

14. if C is Null and the number of genes in P is not less than num and does not satisfy 

Lemma 2, 

15. Output(P); 

16. endif 

17. for each candidate gene c in C, do 

18.   if c satisfies Lemma 1, 

19.   break; 

20.   endif 

21.   P.PSample=P.PSample∩c.PSample; 

22.   P.NSamples=max(P.NSample, c.NSample) 

23.   MSPattern(D1, D2, sup, num, L, P); 

24. endfor 

25. return; 
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Figure 5. The Process of MSPattern Mining Maximal SDC Patterns in Two 
Datasets 

4. Experimental Results 

In this section, several experiments would be presented to evaluate the efficiency and 

effectiveness of MSPattern algorithm to find maximal SDC patterns. All approaches are 

implemented in Visual C++ and evaluated on an Intel(R) Core(TM)2 2.53GHz Duo CPU 

and 4G RAM running Windows 7. 
 

4.1 The Performance of MSPattern Algorithm in the Observed Electromagnetic 

Anomaly Datasets 

In order to verify the effectiveness of the algorithm, we gathered geomagnetic three-

component datas on five fixed stations on the ground, that is Jiayuguan, Lanzhou, Qian 

tomb, Tianshui and Xichang from 00:00:00 on January 1, 2008 to 23:59:59 on November 

30, 2008; data of the sampling frequency is seconds. Due to the biggest change which is 

the impact from the earthquake to the earth's magnetic field is the biggest is the vertical 

component, therefore, this chapter uses MSPattern algorithm for mining and analyzing the 

vertical component of geomagnetic data from fixed stations in two adjacent periods. In 

order to reduce the difficulty of the analysis, we preprocess the original sampling data 

respectively to 5 minutes, calculation method is averaging all the second sample to 5 

minutes. At the same time, the raw data classified by month, every month of data 

contained in the above five fixed stations. 

Then we will present how to quantize the real-valued datasets. The original real-valued 

dataset is discretized by using k-means clustering algorithm [24], which is used to cluster 

the real expression values of each gene. And each cluster will be represented by a single 

value. In this paper, we use three values which are 1, -1 and 0, to represent the expression 

of each gene. Such three values mean the gene is positive expressed, negative expressed 

and non-expressed, respectively. In k-means clustering algorithm, we will choose three 

initial centers for each cluster. According to the procedure of k-means clustering, running 

it several times may produce different clusters. In order to escape of such effect, we run k-

means clustering algorithm n times for each gene and compute the Sum of Squared Error 

(SSE) for each result [24]. Then the best result for the discretization will be used. In this 

experiments, we used n=10. 

MSPattern algorithm can mine differential station patterns which meet differential 

support threshold in the fixed stations between two adjacent months geomagnetic 

datasets, as shown in table 3. Among them, the "JYG01" stands for Jiayuguan station, 

"LZ02" stands for Lanzhou station, "QL03" stands for the Qian tomb stations, "TS04" 

stands for Tianshui station, "XC05" stands for Xichang station; "+" stands for the 

differential relationship between stations is positive correlation, "-" stands for the 
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differential relationship between stations is negative correlation; the set of real value after 

the ":" is the differential support. 

Table 3. Differential Station Patterns 

Pre-month 
Post-
month 

Differential Station Patterns and Supports 

January February +TS04-XC05: 0.209583 

February January +JYG01+LZ02+QL03+TS04: 0.389434 

March February +JYG01+QL03+TS04+XC05: 0.350011 

April May +JYG01+QL03-TS04+XC05: 0.283152; +LZ02+TS04: 0.281076 

May April 
+JYG01+LZ02+QL03: 0.200968; +JYG01-XC05: 0.362472; +LZ02-XC05: 0.393372; 

+QL03-XC05: 0.390751 

June May 

+JYG01-LZ02: 0.351811; +JYG01+QL03+TS04: 0.248158; +JYG01+QL03-XC05: 
0.279036; +JYG01+TS04-XC05: 0.258424; +LZ02-QL03: 0.333479; +LZ02-TS04: 

0.328241; +LZ02+XC05: 0.417431; +LZ02-XC05: 0.246326; +QL03+TS04-XC05: 

