
International Journal of Database Theory and Application

Vol.8, No.3 (2015), pp.279-288

http://dx.doi.org/10.14257/ijdta.2015.8.3.24

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

An Efficient Algorithm for Approximate Frequent Intemset

Mining

Veepu Uppal

Assistant Professor, Departement of Computer Science & Engineering

Manav Rachna College of Engineering, Faridabad, INDIA

veepu.mrce@mrei.ac.in

Abstract

Frequent itemset mining is a focused theme in data mining research and an important

step in the analysis of data arising in a broad range of applications. The traditional exact

model for frequent itemset requires that every item occur in each supporting transaction.

However, real application data is usually subject to random noise. The reasons for noise

are human error and measurement error. These reasons pose new challenges for the

efficient discovery of frequent Itemset from the noisy data. Approximate frequent itemset

mining is the discovery of itemset that are present not exactly but approximately in

transactions.Most known approximate frequent Itemset mining algorithms work by

explicitly stating the insertion penalty value and weight threshold. This paper presents a

new method for generating insertion penalty value and weight threshold using support

count of an item.

Keywords: Frequent item set mining, Weight, Penalty, Support and Weight Threshold

1. Introduction

Frequent Itemset: An itemset X is frequent if its support)(X is more than or equal

to some threshold minimum support (min_sup) value, i.e. if supmin_)(X

Approximate Frequent Itemset: An itemset that may not be present exactly in all

supporting transactions but only approximately is called approximate frequent itemset.

Purpose of Using Approximate Frequent Itemset Most of the frequent item set mining

algorithms is based on exact matching .But in fact there are many application where exact

matching is not required. One of the application is in telecommunication where different

devices like switches, routers and other transmission equipments are inter connected, each

device produce an alarm where an alarm shows a abnormal situation. The task is to find

the alarms which occur at same time. These alarms can be found using a sliding window

over sequence. Each window position then captures a specific slice of the alarm sequence

[1, 2]. The underlying idea is that in this way the problem of finding frequent episodes is

reduced to that of finding frequent itemsets in a database of transactions: each alarm can

be seen as an item and the alarms in a time window as a transaction. The support of an

episode is the number of window positions, in which the episode occurs. Unfortunately,

alarms often get delayed, lost, or repeated due to noise, transmission errors, failing links

etc. If alarms are delayed they will not be considered as frequent item set this leads to loss

of interesting frequent items. To cope with these situations we rely on notion of

approximate frequent itemset.The lost or delayed alarms are associated with lower

insertion cost. For example, in telecommunication networks different alarms can have a

different probability of getting lost: usually alarms raised in lower levels of the module

hierarchy get lost more easily than alarms originating in higher levels. In such cases, it is

convenient to be able to associate the former with lower insertion costs than the latter.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

280 Copyright ⓒ 2015 SERSC

Insertions of a certain item may also be completely inhibited by assigning a very high

insertion cost.

2. Proposed System

In telecommunication network different alarms have different probability of getting

lost. The alarms at lower level get lost easily than alarms at higher level so it is

convenient to associate the formers with lower insertion cost. Thus the lost alarm at lower

level can be inserted easily. In the proposed system penalty associated with each item

depend upon its support count and the weight threshold is not stated explicitly. The

number of insertions allowed in a transaction is limited by weight threshold value, which

depends upon penalties of items. In this way the maximum number of insertions allowed

in a transaction can be limited [3]. The reason behind calculating the weight threshold

value from the difference of maximum and minimum penalty is to limit the number of

insertions and hence reducing the number of insertions for the items having maximum

support.

Data Model for the Proposed System: The data model for proposed system consists of two

lists:

1) Transaction List

2) Item List

Figure 1. Flow Chart for the Proposed System

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 281

Transaction List:

a) Sequence Number: - Represents the sequence number of every transaction in the

database.

b) Counter: - Represents the number of occurrences of each transaction

c) Items: - Items contained in a transaction. [4]

d) Weight: - Every transaction is associated with a weight. Initial weight of transaction is

0 and keeps on increasing as items are inserted into the transaction.

e) Mark: - If transaction contains the split item mark is 1, else 0. Initial mark of

transaction is 0.

f) Pointer to next transaction: - Point to next transaction in list.

