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Abstract 

Frequent itemset mining is a focused theme in data mining research and an important 

step in the analysis of data arising in a broad range of applications. The traditional exact 

model for frequent itemset requires that every item occur in each supporting transaction. 

However, real application data is usually subject to random noise. The reasons for noise 

are human error and measurement error. These reasons pose new challenges for the 

efficient discovery of frequent Itemset from the noisy data. Approximate frequent itemset 

mining is the discovery of itemset that are present not exactly but approximately in 

transactions.Most known approximate frequent Itemset mining algorithms work by 

explicitly stating the insertion penalty value and weight threshold. This paper presents a 

new method for generating insertion penalty value and weight threshold using support 

count of an item.  
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1. Introduction 

Frequent Itemset: An itemset X is frequent if its support )(X  is more than or equal 

to some threshold minimum support (min_sup) value, i.e. if supmin_)( X  

Approximate Frequent Itemset: An itemset that may not be present exactly in all 

supporting transactions but only approximately is called approximate frequent itemset. 

 

Purpose of Using Approximate Frequent Itemset Most of the frequent item set mining 

algorithms is based on exact matching .But in fact there are many application where exact 

matching is not required. One of the application is in telecommunication where different 

devices like switches, routers and other transmission equipments are inter connected, each 

device produce an alarm where an alarm shows a abnormal situation. The task is to find 

the alarms which occur at same time. These alarms can be found using a sliding window 

over sequence. Each window position then captures a specific slice of the alarm sequence 

[1, 2]. The underlying idea is that in this way the problem of finding frequent episodes is 

reduced to that of finding frequent itemsets in a database of transactions: each alarm can 

be seen as an item and the alarms in a time window as a transaction. The support of an 

episode is the number of window positions, in which the episode occurs. Unfortunately, 

alarms often get delayed, lost, or repeated due to noise, transmission errors, failing links 

etc. If alarms are delayed they will not be considered as frequent item set this leads to loss 

of interesting frequent items. To cope with these situations we rely on notion of 

approximate frequent itemset.The lost or delayed alarms are associated with lower 

insertion cost. For example, in telecommunication networks different alarms can have a 

different probability of getting lost: usually alarms raised in lower levels of the module 

hierarchy get lost more easily than alarms originating in higher levels. In such cases, it is 

convenient to be able to associate the former with lower insertion costs than the latter. 
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Insertions of a certain item may also be completely inhibited by assigning a very high 

insertion cost. 

2. Proposed System 

In telecommunication network different alarms have different probability of getting 

lost. The alarms at lower level get lost easily than alarms at higher level so it is 

convenient to associate the formers with lower insertion cost. Thus the lost alarm at lower 

level can be inserted easily. In the proposed system penalty associated with each item 

depend upon its support count and the weight threshold is not stated explicitly. The 

number of insertions allowed in a transaction is limited by weight threshold value, which 

depends upon penalties of items. In this way the maximum number of insertions allowed 

in a transaction can be limited [3]. The reason behind calculating the weight threshold 

value from the difference of maximum and minimum penalty is to limit the number of 

insertions and hence reducing the number of insertions for the items having maximum 

support. 

 

Data Model for the Proposed System: The data model for proposed system consists of two 

lists: 

1) Transaction List 

2) Item List 

 

 
 

Figure 1. Flow Chart for the Proposed System 
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Transaction List: 

 

a) Sequence Number: - Represents the sequence number of every transaction in the 

database. 

b) Counter: - Represents the number of occurrences of each transaction 

c) Items: - Items contained in a transaction. [4] 

d) Weight: - Every transaction is associated with a weight. Initial weight of transaction is 

0 and keeps on increasing as items are inserted into the transaction. 

e) Mark: - If transaction contains the split item mark is 1, else 0. Initial mark of 

transaction is 0. 

f) Pointer to next transaction: - Point to next transaction in list.    

 

 Item List: 

 

a) Name: - Represents the name of item. 

b) Support: - Represents the number of occurrences of item in transaction list. 

c) Penalty: - Represents the penalty associated with each item. [5] 

 

3. Approximate Frequent Itemset Mining 

Table 1. Transaction Set 

TID Transactions 

1 ad 

2 acde 

3 bd 

4 bcd 

5 bc 

6 abd 

7 bde 

8 bcde 

9 bc 

10 abd 
 

Step1:-Find out the support value of individual item. 

 a=4 b=8 c=5 d=8 e=3 

Step2:-Arrange the transactions with item in increasing value of initial support. 
 

Table 2. Arranged Items 

TID Items 

1 ad 

2 eacd 

3 bd 

4 cbd 

5 cb 

6 abd 

7 ebd 

8 ecbd 

9 cb 

10 abd 
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Step3:- The transactions are sorted in increasing order of support count of leading item 

and are then sorted into descending order of size of transaction. 

Table 3. Arranged Transaction 

TID Items 

1 eacd 

2 ecbd 

3 ebd 

4 abd 

5 abd 

6 ad 

7 cbd 

8 cb 

9 cb 

10 bd 
 

Step4:- Finally prepare the data structure with counters that is to be used in Approximate 

Frequent Itemset mining algorithm. 