0.230699 

July June +LZ02-QL03: 0.329062; +LZ02+XC05: 0.478780; +QL03-XC05: 0.351532 

August July 
+JYG01+LZ02+QL03: 0.220722; +JYG01+LZ02+XC05: 0.203707; 

+JYG01+QL03+XC05: 0.237703; +LZ02+QL03+XC05: 0.241047 

September August +JYG01+LZ02+QL03+TS04+XC05: 0.314089 

October September +JYG01+LZ02+QL03+TS04+XC05: 0.274419 

November October 
+JYG01+LZ02+QL03: 0.242563; +JYG01+LZ02+TS04: 0.255644; 

+JYG01+LZ02+XC05: 0.269637; +QL03+TS04: 0.223832; +TS04+XC05: 0.238138 
 

From the result of the table 2, in addition to the difference exists between January and 

February datasets, in the remaining months, the patterns of post month is differential to 

the previous month. There may be two reasons: (1) the influence of the sun to the earth's 

magnetic field; (2) there may be abnormal factors leading to continuous changes in the 

interior of the earth magnetic field. However, these two reasons will lead to different 

results of the change in magnetic field. If the changes in the earth's magnetic field is 

caused by sun, all stations will be affected, the value collected from the fixed stations are 

all high or low, the results of mining are shown in table 3 shown in the second row and 

the third from bottom line. If the reason which is leading to the change of the interior of 

the earth's magnetic field is some abnormal factors, influence of stations will be different, 

some stations will have big influences, and some stations will have small influences. The 

influence level depends on the size of the abnormal station distance from the source 

location, the closer distance, the greater the impact, the farther the distance, the smaller 

the impact. 

From the results of the differential station patters which are mined in different adjacent 

months from table 2, Wenchuan earthquake was happened in May, so we can mine more 

differential station patterns between May with April and May with June . But from the 

results of the mining before earthquake happened, there exist different size of differential 

patterns and these patterns are existed in regional stations, but not all. From the results of 

the Wenchuan earthquake in May, the differences in station patters may be caused by the 

earthquake preparation stage before May. And from the point of the position of the five 

stations, the distance between Xichang station and Wenchuan is the smallest, so the 

influence of Xichang station on Wenchuan is the largest. After the Wenchuan earthquake 

happened in May, therefore, the relationship between Xichang station with other stations 

is changed from positive correlation to the negative correlation. 

Major earthquake will impact the crustal structure greater, there usually be numerous 

aftershocks in 1 to 2 months after the earthquake, and the aftershocks will also affect the 

magnetic field, thus it resulted in the differential patterns between the regional stations in 

June, July and August. From October, November and December, we can see that all 

stations have differences which may be caused by a geomagnetic variation due to the sun, 

so it belongs to the normal phenomenon. Although we don’t mine the patterns in all 

stations in October and November, but there is no negative correlation in the patterns, so 

it may also belong to the differences caused by the sun. 
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From the results of the analysis above, using method of mining all the differential 

station patterns before earthquake can predict near which station the earthquake will 

happen. The prediction accuracy depends on the number of stations, consistency and the 

geomagnetic data of stations in long period of time. 
 

4.2 Evaluating of MSPattern Algorithm in Microarray Datasets 

The famous mice aging gene expression dataset, AGEMAP [6], would be used for our 

test dataset. AGEMAP is a database which catalogs changes in gene expression as a 

function of age in mice. It includes expression changes for 8,932 genes and a number of 

16,896 cDNA clones in 16 tissues as a function of age. For each tissue, there are five male 

and five female mice aged 1, 6, 16, 24 month. In this paper, we only analyze three tissues: 

Hippocampus, Heart and Gonads. Our goal is to find potential co-expressed genes which 

are age-related. Therefore, the original mice aging microarray dataset is classified into 

four classes of aging stage. The first class is an early stage of mice aging (denoted as class 

C1), 28 experimental conditions belong to this class. The second class is a developing 

stage of mice aging (class C2), which has 57 experimental conditions. The third class is 

also one later developing stage of mice aging (class C3), 60 experimental conditions 

belong to this class. The last class is advanced stage of mice aging (class C4), which has 

52 experimental conditions. The quantization of the expression values method is same to 

4.1. 