 Item List:

a) Name: - Represents the name of item.

b) Support: - Represents the number of occurrences of item in transaction list.

c) Penalty: - Represents the penalty associated with each item. [5]

3. Approximate Frequent Itemset Mining

Table 1. Transaction Set

TID Transactions

1 ad

2 acde

3 bd

4 bcd

5 bc

6 abd

7 bde

8 bcde

9 bc

10 abd

Step1:-Find out the support value of individual item.

 a=4 b=8 c=5 d=8 e=3

Step2:-Arrange the transactions with item in increasing value of initial support.

Table 2. Arranged Items

TID Items

1 ad

2 eacd

3 bd

4 cbd

5 cb

6 abd

7 ebd

8 ecbd

9 cb

10 abd

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

282 Copyright ⓒ 2015 SERSC

Step3:- The transactions are sorted in increasing order of support count of leading item

and are then sorted into descending order of size of transaction.

Table 3. Arranged Transaction

TID Items

1 eacd

2 ecbd

3 ebd

4 abd

5 abd

6 ad

7 cbd

8 cb

9 cb

10 bd

Step4:- Finally prepare the data structure with counters that is to be used in Approximate

Frequent Itemset mining algorithm.

Table 4. Transaction Counter

Counter Transactions

1 eacd

1 ecbd

1 ebd

2 abd

1 ad

1 cbd

2 cb

1 bd

Algorithm for the Proposed System:

function SaM_Fuzzy _Modified (a: List of transactions, p: List of items)

var i: char; (*buffer for split item name*)

var counter:int; (*counter for transactions*)

minW
: float; (*weight threshold value*)

total_support=0: int (*total support of items*)

max: float (*maximum item penalty*)

min: float (*minimum item penalty*)

begin

while a is not empty do (* while database is not

 empty *)

a[0].wgt=0; (*initialize transactions weight*)

end;

while p is not empty do (*while item list is not

 empty*)

total_support=total_support+p[0].support;

 (*sum of support of all items*)

end

while p is not empty do

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 283

p[0].penalty=p[0].support/total_support; (*penalty for every item*)

end

max=p[0].penalty; (*penaltyof first item*)

min=p[0].penalty;

while p is not empty do (*while item list not

 empty*)

if p[0].penalty>max

then max=p[0].penalty; (*get maximum

 penalty*)

end

if p[0].penalty<min

then min=p[0].penalty; (*get minimum

 penalty*)

end

end

minW =max-min; (*get weight threshold value*)

while p is not empty do (*while item list not

 empty*)

while a is not empty do (* while database not

 empty *)

if a[0].items[0].name = p[0].name

 (*get transaction those have split item *)

then i=a[o].items[0].name; (*get the split item*)

a[0].mark=1; (*mark transactions 1 those contain

 split item as their leading item*)

remove i from a[0].items; (* remove the split

 item *)

else

a[0].mark=0; (*mark transactions 0 those don’t

 contain split item as their leading item *)

end

if a[0].mark==0 and a[0].weight< minW

 (*check conditions for insertions*)

then a[0].wgt=a[0].wgt+p[0]. penalty; (*add penalty to transaction weight*)

counter=a[0].counter; (*get counter of

 transaction*)

 p[0].support=p[0].support+counter;

end (*outer if loop*)

end (*process transaction one by one*)

end (*process items one by one*)

end (*function SAM()*)

Assign the initial weight for every transaction as 0.Prepare the transaction list and item

list from txt file. Find out the total support of items in the item list. Associate the

penalty(c(i)) with every item.




 n

i

i

i
ic

1

)(

)(
)(





 n = total no of items

 (1)

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

284 Copyright ⓒ 2015 SERSC

Then find out the maximum maxP
 and minimum penalty minP in item list and calculate the

weight threshold value minW .

minmaxmin PPW 

 (2)

 Traverse the transactions list for every item in item list. Mark the transaction those

contain first item as splitting item as 1 and mark other transactions as 0. Check if mark is

equal to 0 and weight of transaction is less than the weight threshold, add the penalty

value to weight of the transaction. The updated weight of transaction will

be
))(),(()()(ictwftw i 

, where f is a function that combines the weight w(t) before

editing and the insertion cost)(ic .

