
International Journal of Database Theory and Application

Vol.8, No.3 (2015), pp.203-214

http://dx.doi.org/10.14257/ijdta.2015.8.3.17

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

An Efficient Distributed Data Management Method based key
Columns Partition Preprocessing

Xu Tao
1
, Zhang Wei

2,3*
 and Li Baolu

2

1
 Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China
2
 School of Computer Science, Beijing Information Science & Technology

University,
Beijing 100101, China

3
 Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,
Beijing Information Science & Technology University，Beijing 100101, China

t-xu10@mails.tsinghua.edu.cn, zhwei@bistu.edu.cn, libaolu0821@163.com

Abstract

With the development of mobile internet and social network, the scale of structured

data have been increasing to PB level and above rapidly, while the query performance is

greatly reduce. The efficiency of query optimization on large-scale datasets is currently a

research focus in both academia and industry. In this paper, we present a distributed data

management method, designed to improve query performance, called KCSQ. KCSQ

analyses historical SQL commands, deduces statistics using frequency and the coupling

degree of tables and table columns, and confirms the key column based on statistical

evidence. When importing new tables into the HDFS, the data are divided into different

blocks according to their key column. Any query on these columns can reduce the amount

of data to be queried and the number of working nodes and thus effectively improves the

throughput rate of the system.

Keywords: HDFS, SQL, massive structured data, key column, data partition

1. Introduction

With the rapid development of the internet, data are yielded at an increasingly high

speed [1]. Statistics from IDC suggest that the amount of data created and replicated

globally in 2011 reached 1.8 ZB [2], which is far more than the total data size of all

printed material throughout history. Research concerning big data has received much

attention. The larger the data scale, the more difficult the processing, and the higher the

value of data explored. The major internet companies and open-source groups have

developed, and shared, a number of technologies and systems, such as GFS [3],

MapReduce [4], HDFS [5], Hive [6], etc.

With the rise of social networking and e-commerce, structured data grows rapidly to

PB level or higher, which brings various problems and challenges for its management and

analysis on such a large-scale. For structured data, relational database is undoubtedly the

classical, and most popular, database system (e.g. Oracle, MySQL, SQLServer, and DB2).

In 1970, Codd [7] first proposed a new model of the relationship, which sparked research

into the relational method and theory of databases. After decades of development,

relational database have come to be widely used in various types of information

management systems and business application systems [8], and have become an effective

storage and analysis tool for data warehousing [9]. However, the system expense of

relational database for index construction and transaction mechanisms increases sharply

when dealing with PB level data. Owing to the high cost and poor scalability, relational

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

204 Copyright ⓒ 2015 SERSC

database appear weak when processing massive amounts of data and running large-scale

concurrent applications.

In recent years, HDFS has become the most common big data storage system, and

those analysis technologies and tools based on HDFS have also matured and are being

constantly perfected. At present, for massive structured data, researchers mainly focus on

the optimization of parallel database and HDFS-based technology improvement, such as

Dremel [10], Impala [11], Spark [12], BlinkDB [13], etc. In specific processing scenarios,

these systems show better performance querying on PB level structured datasets.

However, these systems make use of the original data storage format of HDFS that is

designed to deal with unstructured data, without optimization for massive structured data.

In this paper, we present a distributed data management method that is designated

KCSQ. KCSQ analyses historical SQL commands, infers statistics from the frequency of

use and degree of coupling of tables and their columns, and confirms the identity of the

key column based on these statistical results. On this basis, it classifies the data in

accordance with the key column to improve the query performance. We packaged KCSQ

into middleware and embedded it into HDFS, which can work on other HDFS-based

systems with minimal changes to achieve interactive query abilities.

2. Related Work

Massive structured data has gradually exceeded the processing scale of traditional

database. This problem can be solved by research into parallel data, to some extent. The

query performance of parallel data is closely related to the data distribution before

processing.

Li proposed a dynamic multi-dimensional data distribution method for parallel

database [14], which forcefully supported various parallel data operation algorithms in a

dynamic database. Data warehousing is another massive structured data processing

model. Li et al. proposed a multi-dimensional data model for a data warehouse [15]. This

model could fully express the structure and semantics of the complex data in a data

warehouse and effectively support on-line analytical processing (OLAP) applications.

