
International Journal of Database Theory and Application

Vol.8, No.3 (2015), pp.297-312

http://dx.doi.org/10.14257/ijdta.2015.8.3.26

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

A Comparative Investigation on Implementation of RESTful

versus SOAP based Web Services

Abhijit Bora and Tulshi Bezboruah

Department of Electronics and Communication Technology, Gauhati University,

Guwahati-781014 Assam, India

Tel: +91-361-2671262(O); Fax: +91-361-2700311(O);

abhijit.bora0099@gmail.com / zbt_gu@yahoo.co.in

Abstract

Investigations on web service performance metric based on RESTful architecture

against conventional SOAP based architecture has importance in perspective of

developers as well as for end users. As such we have developed and hosted two web

services, one based on SOAP and the other based on RESTful architecture. Both the

services are based on JAVA technology implemented with apache tomcat web server and

MySQL as backend database server. A comparative evaluation of both the web services is

carried out to study its scalability, efficiency and feasibility. Load and stress testing tool

Mercury Load Runner is used to deploy both the services for testing the architecture. The

statistical analysis on recorded performance metrics is carried out to study the

effectiveness of the services. This paper presents in details the comparative analysis of the

experimental results on performance aspects of the services.

Keywords: RESTful, SOAP, Web Service, Java, RDBMS

1. Introduction

The Web Service (WS) is one of the popular hypes in the software industry today. It

provides interoperability and unlimited connection with new business opportunities. The

software interoperability concept is not new. There have been a number of

implementations that give solutions for this concept. The Remote Procedure Call (RPC),

Open System Interconnection (OSI), Common Object Request Broker Architecture

(CORBA), Remote Method Invocation (RMI) is among some of them.

The WS is a software application that can be accessed over the network [1]. Business

to Business (B2B) integration by aggregating WSs enhancedit to a hierarchical WS

communications [2]. Every WS may play the role of a broker, and a service provider [3]

that can be called by a client application.

A WS provides flexibility for establishing communication between geographically

separated systems or devices over the internet. Millions of WS are published across the

internet which can be used, according to the requirements of the consumers. These

services may be available as Web Service Description Language (WSDL) files or

sometimes the services might be available directly. The growing popularity of WS can be

ascribed to a movement towards Service-Oriented Architecture (SOA).

While considering WS for implementation, many factors are to be analyzed. The

involved communities and industrial parties are concerned about the performance aspects.

When creating WS there was a trade off where performance was sacrificed for simplicity

and flexibility. The performance part will have a great impact as it directly reflects the

costly investments in new hardware. In this paper we focus on performance aspects of

SOAP based and RESTful WS, as these two WSs are popularly used as online service

between consumers and service providers.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

298 Copyright ⓒ 2015 SERSC

1.1. RESTful WS

Representational State Transfer (REST) [4] is software application architecture where

functionality and data resources are accessed using Uniform Resource Identifiers (URIs).

It is client-server architecture, used as a stateless communication protocol, such as

Hypertext Transfer Protocol (HTTP) to exchange resources through standardized

interface. These principles make REST applications to be light weighted and gain high

performance. The WS built upon the REST architecture is called RESTful WS. They use

the HTTP methods for functional operations with available resources. Systems that follow

the REST principles are often called ‘‘RESTful’’ [5]. The key principles of REST

architecture include the following notions:

 (a) Application state and functionality are abstracted into resources. Any information,

which is offered by the system and can be named, is possible to be represented by a

‘‘resource’’. Any concept that needs to be addressed, referenced and accessed must fit

within the definition of a resource [6].

(b) Resources must be uniquely identified and addressable using a universal syntax,

such as a Universal Resource Identifier (URI) used in HTTP [6].

(c) A uniform interface is shared by all resources for the transfer of state between client

and the server. The set of operations, as well as supported content types, need to be

well defined. At the same time, code on demand (such as JavaScript) could be

optionally supported [6].

(d) The communication protocol between the resource data provider and

consumer has to be: client-server, stateless, layered and cache enable.

When the REST architectural principles are applied, as a whole, they provide

enhanced scalability, generality of interfaces, independent deployment, reduced

interaction latency and they can encapsulate legacy systems . With the advantages

and characters of the REST, REST WS are broadly applied in system integration in most

of the research fields [6].

As resources are marked with global URIs, they are accessible once they are exposed

on the Web rather than a separate resource discovery and location mechanism [10].

The requests and responses for RESTful WSs are typically HTTP messages that are far

less in size compared to SOAP messages. Since in REST architecture a resource can be

directly identified by its URI, therefore extensive SOAP parsing can be avoided that is

required for invoking a service [13].

Each request includes all the necessary information for the servers to understand, so

each transaction is independent and unrelated to previous ones. Servers do not need to

keep states between requests [14].