)()()()(ictwtw i 

 (3)

Get the counter for the transaction. Add the counter to support of item in item list. Then

sort the transactions in transaction list in lexicographical order and repeat the process for

every item in item list.

4. Implementation

Transaction list along with sequence number, size of transaction, initial weight, counter

of transaction (number of occurrence of same transaction) and items in that transaction .

 Figure 1. Transaction with Counters & Weights

The transactions which occur more than one time are assigned counter equal to number

of their occurrence and the repeated transactions are deleted. Total support count of items

(total number of items) in given database, along with list of items where each item is

associated with support count and penalty. The weight threshold value calculated from

penalties is also displayed here.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 285

Figure 2. Items Support, Penalties & Weight Threshold Value

Transactions are displayed with their mark and weight. The transactions having ‘e’ as

their leading item are marked as 1. The leading item is removed from these transactions

and their weights remain same as initially assigned 0. The transactions not having ‘e’ as

leading item is marked as 0 are assigned updated weight, the penalty value associated

with item ‘e’. The transactions are sorted firstly according to increasing order of support

count of leading item and then descending order of size of transactions.

Figure 3: Insertion of Item e

The transactions having ‘a’ as their leading item are marked as 1 and number of

insertions associated with these remain unchanged .The leading item ‘a’ is removed from

these transactions and their weights remain unchanged. Transactions not having ‘a’ as

leading items are marked as 0.The weight of transactions with mark 0 and number of

insertions less than weight threshold value is updated by multiplying the previous weight

with penalty and their number of insertions associated with these transactions are

incremented by 1. The transactions are sorted firstly according to increasing order of

support count of leading item and then descending order of size of transactions.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

286 Copyright ⓒ 2015 SERSC

Figure 4. Insertion of Item a

In this way all the items are inserted one by one according to their support count. Support

count of every item after insertion is shown in figure 1

 Figure 5: Item Support after Insertion

5. Conclusion

Different items should be associated with different penalty values. The items with

lower support have higher probability that they have been lost or missed due to reasons

like noise or traffic while transferring the data over network. The items with lower

support should have lower insertion costs, so that they can be inserted in more

transactions and can increase their support count. Thus the penalty values should be

depending upon the support count of the items and should be calculated from database

instead of being stated explicitly. The weight threshold value should be calculated from

database using minmax PP 
. If on the other hand the weight threshold value is stated

explicitly by the user, the number of insertions will be high for higher weight threshold

value hence resulting in more number of insertions. This results in increasing the memory

requirement to store missed items. The reason behind calculating the threshold value from

the difference of maximum and minimum penalty is to limit the number of insertions and

hence reducing the numbers of insertions for the item having maximum support.

References:

[1] B. Christian and W. Xiaomeng, “(Approximate) Frequent Item Set Mining Made Simple with a Split

and Merge Algorithm”, Chapter 10 of: Anne Laurent and Marie-Jeanne Lesot (eds.), Scalable Fuzzy

Algorithms for Data Management and Analysis: Methods and Design, IGI Global, Hershey, PA, USA

(2009), pp.254-272.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 287

[2] H. Mannila, H. Toivonen and A. I. Verkamo, “Discovery of Frequent Episodes in Event Sequences”,

Report, (1997).

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, Proc. 20th Int. Conf. on

very Large Databases (VLDB 1994, Santiago de Chile), 487–499. Morgan Kaufmann, San Mateo, CA,

USA (1994).

[4] B. Christian and W. Xiaomeng, “SaM: A Split and Merge Algorithm for Fuzzy Frequent Item Set

Mining”, Proc. 13th Int. Conf on Fuzzy Systems Association World Congress and 6th Conf. of the

European Society for Fuzzy Logic and Technology, IFSA/EUSFLAT Organization Committee, Lisbon,

Portugal, (2009), pp.968-973.

[5] X. Wang, C. Borgelt and R. Kruse, “Mining Fuzzy Frequent Item Sets”, Proc. 11th Int. Fuzzy Systems

Association World Congress (IFSA’05, Beijing, China), (2005), pp.528– 533.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

288 Copyright ⓒ 2015 SERSC

