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Abstract 

With the development of mobile internet and social network, the scale of structured 

data have been increasing to PB level and above rapidly, while the query performance is 

greatly reduce. The efficiency of query optimization on large-scale datasets is currently a 

research focus in both academia and industry. In this paper, we present a distributed data 

management method, designed to improve query performance, called KCSQ. KCSQ 

analyses historical SQL commands, deduces statistics using frequency and the coupling 

degree of tables and table columns, and confirms the key column based on statistical 

evidence. When importing new tables into the HDFS, the data are divided into different 

blocks according to their key column. Any query on these columns can reduce the amount 

of data to be queried and the number of working nodes and thus effectively improves the 

throughput rate of the system. 
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1. Introduction 

With the rapid development of the internet, data are yielded at an increasingly high 

speed [1]. Statistics from IDC suggest that the amount of data created and replicated 

globally in 2011 reached 1.8 ZB [2], which is far more than the total data size of all 

printed material throughout history. Research concerning big data has received much 

attention. The larger the data scale, the more difficult the processing, and the higher the 

value of data explored. The major internet companies and open-source groups have 

developed, and shared, a number of technologies and systems, such as GFS [3], 

MapReduce [4], HDFS [5], Hive [6], etc. 

With the rise of social networking and e-commerce, structured data grows rapidly to 

PB level or higher, which brings various problems and challenges for its management and 

analysis on such a large-scale. For structured data, relational database is undoubtedly the 

classical, and most popular, database system (e.g. Oracle, MySQL, SQLServer, and DB2). 

In 1970, Codd [7] first proposed a new model of the relationship, which sparked research 

into the relational method and theory of databases. After decades of development, 

relational database have come to be widely used in various types of information 

management systems and business application systems [8], and have become an effective 

storage and analysis tool for data warehousing [9]. However, the system expense of 

relational database for index construction and transaction mechanisms increases sharply 

when dealing with PB level data. Owing to the high cost and poor scalability, relational 
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database appear weak when processing massive amounts of data and running large-scale 

concurrent applications. 

In recent years, HDFS has become the most common big data storage system, and 

those analysis technologies and tools based on HDFS have also matured and are being 

constantly perfected. At present, for massive structured data, researchers mainly focus on 

the optimization of parallel database and HDFS-based technology improvement, such as 

Dremel [10], Impala [11], Spark [12], BlinkDB [13], etc. In specific processing scenarios, 

these systems show better performance querying on PB level structured datasets. 

However, these systems make use of the original data storage format of HDFS that is 

designed to deal with unstructured data, without optimization for massive structured data. 

In this paper, we present a distributed data management method that is designated 

KCSQ. KCSQ analyses historical SQL commands, infers statistics from the frequency of 

use and degree of coupling of tables and their columns, and confirms the identity of the 

key column based on these statistical results. On this basis, it classifies the data in 

accordance with the key column to improve the query performance. We packaged KCSQ 

into middleware and embedded it into HDFS, which can work on other HDFS-based 

systems with minimal changes to achieve interactive query abilities. 

 

2. Related Work 

Massive structured data has gradually exceeded the processing scale of traditional 

database. This problem can be solved by research into parallel data, to some extent. The 

query performance of parallel data is closely related to the data distribution before 

processing. 

Li proposed a dynamic multi-dimensional data distribution method for parallel 

database [14], which forcefully supported various parallel data operation algorithms in a 

dynamic database. Data warehousing is another massive structured data processing 

model. Li et al. proposed a multi-dimensional data model for a data warehouse [15]. This 

model could fully express the structure and semantics of the complex data in a data 

warehouse and effectively support on-line analytical processing (OLAP) applications. 