1.2. SOAP- based WS

The main platforms of Simple Object Access Protocol (SOAP) based WS are SOAP and

WSDL. The SOAP is an Extensible Markup Language (XML) based protocol that allows

exchanging information using HTTP. This protocol helps in accessing a WS and provides

the flexibility in establishing communication between two software, even they are running

on different operating system (OS) with different techniques. It has specifications for

stateful implementation. It uses XML for its message format, and relies on HTTP and

Simple Mail Transfer Protocol (SMTP), for transmission and message negotiation. SOAP

provides messaging framework upon which WS can be built [7].

The WSDL is based on XML and is used to describe and locate the WS. The XML

document describes its service and the method names to be invoked. A WSDL document

uses a container for data type definitions for the WS such as <types>. A typed definition

of the data being communicated is specified through <message> tag. A set of operations

supported by endpoints is specified by <portType> tag; A WSDL document can also

manage service element to group together several WS definition in one single WSDL

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 299

document [8].

SOAP forms the foundation layer of WS protocol stack thereby enhances interoperability

with applications running on different operating systems and programming languages.

This protocol consists of an envelope, which defines what to be included in the message

and how this massage should be processed; a set of encoding rules, and a convention for

representing procedure calls and responses [7].

However, it is time-consuming to serialize and de-serialize native languages into SOAP

messages. Furthermore, the WS protocol stack is also complex so that only programmers

can understand how to deploy a service [9, 11].

Most of the information in the SOAP and WSDL is redundant and meaningless. It

increases the network communication volume and server-side payload and it is difficult to

support the proxy and cache servers, because clients cannot identify the useful

information straightforwardly from the URI and HTTP [9, 10].

Figures 1(a)-(b) show the different steps of routing for request and response of a sample

SOAP based WS compared to RESTful WS.

Figure 1(a). SOAP based WS
Request Response Routing

Figure 1(b).RESTful WS Request
Response Routing

1.3. Related Work

In the year 2005, M. B. Juric, I. Rozman, B. Brumen, M. Hericko, M. Colnaric [15]

presented a study on functional and performance related differences between WS and

RMI with WS-security variants. They conducted the test using two identical computers

with operating system Whitebox Enterprise Linux 3.0 and Windows XP Professional SP2.

The hardware configuration was Intel Pentium 4 processors 2.4 GHz, 512 RAM with Java

Web Services Developer Pack version 1.4, Java 2 Platform Standard Edition and Apache

Tomcat 5.0 as web server.

In the year 2006, A. E. Saddik [16] presented a methodology for testing the scalability

and performance of a specific SOAP based WS application and analyzed the results of the

testing. He conducted the test by deploying the service with hardware specification having

Intel Pentium 4 Central Processing Unit (CPU) 2.20 GHz, 512 RAM, 80 GB HD, Sun

ONE application Server 7, MySQL Server 3.23, 100Mbps switch and Digital Subscriber

Line (DSL) modem. He monitored number of successful response, number of error

responses, total number of session and percentage of error response for a load level of 10,

100, 500 and 1000 agents.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

300 Copyright ⓒ 2015 SERSC

In the year 2009, J.Meng, S. Mei, Z. Yan [9] presented an analysis about traditional WS

and RESTful WS and designed a testing scheme to test and analyze the performance. A

traditional WS is developed using Microsoft Visual Studio.Net 2003 on IIS5.1 in C#,

while the other using MyEclipse on Apache Tomcat 5.0 in JAVA1.6. RESTful WS is

implemented on Rails2.2 in Ruby using the IDE of RadRails. They monitored the average

response time of the WS and the size of the response packet of the server. They process

the same business logic and share the same data source.

In the year 2011, BipinUpadhyaya, Ying Zou, Hua Xiao, Joanna Ng, Alex Lau [17]

presented an approach to migrate SOAP-based services to RESTful services and

measured the effectiveness of the approach through a case study.

In the year 2012, KamalEldin Mohamed, DumindaWijesekera[18] presented an

evaluation and a comparative analysis on average response time for testing RESTful and

SOAP-based WS on mobile devices.

In the year 2013, Ricardo Ramos de Oliveira, Robson Vinícius Vieira Sanchez,

JúlioCezar Estrella and RenataPontin de Mattos Fortes and ValérioBrusamolin [19]

described an experiment to compare RESTful and SOAP-WSDL WS in terms of specific

modifiability sub-characteristics and time spent on WS maintenance. Descriptive

statistical analysis was used to evaluate the maintainability of the services in server and

client side.

In the year 2013,P.Markey, G. Clynch [20], presented results of performance analysis that

was conducted for SOAP and RESTful approaches. The performance metric measured

was network weight i.e. the amount of network traffic that resulted from an interaction

between a client and the WS. The WS were implemented using Window Communication

Foundation (WCF) and the Web Application Programming Interface (API) for the .Net

platform in C#, and Internet Information Services 7 (IIS7). The server is also running an

instance of SQL Server 2008 R2.