Table 4. Transaction Counter 

Counter Transactions 

1 eacd 

1 ecbd 

1 ebd 

2 abd 

1 ad 

1 cbd 

2 cb 

1 bd 

 

Algorithm for the Proposed System: 

function SaM_Fuzzy _Modified (a: List of transactions, p: List of items) 

var i: char;         (*buffer for split item  name*) 

var counter:int; (*counter for transactions*) 

minW
: float;       (*weight threshold value*) 

total_support=0: int (*total support of items*) 

max: float            (*maximum item  penalty*) 

min: float (*minimum item penalty*) 

begin 

while a is not empty do  (* while database is not    

                                         empty *) 

a[0].wgt=0; (*initialize transactions weight*)  

end; 

while p is not empty do  (*while item list is not  

                                           empty*) 

total_support=total_support+p[0].support;                      

                             (*sum of support of all items*) 

end 

while p is not empty do 
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p[0].penalty=p[0].support/total_support;                        (*penalty for every item*) 

end 

max=p[0].penalty;     (*penaltyof first item*) 

min=p[0].penalty; 

while p is not empty do   (*while item list not  

                                          empty*) 

if  p[0].penalty>max 

then max=p[0].penalty; (*get maximum   

                                            penalty*) 

end 

if p[0].penalty<min 

then min=p[0].penalty; (*get minimum   

                                           penalty*) 

end 

end 

minW =max-min;  (*get weight threshold value*) 

while p is not empty do   (*while item list not  

                                            empty*) 

while a is not empty do (* while database not  

                                            empty *) 

if  a[0].items[0].name = p[0].name  

              (*get transaction those have split item *) 

then i=a[o].items[0].name; (*get the split item*) 

a[0].mark=1; (*mark transactions 1 those contain 

                          split item as their leading item*) 

remove i from a[0].items; (* remove the split  

                                            item *) 

else 

a[0].mark=0; (*mark transactions 0 those don’t 

             contain split item as their leading item *) 

end   

if a[0].mark==0 and a[0].weight< minW   

                       (*check conditions for insertions*) 

then a[0].wgt=a[0].wgt+p[0]. penalty;       (*add penalty to transaction weight*) 

counter=a[0].counter; (*get counter of  

                                        transaction*) 

 p[0].support=p[0].support+counter;  

end          (*outer if loop*) 

end  (*process transaction one by one*) 

end (*process items one by one*) 

end (*function SAM()*) 

 

Assign the initial weight for every transaction as 0.Prepare the transaction list and item 

list from txt file. Find out the total support of items in the item list. Associate the 

penalty(c(i)) with every item. 




 n

i

i

i
ic

1

)(

)(
)(


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         n = total no of items       

 (1) 
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Then find out the maximum maxP
 and minimum penalty minP  in item list and calculate the 

weight threshold value minW . 

 

minmaxmin PPW 
        

 (2) 

 

 Traverse the transactions list for every item in item list. Mark the transaction those 

contain first item as splitting item as 1 and mark other transactions as 0. Check if mark is 

equal to 0 and weight of transaction is less than the weight threshold, add the penalty 

value to weight of the transaction. The updated weight of transaction will 

be
))(),(()()( ictwftw i 

, where f is a function that combines the weight w(t) before 

editing and the insertion cost )(ic . 

 

)()()()( ictwtw i 
        

 (3) 

 

Get the counter for the transaction. Add the counter to support of item in item list. Then 

sort the transactions in transaction list in lexicographical order and repeat the process for 

every item in item list. 
 

4. Implementation 

Transaction list along with sequence number, size of transaction, initial weight, counter 

of transaction (number of occurrence of same transaction) and items in that transaction .  
 

 

 Figure 1. Transaction with Counters & Weights 

The transactions which occur more than one time are assigned counter equal to number 

of their occurrence and the repeated transactions are deleted. Total support count of items 

(total number of items) in given database, along with list of items where each item is 

associated with support count and penalty. The weight threshold value calculated from 

penalties is also displayed here. 
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Figure 2. Items Support, Penalties & Weight Threshold Value 

Transactions are displayed with their mark and weight. The transactions having ‘e’ as 

their leading item are marked as 1. The leading item is removed from these transactions 

and their weights remain same as initially assigned 0. The transactions not having ‘e’ as 

leading item is marked as 0 are assigned updated weight, the penalty value associated 

with item ‘e’. The transactions are sorted firstly according to increasing order of support 

count of leading item and then descending order of size of transactions. 

 

 

Figure 3: Insertion of Item e 

The transactions having ‘a’ as their leading item are marked as 1 and number of 

insertions associated with these remain unchanged .The leading item ‘a’ is removed from 

these transactions and their weights remain unchanged. Transactions not having ‘a’ as 

leading items are marked as 0.The weight of transactions with mark 0 and number of 

insertions less than weight threshold value is updated by multiplying the previous weight 

with penalty and their number of insertions associated with these transactions are 

incremented by 1. The transactions are sorted firstly according to increasing order of 

support count of leading item and then descending order of size of transactions. 
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Figure 4. Insertion of Item a 

In this way all the items are inserted one by one according to their support count. Support 

count of every item after insertion is shown in figure 1 

 

       

 Figure 5: Item Support after Insertion 

5. Conclusion 

Different items should be associated with different penalty values. The items with 

lower support have higher probability that they have been lost or missed due to reasons 

like noise or traffic while transferring the data over network. The items with lower 

support should have lower insertion costs, so that they can be inserted in more 

transactions and can increase their support count. Thus the penalty values should be 

depending upon the support count of the items and should be calculated from database 

instead of being stated explicitly. The weight threshold value should be calculated from 

database using minmax PP 
. If on the other hand the weight threshold value is stated 

explicitly by the user, the number of insertions will be high for higher weight threshold 

value hence resulting in more number of insertions. This results in increasing the memory 

requirement to store missed items. The reason behind calculating the threshold value from 

the difference of maximum and minimum penalty is to limit the number of insertions and 

hence reducing the numbers of insertions for the item having maximum support. 
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