Impala [11] is an MPP (massive parallel processing) SQL query engine developed by 

Cloudera. It provides an interactive query interface directly on massive Hadoop data 

stored in HDFS or HBase. However, for join queries and complex queries involving the 

forwarding of intermediate results, Impala does not improve the query performance. The 

query processing will even fail if the size of the intermediate results goes beyond the 

memory capacity. Furthermore, Impala provides an interface for HiveQL (SQL-like) but 

does not support standard SQL. Dremel [10] is an interactive data analysis system 

proposed by Google. It can execute ad-hoc queries on PB level datasets in seconds. To 

achieve such high performance, Dremel depends mainly on three aspects: using a new 

model that supports nested data; combining multi-level execution trees and a columnar 

storage format; and an ability to manage large-scale clusters. As the report engine of 

Google BigQuery, Dremel makes up for the disadvantages of MapReduce. However, 

Dremel is mainly meant for nested data optimization, and does not perform very well 

when processing fact tables and dimension tables. 

Although the storage and query of massive data are achieved using distributed parallel 

queries, invalid query tasks are prone to be generated, i.e., when querying a few records 

from a table, all the data blocks of the table are queried in parallel using the current 

processing mode. The query on the data blocks excluding result information are invalid 

query tasks. Pan et al. proposed a data distribution strategy for multi-dimensional datasets 

in a cloud computing environment [16]. In this strategy, a table is divided into a base table 

(the truth table) and clustered tables and a query is distributed to each data node. If the 

query results have been stored to a clustered table in advance, the query is returned 
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directly. Otherwise, equivalence sets are queried or a recursion algorithm is called. Wang 

et al. proposed a multi-dimensional indexing structure, RT-CAN [17]. By indexing, the 

nodes that possibly contain result information are obtained to reduce the amount of 

queried data and improve the throughput rate. Wen et al. proposed a query-oriented 

database data distribution strategy (SOD) [18]. By query statistics, the querying law of a 

given table is obtained. Moreover, the sheets that are frequently and jointly queried are 

saved together to reduce the amount of data transmission over the network during the 

query while improving query performance.  

 

3. Key Column-based Split and Query (KCSQ) 

Based on the application of Hadoop to cloud computing, and mass structured 

processing, we propose a key column-based data partition and an efficient query 

task generation method. The key column is found from statistics relating to the 

historical query operations. The column with the highest usage frequency is deemed 

to have been the key column. Efficient query task here refers to query tasks 

generated for data blocks containing results. 

Data sheets are stored in HDFS in block form. In cases querying all of the data 

blocks in each query, invalid queries may be produced since some data blocks do 

not contain the result. To solve this problem, the importation of the database sheet 

to HDFS employs a key column-based data partition method. The specific process is 

as follows: 

(1) Determine the key column according to historical query information and 

classify the key columns into M areas according to values or ranges, i.e., classifying 

the universal sets of the values of the key column into M areas. 

(2) Pre-process the records in the sheet according to the key column and classify 

the records into different areas according to the valuation condition of the key 

column. 

(3) Cluster the data according to the number of the key columns meeting the area 

and recording metadata information after partitioning each area ( i.e., the ID, area, 

and key column numbers meeting the area of each data block). 

(4) Generate efficient query tasks for the query containing key columns.  

 

4. Design and Realization of KCSQ 
 
4.1 Sqoop 

As an open source data import tool, Sqoop [19] can import sheet data in a 

database into HDFS. The following command is used as an example here to explain 

the data import process: 

--connect jdbc:mysql://IP:3306/db_name - username root - password 111111 - 

sheet sheetname - hive-import -m 2 

(1) Generating a class corresponding to the structure of the sheet that needed to 

be imported by searching and linking mysql using jdbc. The class  is mainly used for 

serialisation and deserialisation. 

(2) According to the parameters followed by -m in the command, determining the 

MapReduce task generated (only map tasks are used in the importing process) and 

then writing data into HDFS. 

(3) Establishing a new cloud hive script file, creating sheets, and loading data.  

During importation, data are divided into slices according to the primary key (e.g. 

record ID). Firstly, Sqoop finds out the max (ID) and min (ID) from the sheet. By 

dividing the difference Val between max (ID) and min (ID), the number of entries 

contained in each slice can be obtained. For example, max (ID) = 2000 and min (ID) 
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= 1, the ranges are (1-1000) and (1001-2000). Then two map tasks are initialized for 

data importing, and the records belonging to the two ranges are taken as the Result 

Set and imported into HDFS respectively. 