2. Description of Objective and the Methodology of Investigations

 To compare the performance aspects of SOAP based WS with its counterpart RESTful

WS and to find out the factors that impact the performances is the main objective of the

investigations. To achieve the objective, we have developed, implemented and tested two

prototype WSs, one based on SOAP and the other based on RESTful architecture

considering pharmacological data [21] and analyzed metrics like performance, scalability,

load and stability of the system. MySQL database engine, apache tomcat web server and

Java programming language was used to develop and implement both the WS.The dataset

for the service is 10000. The WS has been deployed on Mercury LoadRunner for

performance and load testing. The data arrangement and referential integrity in between

diseases and clinical remarks is prepared. The architecture and algorithms are developed

for both the WSs. The testing is performed up to 1500 virtual users and responses are

recorded accordingly. Statistical evaluation has been performed on performance metrics

of WS to study different aspects of the service.

3. Software and Hardware Environment

The open source Java language is the general choice for developing WS. Its strong

security mechanism, concurrency control and wide spread deployment in both client and

servers makes it relatively easy to create WS [22, 23, 24]. The WS application can be

developed using Java programming language. The software specifications used in the

work are: (a) Integrated Development Environment (IDE) platform: NetBeans version

7.0, (b) web browser: Google Chrome, (c) web server: Apache Tomcat version 7, (d) the

database engine: MySQL version 5.0. The client and the WS have been hosted on server

with 64-bit Windows Server 2008 R2 Standard operating system (OS). The hardware

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 301

specifications are: Intel® Xeon® CPU E5620 @ 2.40 GHz; 8 GB RAM and 600 GB Hard

disk.

3.1. The Architecture

The architecture for the SOAP based WS is presented and discussed elsewhere [25]. The

architecture for the RESTful WS is shown in Figure 2. This architecture represents the

following services.

 3.1.1. The Client Spplication of the Service:The client as a consumer application of

the WS contains the user interface (UI) for capturing the end user data. It captures and

sends the data to RESTful WS.

 3.1.2. The RESTful WS:This service contains the necessary BL operations related to

the data processing. The RESTful WS manages: (i) the data mapping, (ii) result set

generation, (iii) insertion and (iv) fetching of data from the database. It captures the

required parameter from the client service and executes the SQL statement for database

operation. The RESTful WS holds the database queries for performing necessary

operation.

4. Design Aspects of the Service

The prototype research WS is based on Java technique suitable for rural and

urban clinical health services. We call it prototype research medical web service

(MedWS). The clinical details of diseases have been taken into account such as: (a)

the medicine name, (b) manufacturing company name, (c) the component category

of medicine, and (d) the tablet, syrup, injection, and lotion package information etc.

Figure 2.Architecture of the Proposed Medical WS based on
RESTfulArchitecture

We merge them all to prepare a clinical advice for hosting MedWS. The service

follows a pharmacological book published in India as sample data [21]. When users

access the URL of the client application, the HTML form will open. This interface allows

entering a particular disease name in the textbox. The response page will appear by

fetching the records available in the database.

4.1 The Algorithm

We have developed the algorithms for both the services. The algorithm for developing the

RESTful WS and SOAP based WS is given below:

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

302 Copyright ⓒ 2015 SERSC

Algorithm 1: Algorithm for Developing the RESTful WS

Step Instruction

 1 Begin

 2 Establish root resource class

 3 Capture parameter received from client

 4 Establish a method to process GET request from client

 5 Specify the MIME media types of representations

 6 Establish database connectivity using JAVA bean

 7 Execute a Structured Query Language (SQL) SELECT statement using the passed

 parameter

 8 Get the resultset

 9 If size of resultset greater than 0

 10 Go to step 12

 11 Else go to step 15

 12 Arrange the resultset

 13 Assign the resultset to a response object

 14 If Success go to step 16

 15 Create an empty response object

 16 Return the response to the client

 17 End

Algorithm 2: Algorithm for Developing the SOAP based WS

Step Instructions

 1 Begin

 2 Create a WS operation

 3 If success go to step 5

 4 Else go to step 2

 5 Capture parameter received from client

 6 Establish database connectivity using JAVA bean

 7 Pass parameter to specific method

 8 Execute a SQL SELECT statement using the parameter

 9 Get the resultset

 10 If size of resultset greater than 0

 11 Go to step 13

 12 Else go to step 16

 13 Arrange the resultset

 14 Assign the resultset to a response object

 15 If Success go to step 17

 16 Create an empty response object

 17 Return the response object

 18 End

5. Testing of the Services

Both the servicesare deployed on Mercury Load Runner version 8.1 for testing. It helps to

predict the systems’ performance and behaviors. It stresses the service by creating virtual

users, recording the systems’ performance metrics and then analyzes it [26]. During the

experiments, we set approximately 30sec as users think time to perform the transaction

and assigned 5min as steady-state period for all the tests. The stress level is gradually

varied to saturate the server. We follow the various test steps presented elsewhere [23].