Impala [11] is an MPP (massive parallel processing) SQL query engine developed by

Cloudera. It provides an interactive query interface directly on massive Hadoop data

stored in HDFS or HBase. However, for join queries and complex queries involving the

forwarding of intermediate results, Impala does not improve the query performance. The

query processing will even fail if the size of the intermediate results goes beyond the

memory capacity. Furthermore, Impala provides an interface for HiveQL (SQL-like) but

does not support standard SQL. Dremel [10] is an interactive data analysis system

proposed by Google. It can execute ad-hoc queries on PB level datasets in seconds. To

achieve such high performance, Dremel depends mainly on three aspects: using a new

model that supports nested data; combining multi-level execution trees and a columnar

storage format; and an ability to manage large-scale clusters. As the report engine of

Google BigQuery, Dremel makes up for the disadvantages of MapReduce. However,

Dremel is mainly meant for nested data optimization, and does not perform very well

when processing fact tables and dimension tables.

Although the storage and query of massive data are achieved using distributed parallel

queries, invalid query tasks are prone to be generated, i.e., when querying a few records

from a table, all the data blocks of the table are queried in parallel using the current

processing mode. The query on the data blocks excluding result information are invalid

query tasks. Pan et al. proposed a data distribution strategy for multi-dimensional datasets

in a cloud computing environment [16]. In this strategy, a table is divided into a base table

(the truth table) and clustered tables and a query is distributed to each data node. If the

query results have been stored to a clustered table in advance, the query is returned

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 205

directly. Otherwise, equivalence sets are queried or a recursion algorithm is called. Wang

et al. proposed a multi-dimensional indexing structure, RT-CAN [17]. By indexing, the

nodes that possibly contain result information are obtained to reduce the amount of

queried data and improve the throughput rate. Wen et al. proposed a query-oriented

database data distribution strategy (SOD) [18]. By query statistics, the querying law of a

given table is obtained. Moreover, the sheets that are frequently and jointly queried are

saved together to reduce the amount of data transmission over the network during the

query while improving query performance.

3. Key Column-based Split and Query (KCSQ)

Based on the application of Hadoop to cloud computing, and mass structured

processing, we propose a key column-based data partition and an efficient query

task generation method. The key column is found from statistics relating to the

historical query operations. The column with the highest usage frequency is deemed

to have been the key column. Efficient query task here refers to query tasks

generated for data blocks containing results.

Data sheets are stored in HDFS in block form. In cases querying all of the data

blocks in each query, invalid queries may be produced since some data blocks do

not contain the result. To solve this problem, the importation of the database sheet

to HDFS employs a key column-based data partition method. The specific process is

as follows:

(1) Determine the key column according to historical query information and

classify the key columns into M areas according to values or ranges, i.e., classifying

the universal sets of the values of the key column into M areas.

(2) Pre-process the records in the sheet according to the key column and classify

the records into different areas according to the valuation condition of the key

column.

(3) Cluster the data according to the number of the key columns meeting the area

and recording metadata information after partitioning each area (i.e., the ID, area,

and key column numbers meeting the area of each data block).

(4) Generate efficient query tasks for the query containing key columns.

4. Design and Realization of KCSQ

4.1 Sqoop

As an open source data import tool, Sqoop [19] can import sheet data in a

database into HDFS. The following command is used as an example here to explain

the data import process:

--connect jdbc:mysql://IP:3306/db_name - username root - password 111111 -

sheet sheetname - hive-import -m 2

(1) Generating a class corresponding to the structure of the sheet that needed to

be imported by searching and linking mysql using jdbc. The class is mainly used for

serialisation and deserialisation.

(2) According to the parameters followed by -m in the command, determining the

MapReduce task generated (only map tasks are used in the importing process) and

then writing data into HDFS.

(3) Establishing a new cloud hive script file, creating sheets, and loading data.

During importation, data are divided into slices according to the primary key (e.g.

record ID). Firstly, Sqoop finds out the max (ID) and min (ID) from the sheet. By

dividing the difference Val between max (ID) and min (ID), the number of entries

contained in each slice can be obtained. For example, max (ID) = 2000 and min (ID)

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

206 Copyright ⓒ 2015 SERSC

= 1, the ranges are (1-1000) and (1001-2000). Then two map tasks are initialized for

data importing, and the records belonging to the two ranges are taken as the Result

Set and imported into HDFS respectively.