 
4.2 Key Column-based Data Partition 

When importing the database sheet into the HDFS, multiple key column-based 

data partition is conducted as follows: 

(1) Statistically analyzing the historical query on the database and sequencing the 

query requirements in descending order according to the column usage frequency. 

(2) Determining the area number M for data storage. 

(3) Dividing the value range of the column into M areas and determining the 

KeyColumn (simply recorded as K below) in descending order according to usage 

frequency. 

(4) Assuming that N key columns are selected (0 < N ≤ M); representing the value 

of the area of the key column of each record by K(x, y), where, x represents a key 

column and y represents its area. For instance, K(1,1) signifies that the first key 

column is valued in the first area. 

(5) As for arbitrary record in the database sheet, we determined the first column 

as the standard key column and judged the area of the records in the sheet, as shown 

in Fig. 1. 

5.1) Determining K(x, y) for each key column. 

5.2) Conducting statistical analysis of the values of y obtained in Step 5.1 by and 

finding the frequency of appearance of each y value. 

5.3) Given N values for y, determining the area of y according to the first column. 

5.4) Setting the area of the y value at its maximum amount as the area of this 

record, if the value variety number of y is less than N and y merely has one 

maximum value. 

5.5) Determining the area of the y value of the key column with a small number 

as the area of this record is needed, if the value variety number of y is less than N 

and y has more than one maximum value. For example, when N = 5, M = 6, the 

statistical results of a record are K(1,1), K(2,1), K(3,2), K(4,2), and K(5,6) ; i.e., key 

columns 1 and 2 are valued in Area 1; key columns 3 and 4 are valued in Area 2; 

and key column 5 is valued in Area 6. Therefore, with y values of key columns 1 

and 2 as standard, the record should be stored in Area 1.  

Through the above method, any record can be divided into a single area. As 

shown in Fig. 2, data are clustered according to the conditions classifying them into 

each region. There are N possibilities for the classification condition of each region: 

(1) The value of N key columns satisfies the area. 

(2) The value of N - 1 key columns satisfies the area. 

(3) The value of N - 2 key columns satisfies the area. 

… 

(N - 1) The value of 2 key columns satisfies the area. 

(N) The value of 1 key column satisfies the area. 
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One record

If there is less than N 
different y and the largest 

count of one certain 
value of y is single

If there is N different y

If there is less than N 
different y and the largest 

count of one certain 
value of y is not single

The area of the record is 
that the largest count of 

the certain value of y

The area of the record
is that the first 

KeyColumn belongs

The area of the record is 
that the largest count of 

the certain value of y，
which the corresponding 

x is smaller

Confirm the Area of all 

KeyColumns—K(x,y)

Confirm the number of 
every value of y of K(x,y)

 

Figure 1. Process of Judging the Area of a Record 

 

Table

Meet N KeyColumns

……

Area1Area1 Area2Area2 AreaMAreaM

Meet N-1 KeyColumns

Meet k KeyColumns

Meet 2 KeyColumns

Meet 1 KeyColumn

Meet N KeyColumns

Meet N-1 KeyColumns

Meet k KeyColumns

Meet 2 KeyColumns

Meet 1 KeyColumn

Meet N KeyColumns

Meet N-1 KeyColumns

Meet k KeyColumns

Meet 2 KeyColumns

Meet 1 KeyColumn

  

Figure 2. Result of Judging the Area of a Record 

4.3 Storage and Application of Metadata 

According to the storage and processing of the metadata [20][21] in Hadoop, the 

Area of each data block and the number of key columns that satisfied the current 

Area are recorded during importation: this information is stored by generating an 

attached table named DB_TABLENAME_META. Here, DB_TABLENAME_META 

mainly contained three fields: BlockID, Area, and KNum. BlockID represents the 

number of the data block in HDFS; Area represents the region of the data block; 

KNum is the number of key columns that satisfy the current region in the data 

block. 