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 303

The SOAP based WS invocation test case is given elsewhere [25]. The test case for

RESTful WS is shown in Table 1 below.

5.1 Testing Benchmark

The settings of various parameters during testing procedure includes: (i) the Virtual User

(VU)-stress margin, (ii) the user think time, and (iii) the network speed. The VU-stress

margin defines the number of accessing users of the service, the user think time specifies

the time that an end user will take in thinking before requesting the service, and the

network speed states the network bandwidth (BW) that the VU will use.

5.1.1 Scalability Testing: It describes a WS’s capability to serve clients under varying

level of load [27]. To measure scalability, we can run a test script for sending request to

MedWS and can measure their response times. It measures when valid test clients are

completed correctly.

5.1.2 Performance Testing: It is a twin to scalability that evaluates the WS’s ability to

accurately deliver functions [16]. During this test, we measured the ability of the services

on how well it performs under different load conditions with variable amount of stress

level [28].

5.2 Test Responses of the Service

The recorded performance attribute of our test include: (a) the hits/sec, (b) the throughput,

(c) the response time and (d) the number of VU that performed successfultransaction.

Table1.Test Case for RESTful WS Invocation

Step Actions to be performed Expected outcome

1 Open browser and access the RESTful

WS

URLhttp://server1/spr0Client/index.jsp

Client’s home page containing a

HTML form is displayed

2 Enter disease name such as “Cold” and

click “Submit” button

Send the data to RESTful WS

resource for necessary BL

invocation. Prepare the clinical

result set.

3 Response page is generated

The web page

http://server1/spr0Client

/result.jspis generated. It

contains a tabular format of

clinical information.

5.3 Analysis of Experimental Data and Evaluation

The testing has been carried out for 100, 150, 200, 250, 350, 500, 600, 700, 800, 1000,

1200, 1500 VUs with 1 Gbps BW. The load with ramp up schedule is set as 1 VU

entering into the script after every 15s. The test duration of 5min is set after ramped up of

all VUs to record steady-state measurement. The VUs ramp down simultaneously after

the completion of the steady-state. We deploy both the WS on Mercury Load Runner with

1000, 1200 and 1500 VUs to observe the connection refusal. The experimental results are

shown in Table 2.The sample responses of performance test for 350 VUs are shown in

Figures 3-4.

http://server1/spr0Client/index.jsp

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

304 Copyright ⓒ 2015 SERSC

Figure3 depicts the response time of SOAP based WS. It acquired maximum at 311 VUs

and then the response time falls down gradually. The average response time of 350 VUs is

observed to be 11.406 with a maximum of 12.527.

Figure4 depicts the response time of RESTful based WS. It acquired maximum at 326

VUs and then the response time falls down gradually. The average response time of 350

VUs is observed to be 2.556 with a maximum of 14.431. In both cases, it is seen that

response time is proportional to number of VUs.

6. Statistical Analysis and Evaluation

The statistical analysis on recorded metrics of 50 users is presented here. A sample of 30

repetitive tests is taken for statistical evaluation. The performance metrics are categorized

into 6 different classes as per their frequency range. The frequency intervals of response

time for the SOAP based and RESTful WS are shown in Table 3 and 4 respectively.

Table2.Experimental Results for RESTful and SOAP based WS

No.

virtual

user

accessing

the WS

Recorded

parameter

RESTful WS SOAP based WS

Average

Connection

refusal in

%

Average
Connection

refusal in

%

100 Response time (s)

Throughput (bytes/s)

Hits/s

2.123 0

2226

0.95

10.020 0

2489.270

0.681

150 Response time (s)

Throughput (bytes/s)

Hits/s

2.258 0

2912.070

1.272

10.412 0

4726.324

0.953

200 Response time (s)

Throughput (bytes/s)

Hits/s

2.502 0

3840

1.645

10.424 0

6934.176

1.181

250 Response time (s)

Throughput (bytes/s)

Hits/s

2.794 0

4659.759

1.939

11.564 0

8334.323

1.455

350 Response time (s)

Throughput (bytes/s)

2.296 0

14329.717

11.709 0

11015.608

Figure3. SOAP based WS Response
Time Against 350 Virtual Users

Figure 4.RESTful WSResponse
Time Against 350 Virtual Users

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 305

Hits/s 4.724 1.966

500 Response time (s)

Throughput (bytes/s)

Hits/s

1.847 0

14809.701

3.682

11.991 0

14135.344

2.638

600 Response time (s)

Throughput (bytes/s)

Hits/s

2.930 0

10438.245

4.211

10.358 0

9425.305

3.146

700 Response time (s)

Throughput (bytes/s)

Hits/s

2.250 0

11919.066

4.880

11.816 0

16043.586

3.649

800 Response time (s)

Throughput (bytes/s)