In this section, the performance of MSPattern algorithm is compared with the general 

SDC pattern mining algorithm SDC and DEP. SDC is implemented according to the 

description in [23]. It adopts a width-first method to produce all the SDC patterns. DEP 

can be considered as the simple version of MSPattern to find maximal SDC patterns. It 

uses the concept of MSPattern, but it does not include the Lemma 1 to prune the non-

maximal SDC patterns. Then the maximal SDC patterns generated by MSPattern without 

pruning method would be output based on the maximal SDC pattern definition.  

Then we evaluate above three algorithms on three mice aging periods, which are the 

period between class C1 and class C2, the period between C2 and C3, and the period 

between C3 and C4, respectively. Our goal is to identify the potential age-related genes 

which are subspace differential co-expression between two classes. For clarity, above 

three mice aging period microarray datasets are denoted as Aging 1, Aging 2 and Aging 3, 

respectively. Since all the cDNA clones in AGEMAP cannot be potential age-related, [6] 

collected a list of 305 cDNA clones that are age-related in multiple mouse tissues. In the 

following experiments, we analyze the subspace differential co-expression patterns 

discovered on these 305 cDNA clones in each aging period. 

We now study the effect of SDC support in the SDC, DEP and MSPattern on the 

mining effectiveness and efficiency. Fig. 6 to Fig. 8 show runtime of each above 

algorithm with respect to various SDC supports in each Aging period. It is also shown 

almost the same ordering of the algorithms for runtime at different SDC support 

thresholds in different aging periods, “MSPattern<DEP<SDC”. MSPattern is more than 

10 times faster than SDC at each SDC support threshold in each aging period. Since SDC 

algorithm adopts the Aprioir-like concept to produce SDC patterns by using width-first 

procedure, it results in the lowest efficiency. MSPattern is also faster than DEP at almost 

all the SDC support thresholds, which illustrates the pruning technique based on Lemma 1 

can prune non-maximal patterns and improve the mining efficiency. Therefore, 

MSPattern can find less redundant maximal SDC patterns with more efficiency. However, 

when SDC support is 0.02 in aging 1, MSPattern (runtime= 2471.625s) is more than DEP 

(runtime= 2073.088s). The reason is that the SDC patterns which were produced by DEP 

are almost maximal and have less redundant subset patterns. Therefore, using Lemma 1 to 

check is time consuming and pruned less redundant patterns. 

Since biological data are often noisy, a relatively high SDC support value would result 

in more reliable SDC patterns. From Fig. 9, we can see, in each Aging period, when the 
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SDC support increases, the number of SDC patterns decreases dramatically and the 

runtime also decreases accordingly. It is also shown the same ordering of the total SDC 

patterns at different SDC support thresholds, “Aging 3<Aging 2<Aging 1”. Therefore, the 

earlier aging period may result in the more potential age-related patterns. 

 

Figure 6. The Runtime of Three Algorithms in Aging 1 

 

Figure 7. The Runtime of Three Algorithms in Aging 2 

 

Figure 8. The Runtime of Three Algorithms in Aging 3 

 

Figure 9. The Number of Maximal SDC Patterns in each Aging Period 
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5. Conclusion 

In this paper, we propose an algorithm, MSPattern, to mine maximal subspace 

differential co-expression patterns in two matrix datasets efficiently. MSPattern can find 

maximal SDC patterns without candidate patterns maintenance in memory. Compared 

with the existing SDC pattern mining algorithm, it is shown that our algorithm is more 

efficiently. The analysis of earthquake magnetic anomaly is an effective approach for 

seismo-precursor detection. However, traditional point detection on the ground and near-

earth electromagnetic detection onboard electromagnetic satellites suffer from poor 

maneuverability and limited coverage. Using aero electromagnetic observation system, 

onboard air travelling vehicles, can improve the drawbacks of above two approaches, and 

is thus an irreplaceable constitution in a joint aeromagnetic field survey network. 

However, how to get prognostics information from avionics earthquake electromagnetic 

observation system is very important and difficult. Our future research is to use data 

mining to discover anomalies associated with earthquakes in the aero electromagnetic 

observation system. 
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