In case of receiving a query request from the client, the query request is firstly 

processed. If the query request does not contain key columns, we query the whole 

sheet; otherwise, we need to find the maximum number of key columns (KNum) 

with small number within the Area. Using Area and KNum, it is possible to obtain 

the BlockID containing the final result information from the table 

DB_SHEET_META and, in turn, generate efficient query tasks for those data blocks 

containing result information. 
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4.4 The Generation Process of Efficient Query Tasks 

 

KeyColumn number n 
is odd

(N-1)/2<n<=N

YY

NN

Get K(x,y) of all KeyColumn

The Area is the value of y above and the value of 
Knum is k

According the values of Area and Knum, Query the 
table of DB_TABLENAME_META to get the BlockID 

of the Block that contains the result

Generated query tasks of the Blocks above

The largest count of 
same value of y > k(k=(N-

1)/2)

NN

YY

The Area is all the 
areas and the value 

of Knum is k 

 Area is all areas; the 
value of Knum is the 

largest count of same 
value of y

Query

  

Figure 3. Generation of Efficient Query Tasks 

After data partitioning using the method described above, efficient query tasks 

can be found from the query containing key columns according to the attached 

metadata sheet. 

It is supposed that there are n key columns in the query conditions: 

If N is odd and (N - 1)/2 < n ≤ N, the generation process of an efficient query task 

is shown in Fig. 3: 

(1) Determining K(x, y) for each key column. 

(2) Conducting statistical analysis of values of y according to value. 

(3) If the y values of n key columns are identical and all belonged to Area m, 

directly query the data that simultaneously satisfied n key columns in Area m. 

(4) If the y values of n - 1 key columns are identical (at most), and all belonged to 

Area m, directly query the data that simultaneously satisfied n - 1 key columns in 

Area m. 

(5) If the y values of k (k > (N - 1)/2) key columns are identical and all belonged 

to Area m, we directly query the data that simultaneously satisfied k key columns in 

Area m. 

(6) If the y values of k (1 < k ≤ (N - 1)/2) key columns are identical (at most) and 

all belonged to Area m, we directly query the data that simultaneously satisfied k 

key columns in all regions. 

If N is odd and 1 < n ≤ (N - 1)/2, the generation of an efficient query went as 

follows: if the y values of k (1 < k ≤ (N - 1)/2) key columns are identical (at most) 

we directly query the data that simultaneously satisfied k key columns in all regions. 

If N is even and N/2 < n ≤ N, the efficient query task is generated as follows: 

(1) Determining K(x, y) for each key column. 

(2) Conducting statistical analysis of values of y according to value. 
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(3) If the y values of n key columns are identical and all belonged to Area m, 

directly query the data that simultaneously satisfied n key columns in Area m. 

(4) If the y values of n - 1 key columns are identical (at most), and all belonged to 

Area m, directly query the data that simultaneously satisfied n - 1 key columns in 

Area m. 

(5) If the y values of k (k > N/2) key columns are identical and all belonged to 

Area m, we directly query the data that simultaneously satisfied k key columns in 

Area m. 

(6) If the y values of k (1 < k ≤ N/2) key columns are identical (at most) we 

directly query the data that simultaneously satisfied k key columns in all regions. 

If N is even and 1 < n ≤ N/2, the generation process of an efficient query tasks 

went as follows: if the y values of k (1 < k ≤ N/2) key columns are identical (at 

most) we directly query the data that simultaneously satisfied k key columns in all 

regions. 

 

5. Case Verification 

In the verification, we assume that N = 3 and M = 3, that is, there are three key 

columns and the value, or value range, of each column is classified into three areas. 

As shown in Table 1, it is supposed that the datasheet Record has four columns: Id, 

City, Age, and Month, respectively. A total of 27 data points are generated. Each 

data represents a type of record. 

City, Age, and Month are selected as key columns. According to KCSQ, the data 

in three areas are generated, as shown in Table 2-4. In each area, data are clustered 

according to the number of key columns that satisfied the area. In Area1, the three 

key columns are valued by Beijing, 1-9, and Jan. respectively; in Area2, the three 

key columns are valued by Tianjin, 10-19, and Feb. respectively; in Area3, the three 

key columns are valued by Shanghai, 20-29, and Mar. respectively. 