Hits/s

2.047 0

14034

5.669

11.776 0

16834.457

11.776

1000 Response time (s)

Throughput (bytes/s)

Hits/s

1.778 0

16071.575

6.673

9.935 1

9853.486

4.990

1200 Response time (s)

Throughput (bytes/s)

Hits/s

1.289 0

18713.023

8.02

10.734 14

11885.978

5.229

1500 Response time (s)

Throughput (bytes/s)

Hits/s

1.268 0

22610.054

9.811

11.019 61

9.49.034

2.969

Table 3. SOAP based WS Table 4.RESTful WS

Bin Frequency

10.424 1

10.512 1

10.6016 3

10.6904 11

10.7792 12

>10.7792 2

Bin Frequency

1.662 1

1.698 5

1.734 8

1.77 11

1.806 3

>1.806 2

6.1 Distribution of Response Time

The main objective of the present study is to observe the distribution of response time for

both the WS. We examine the histogram, quantile plots and normal probability plots of

the observed response time of SOAP based WS. The corresponding plots are shown in

Figures 5(a)-(c). The histogram, quantile plots and normal probability plots of the

observed response time of RESTful WS is shown in Figures 6(a)-(c).

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

306 Copyright ⓒ 2015 SERSC

Figure 5(a). Histogram of SOAP
based WS Response Time

Figure 6(a). Histogram of RESTful
WS Response Time

Figure 5(b). Quantile Plot of
SOAP based WS Response Time

Figure 6(b). Quantile Plot of
RESTful WS Response Time

According to the histogram the distribution is normal with slightly left skewed for

SOAP based WS and normal for RESTful WS. However, we may find some drawback in

histogram, that is, based on the used frequency sizes; it is possible that we may observe

different plots. A better technique is to observe a quantile plot. The quantile plot is close

to be linear if the distribution of the data is normal in nature [22, 23, 24, 29, 34]. Based on

the recorded metrics, the response time attribute of SOAP based and RESTful WS do

seems to be distributed normally.

The normal probability plot can be used as a graphical technique to verify the

normality of the data samples. If there existed normally distributed data samples, then a

linear plot will do appear. Here the most of the data samples are following a straight line.

It gives evidence that the distribution is normal one.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 307

Figure5(c). Normal Probability
Plot of SOAP based WS

Response Time

Figure 6(c). Normal Probability
Plot of RESTful WS Response

Time

6.2 Regression Analysis

The multiple linear regression analysis is carried out using Microsoft Excel to study the

combined influence of throughput and hits/sec over response time for both of the services.

The regression test is performed with an assumption of null hypothesis (H0): response

time of WS does not depend on hits/sec and throughput. The alternative hypothesis (H1):

response time of WS is dependent on hits/sec and throughput. The results of analysis of

variance (ANOVA) for both the services are given in Table 5.

Table 5. Results of Regression Analysis

Performance Metrics RESTful WS SOAP basedWS

Confidence level 95% 95%

F ratio 7.85 69

Regression (RN) 2 2

Residuals (RS) 27 27

Critical value of F table [30]

i.e F(RN, RS)
3.35 3.35

Throughput and hits/s

influence response time
32.09 % 82.4 %

It is observed from Table 5 that the F ratio of SOAP based WS is greater than critical

value of F table. Hence F ratio is significant at 0.05. This resembles that there exists a

linear relationship in between response time, throughput and hits/s. Therefore, we may

reject H0. This clarifies that the regression equation has 95% chance of being true. Similar

results are observed for RESTful based WS. In the regression analysis, the critical value

of F table is less than F ratio. Hence, we reject H0.

The study also suggests that our regression model for SOAP based WS accounts for

82.4% variance on response time and for RESTful WS it is 32.09%. Thus it can be

concluded that the throughput and hits/s have an impact on response time for both of the

service.

6.3 Chi Square Test and Results

Chi square(
2
)test is carried out to see whether the frequency distribution fits its

expected distribution [31, 35]. It identifies the existence of significant difference between

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

308 Copyright ⓒ 2015 SERSC

an observed distribution and a theoretical distribution [35]. The goodness of fit test

between expected and observed data can be determined using the chi square equation as

[32, 33,34]:


2
=∑ (fo-fe)

2
/fe (1)

Where fo is observed frequency and fe is expected frequency. We assume Ho: the

distribution observed fits the distribution expected and HA: the distribution does not fit the

distribution expected.

Table6.2Test for SOAP based WS Response Time

Response/s Observed

(fo)

Expected (fe) fo-fe (fo-fe)
2

(fo-fe)
2
/fe

≤ 10.424 1 3% of 30 = 0.9 0.1 0.01 0.011

>10.424 –

≤ 10.512
1 3% of 30 = 0.9 0.1 0.01 0.011

>10.5128 –

≤ 10.6016
3 10% of 30= 3 0 0 0

>10.6016 –

≤ 10.6904
11

37% of 30=

11.1
0.1 0.01 0.09

>10.6904 –

≤ 10.7792
12 40% of 30= 12 0 0 0

>10.7792 2 7% of 30= 2.1 0.1 0.01 0.005


2
 0.117

Table7.2 Test for Response Values of Medical WS based on
RESTfulArchitecture

Response/s Observed

(fo)

Expected (fe) fo-fe (fo-fe)
2

(fo-fe)
2
/fe

≤ 1.662 1
3% of 30 =

0.9
0.1 0.01 0.011

>1.662 –

≤ 1.698
5

17% of 30 =

5.1
0.1 0.01 0.011

>1.698 –

≤ 1.734
8

27% of 30=

8.1
0.1 0.01 0.011

>1.734 –

≤ 1.77
11

37% of 30=

11.1
0.1 0.01 0.011

>1.77 –

≤ 1.806
3 10% of 30= 3 0 0 0

>1.806 2
7% of 30=

2.1
0.1 0.01 0.011


2
 0.055

The degree of freedom (DF) is calculated as 5. It is observed that the critical 2 value is

11.0705 for DF 5 at 0.05 confidence level.

It is observed that the calculated 
2

value for both the WS is less than critical 
2

value i.e. for SOAP based WS it is 0.117<11.0705 and for RESTful WS it is

0.055<11.0705. Hence we accept the H0 that the data fits the data distribution

expected.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 309

7. Results and Discussion

The investigation reveals that the response time of RESTful architecture is much better

than the response time of SOAP based WS. Table 8 presents comparative experimental

results of RESTful and SOAP based WS.

Table 8. Comparison of Experimental Results (RT: Response Time, s; TP:
Throughput, bytes/s; HT: Hits, s)

 RESTful WS SOAP based WS

Histogram Normal with slightly

leftskewed

Normal

Quantile plot Linear Linear

Normal probability pot Linear Linear

VUs
Recorded

Parameter

Average
Connection

refusal in %

Average
Connection

refusal in %

100

RT

TP

HT

2.123

2226

0.95

0

10.02

2489.27

0.681

0

150

RT

TP

HT

2.258

2912.07

1.272

0

10.412

4726.324

0.953

0

200

RT

TP

HT

2.502

3840

1.645

0

10.424

6934.176

1.181

0

250

RT

TP

HT

2.794

4659.759

1.939

0

11.564

8334.323

1.455

0

350

RT

TP

HT

2.296

14329.717

4.724

0

11.709

11015.608

1.966

0

500

RT

TP

HT

1.847

14809.701

3.682

0

11.991

14135.344

2.638

0

600

RT

TP

HT

2.930

10438.245

4.211

0

10.358

9425.305

3.146

0

700

RT

TP

HT

2.250

11919.066

4.880

0

11.816

16043.586

3.649

0

800

RT

TP

HT

2.047

14034

5.669

0

11.776

16834.457

11.776

0

1000

RT

TP

HT

1.778

16071.575

6.673

0

9.935

9853.486

4.990

1

1200

RT

TP

HT

1.289

18713.023

8.02

0

10.734

11885.978

5.229

14

1500

RT

TP

HT

1.268

22610.054

9.811

0

11.019

9049.034

2.969

61

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

310 Copyright ⓒ 2015 SERSC

RESTful WS SOAP based WS

50

VUs

30

samples

ANOVA

Confidence level 95 % 95 %

F ratio 7.85 69

Adjusted R
2

32.09 82.4

Critical value of

F ratio
3.35 3.35


2

Confidence level 95 % 95 %

Calculated 
2

square
0.055 0.117

DF 5 5

Critical 
2
value 11.0705 11.0705

It is observed from Table 8 that the performance attribute values such as throughput,

response time of MedWS based on RESTful architecture are much less than the

performance attributes of SOAP based service. The throughput of tomcat server with

SOAP based WS is much higher than RESTful WS. The SOAP based WS is stable up to

800 VUs without any error but gives low performance at 1500 virtual user with 61%

connection refusal. In case of RESTful WS it is observed that the service is error free and

stable up to 1500 VU. Hence we can conclude that RESTful WS puts lower overhead and

is more efficient than SOAP based WS.

The statistical analysis on the recorded performance metrics of the service shows that

SOAP based and RESTful WS are scalable and stable.

It is observed from Table 8 that, the response time, throughput and hits/s for various

stress level increases or decreases suddenly. This may be due to partially releasing of

server side garbage collected heap which increases server stress.

The SOAP based WS consumes WSDL file of the service provider and processes the

XML messages for its communications where as the RESTful WS uses HTTP URI of the

resource available over internet and works as like normal HTTP request and response

methodology. This may be reason for which the response time of RESTful WS is much

less than the SOAP based WS.

The statistical investigation on both the WS predicts that the throughput and hits/s have

combined effects on response time. The multiple linear regression analysis for both the

WS reveals that the F ratio is significant at 0.05. It is an evidence for linear relationship in

between hits/s, throughput and response time of WS.