The query containing key columns is firstly pre-processed to obtain Area and 

KNum, which are then used to determine the data blocks containing the information 

and generate an efficient query task. It is supposed that there are six queries: 

Table 1. Typical Record 

Id City Age Month Id City Age Month 

1 Beijing 7 Jan 15 Tianjin 12 Mar 

2 Beijing 8 Feb 16 Tianjin 20 Jan 

3 Beijing 9 Mar 17 Tianjin 21 Feb 

4 Beijing 12 Jan 18 Tianjin 22 Mar 

5 Beijing 15 Feb 19 Shanghai 9 Jan 

6 Beijing 16 Mar 20 Shanghai 8 Feb 

7 Beijing 21 Jan 21 Shanghai 7 Mar 

8 Beijing 22 Feb 22 Shanghai 15 Jan 

9 Beijing 23 Mar 23 Shanghai 16 Feb 

10 Tianjin 5 Jan 24 Shanghai 18 Mar 

11 Tianjin 6 Feb 25 Shanghai 22 Jan 

12 Tianjin 7 Mar 26 Shanghai 23 Feb 

13 Tianjin 10 Jan 27 Shanghai 26 Mar 

14 Tianjin 11 Feb     
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Queries 1-3 contain three key columns. By pre-processing, it is found that Query 1 corresponded to 

the data block for which KNum = 3 in Area1; Query 2 corresponded to the data block for which 

KNum = 2 in Area1; Query 3 corresponded to the data block for which KNum = 1 in Area1. When 

generating query tasks, it is only necessary to query corresponding data blocks. 

Queries 4 and 5 contain two key columns. By pre-processing, it is found that 

Query 4 corresponded to the data block for which KNum = 4 in Area1; Query 5 

corresponded to the data block for which KNum = 1 in Area1. When generating 

query tasks, it is only necessary to query corresponding data blocks. 

Query 6 contains one key column. By pre-processing, it is found that Query 6 

corresponded to the data block for which KNum = 1 in all three areas. When 

generating query tasks, it is only necessary to query corresponding data blocks. 

This method effectively reduces the amount of data to be queried and the number 

of working nodes in a given query: it thus effectively improves the throughput rate 

of the system. 

Table 2. Area1 

  
Area1 (Beijing, 1-9, Jan.) 

 
Id City Age Month 

Knum = 3 1 Beijing 7 Jan. 

     
Knum = 2 2 Beijing 8 Feb. 

 
3 Beijing 9 Mar. 

 
4 Beijing 12 Jan. 

 
7 Beijing 21 Jan. 

 
10 Tianjin 5 Jan. 

 
19 Shanghai 9 Jan. 

     

Knum = 1 6 Beijing 16 Mar. 

 
8 Beijing 22 Feb. 

Table 3. Area2 

  
Area2 (Tianjin, 10-19, Feb.) 

 
Id City Age Month 

Knum=3 14 Tianjin 11 Feb 

     

Knum=2 13 Tianjin 10 Jan 

 15 Tianjin 12 Mar 

 11 Tianjin 6 Feb 

 17 Tianjin 21 Feb 

 5 Beijing 15 Feb 

 23 Shanghai 16 Feb 

     

Knum=1 12 Tianjin 7 Mar 

 16 Tianjin 20 Jan 
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Table 4. Area3 

  
Area3 (Shanghai, 20-29, Mar.) 

 
Id City Age Month 

Knum=3 27 Shanghai 26 Mar 

     
Knum=2 25 Shanghai 22 Jan 

 
26 Shanghai 23 Feb 

 
21 Shanghai 7 Mar 

 
24 Shanghai 18 Mar 

 
9 Beijing 23 Mar 

 
18 Tianjin 22 Mar 

     
Knum=1 20 Shanghai 8 Feb 

 
22 Shanghai 15 Jan 

 

6. Conclusion 

KCSQ classifies data according to some key columns and records related 

metadata information when importing the database sheet files into HDFS. It pre-

processes query requests containing key columns to generate an efficient query task, 

and effectively improves the processing efficiency and system throughput rate for 

massive structured data operations. Moreover, it is packaged into middleware and 

embedded within HDFS, which can work on other HDFS-based systems with minimal 

changes to achieve an ability to conduct interactive queries. 
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