8. Conclusions

From our overall evaluation on performance testing it can be concluded that both the

WS based on SOAP and RESTful architecture are scalable and stable. The statistical

analysis of the recorded data shows that the observed parameters are similar to the

expected parameters and the data distributions for both the WS are normal. Table 8 gives

comparative results of response time, throughput, and hits/s between RESTful and SOAP

based WS. From the table we can conclude that RESTful architecture based WS has faster

response time than SOAP based WS. For server machines, both architectures will be

suitable to be implemented, but for handheld mobile devices that comparatively contains

lower hardware resources, WS implementation using RESTful architecture will be

preferable than SOAP based WS. Since, RESTful WS has fewer throughputs; it reduces

the overheads of overall performance of WS.The experimental results above will give

researchers as well as software industrial practitioners an idea about the WS performance

and the other metrics that influences the overall performance of the services.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 311

Acknowledgements

The authors are thankful to the All India Council of Technical Education (AICTE),

Govt. of India for financial support towards the work (F.No. 8023/BOR/RID/RPS (NER)-

84/2010-2011 31st March 2011).

References

[1] I. Siddavatam, J. Gadge, “Comprehensive test mechanism to detect attack on Web Services”, Proc.

IEEE Int. Conf. on Networks (ICON), (2008); India.

[2] D. Chenthati, H. Mohanty, A. Damodaram, “RDBMS for Service Repository and Matchmaking, ISMS”,

2nd Int. Conf.(2011).

[3] P.P.W. Chan, M.R. Lyu, “Dynamic Web Service Composition: A New Approach in Building Reliable

Web Service”, AINA, 22nd Int. Conf., (2008).

[4] R. Fielding, “Architectural Styles and the Design of Network-based Software architectures”, PhD

Dissertation, University of California, Irvine, California, USA, (2000).

[5] R.T. Fielding, R.N. Taylor, “Principled design of the modern Web architecture”, ACM

Transactions on Internet Technology, (2002), pp. 115–150.

[6] C.-J. Su, C. Chang-Yu, “Enabling successful Collaboration 2. 0: A REST -based WebService and

Web2.0 technology oriented information platform for collaborative product development”, Computers in

Industry, (2012).

[7] Available at: http://en.wikipedia.org/wiki/SOAP

[8] Available at: http://www.w3schools.com/wsdl/wsdl_documents.asp

[9] J.Meng, S. Mei, Z. Yan, “RESTful Web Services: A Solution for Distributed Data Integration”,

International Conference on Computational Intelligence and Software Engineering, CISE, IEEE, (2009).

[10] J. Cox, D. Harvey, D. Ramsbrock, “SOAP vs. REST For Mobile Services”, (2014) from

http://blogs.captechconsulting.com/blog/jack-cox/soap-vs-rest-mobile-services

[11] W3C Working Group, "Web Services Architecture", accessed May (2011)from

http://www.w3.org/TR/ws-arch/#introduction

[12] F. Aijaz, S. Ali, M. Chaudhary, B. Walke, “Enabling High Performance Mobile Web Services

Provisioning”, Proceedings of the IEEE 70th Vehicular Technology Conference Fall, IEEE,

(2009);Alaska-USA.

[13] L. Richardson, S. Ruby, RESTful Web Services, First Edition, O’Reilly Media, (2007).

[14] H. Hamad, M. Saad, R. Abed, “Performance Evaluation of RESTful Web Services for Mobile Devices”,

International Arab Journal of e-Technology, vol. 1, no. 3, (2010).

[15] M. B. Juric, I.Rozman, B.Brumen, M.Colnaric, M.Hericko, “Comparison of performance of Web

services, WS-Security, RMI, and RMI–SSL”, The Journal of Systems and Software, vol. 79, (2006), pp.

689-700.

[16] A. El Saddik, “Performance measurement of Web Service based application, IEEE Transactions on

Instrumentation and Measurement, (2006).

[17] B.Upadhyaya, Z.Ying , X.Hua,J. Ng, A. Lau, “Migration of SOAP-based Services to RESTful

Services”, 13th IEEE International Symposium on Web Systems Evolution (WSE), (2011).

[18] K.E. Mohamed, D.Wijesekera, “Performance Analysis of Web Services on Mobile Devices”, The 9th

International Conference on Mobile Web Information Systems, Procedia Computer Science 10, (2012).

[19] R. Ramos de Oliveira, R.V. Vieira Sanchez, J.C.Estrella, R. Pontin de Mattos Fortes, V. Brusamolin,

“Comparative Evaluation of the Maintainability of RESTful and SOAP-WSDL Web Services”, 2013

7thIEEE International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-

Based Systems (MESOCA), (2013).

[20] P. Markey, G. Clynch, “A performance analysis of WS-* (SOAP) and RESTful Web Services for

Implementing Service and Resource Orientated Architectures”, The 12th Information Technology and

Telecommunications (IT&T) Conference, Athlone IT, (2013).

[21] Drug Index, Passi Publications, India, January-March, (2012).

[22] M. Kalita, S. Khanikar, T. Bezboruah, “Investigation on performance testing and evaluation of

PReWebN: a JAVA technique for implementing web application”, IETSoftw., vol. 5, no. 5, (2011), pp.

434-444.

[23] M. Kalita, T. Bezboruah, “Investigation on performance testing and evaluation of PReWebD: a .NET

technique for implementing web application”, IETSoftw., vol. 5, no. 4, (2011), pp. 357-365.

[24] M. Kalita, T. Bezboruah, “Investigation on implementation of web applications with different

techniques”, IETSoftw., vol. 6, no. 6, (2012), pp. 474-478.

[25] A. Bora, M.K. Bhuyan, T. Bezboruah, “Investigations on Hierarchical Web service based on Java

Technique”, Proc. World Congress on Engineering (WCE), (2013); London, U.K.

[26] “Application-testing tool: Mercury LoadRunner 8.0”, Available at:

http://www.pcquest.com/pcquest/news/183659/application-testing-tool-mercury-loadrunner-80.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jian%20Meng.QT.&searchWithin=p_Author_Ids:37683653700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shujun%20Mei.QT.&searchWithin=p_Author_Ids:37672900300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhao%20Yan.QT.&searchWithin=p_Author_Ids:37671884300&newsearch=true
http://www.sciencedirect.com/science/article/pii/S0164121205001329
http://www.sciencedirect.com/science/article/pii/S0164121205001329
http://www.sciencedirect.com/science/article/pii/S0164121205001329
http://www.sciencedirect.com/science/article/pii/S0164121205001329
http://www.sciencedirect.com/science/article/pii/S0164121205001329
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Upadhyaya,%20B..QT.&searchWithin=p_Author_Ids:38232252100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ying%20Zou.QT.&searchWithin=p_Author_Ids:37275730500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hua%20Xiao.QT.&searchWithin=p_Author_Ids:37397293600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ng,%20J..QT.&searchWithin=p_Author_Ids:37402242200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lau,%20A..QT.&searchWithin=p_Author_Ids:37894168100&newsearch=true
http://www.sciencedirect.com/science/article/pii/S1877050912004528
http://www.sciencedirect.com/science/article/pii/S1877050912004528
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Estrella,%20J.C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pontin%20de%20Mattos%20Fortes,%20R..QT.&newsearch=true

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

312 Copyright ⓒ 2015 SERSC

[27] R. Brunner, D. Govoni, J. Weber, F. Cohen, F. Curbera, S. Haines, “Java Web Services Unleashed”,

Sams Indianapolis publisher, (2002); IN, USA.

[28] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, J. Schiller, “Performance Considerations for Mobile Web

Services”, Computer Communications Journal, vol. 27, no. 11, (2004), pp. 1097-1105.

[29] A. Bogardi-Meszoly, Z. Szitas, T. Levendovszky, H. Charaf, “Investigating factors influencing the

response time in ASP.NET web applications”, LNCS, 3746, (2005), pp. 223-233.

[30] Available at: http://homepages.wmich.edu/~hillenbr/619/AnovaTable.pdf

[31] Available at: http://fsweb.bainbridge.edu/dbyrd/statistics/goodnessfit.htm

[32] I. Levin, S. Richard, D. Rubin, “Statistics for management”, Pearson education, Inc., South Asia, (2009).

[33] Available at: http://www.statisticslectures.com/tables/chisquaretable/

[34] A. Bora, T.Bezboruah, “Testing and Evaluation of a Hierarchical SOAP based Medical Web Service”,

International Journal of Database Theory Application, vol. 7, no. 5, (2014).

Authors

Abhijit Bora, he is a Research Scholar, Department of

Electronics and Communication Technology, Gauhati University,

India received Master of Computer Applications (MCA) degree

from Jorhat Engineering College (Under Dibrugarh University),

India in 2008. His research interests include web service, web

security and software engineering.

TulshiBezboruah, he received the B.Sc. degree in physics

with electronics from the University of Dibrugarh, Dibrugarh,

India, in 1990, and the M.Sc. and Ph.D. degrees in electronics

and radio physics from the University of Gauhati, Guwahati,

India, in 1993 and 1999, respectively. In 2000, he joined in the

Department of Electronics Science, Gauhati University, as a

Lecturer. He is currently the Professor & Head, Department of

Electronics and Communication Technology, Gauhati University.

His current research interests include instrumentation and

control, distributed computing, and computer networks. Prof.

Bezboruah is a Senior Member of the IEEE, Member of IEEE

Geoscience and Remote Sensing Society as well as an Associate

Member of the International Center for Theoretical Physics,

Trieste, Italy.