4.2 Key Column-based Data Partition

When importing the database sheet into the HDFS, multiple key column-based

data partition is conducted as follows:

(1) Statistically analyzing the historical query on the database and sequencing the

query requirements in descending order according to the column usage frequency.

(2) Determining the area number M for data storage.

(3) Dividing the value range of the column into M areas and determining the

KeyColumn (simply recorded as K below) in descending order according to usage

frequency.

(4) Assuming that N key columns are selected (0 < N ≤ M); representing the value

of the area of the key column of each record by K(x, y), where, x represents a key

column and y represents its area. For instance, K(1,1) signifies that the first key

column is valued in the first area.

(5) As for arbitrary record in the database sheet, we determined the first column

as the standard key column and judged the area of the records in the sheet, as shown

in Fig. 1.

5.1) Determining K(x, y) for each key column.

5.2) Conducting statistical analysis of the values of y obtained in Step 5.1 by and

finding the frequency of appearance of each y value.

5.3) Given N values for y, determining the area of y according to the first column.

5.4) Setting the area of the y value at its maximum amount as the area of this

record, if the value variety number of y is less than N and y merely has one

maximum value.

5.5) Determining the area of the y value of the key column with a small number

as the area of this record is needed, if the value variety number of y is less than N

and y has more than one maximum value. For example, when N = 5, M = 6, the

statistical results of a record are K(1,1), K(2,1), K(3,2), K(4,2), and K(5,6) ; i.e., key

columns 1 and 2 are valued in Area 1; key columns 3 and 4 are valued in Area 2;

and key column 5 is valued in Area 6. Therefore, with y values of key columns 1

and 2 as standard, the record should be stored in Area 1.

Through the above method, any record can be divided into a single area. As

shown in Fig. 2, data are clustered according to the conditions classifying them into

each region. There are N possibilities for the classification condition of each region:

(1) The value of N key columns satisfies the area.

(2) The value of N - 1 key columns satisfies the area.

(3) The value of N - 2 key columns satisfies the area.

…

(N - 1) The value of 2 key columns satisfies the area.

(N) The value of 1 key column satisfies the area.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 207

One record

If there is less than N
different y and the largest

count of one certain
value of y is single

If there is N different y

If there is less than N
different y and the largest

count of one certain
value of y is not single

The area of the record is
that the largest count of

the certain value of y

The area of the record
is that the first

KeyColumn belongs

The area of the record is
that the largest count of

the certain value of y，
which the corresponding

x is smaller

Confirm the Area of all

KeyColumns—K(x,y)

Confirm the number of
every value of y of K(x,y)

Figure 1. Process of Judging the Area of a Record

Table

Meet N KeyColumns

……

Area1Area1 Area2Area2 AreaMAreaM

Meet N-1 KeyColumns

Meet k KeyColumns

Meet 2 KeyColumns

Meet 1 KeyColumn

Meet N KeyColumns

Meet N-1 KeyColumns

Meet k KeyColumns

Meet 2 KeyColumns

Meet 1 KeyColumn

Meet N KeyColumns

Meet N-1 KeyColumns

Meet k KeyColumns

Meet 2 KeyColumns

Meet 1 KeyColumn

Figure 2. Result of Judging the Area of a Record

4.3 Storage and Application of Metadata

According to the storage and processing of the metadata [20][21] in Hadoop, the

Area of each data block and the number of key columns that satisfied the current

Area are recorded during importation: this information is stored by generating an

attached table named DB_TABLENAME_META. Here, DB_TABLENAME_META

mainly contained three fields: BlockID, Area, and KNum. BlockID represents the

number of the data block in HDFS; Area represents the region of the data block;

KNum is the number of key columns that satisfy the current region in the data

block.

In case of receiving a query request from the client, the query request is firstly

processed. If the query request does not contain key columns, we query the whole

sheet; otherwise, we need to find the maximum number of key columns (KNum)

with small number within the Area. Using Area and KNum, it is possible to obtain

the BlockID containing the final result information from the table

DB_SHEET_META and, in turn, generate efficient query tasks for those data blocks

containing result information.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

208 Copyright ⓒ 2015 SERSC

4.4 The Generation Process of Efficient Query Tasks

KeyColumn number n
is odd

(N-1)/2<n<=N

YY

NN

Get K(x,y) of all KeyColumn

The Area is the value of y above and the value of
Knum is k

According the values of Area and Knum, Query the
table of DB_TABLENAME_META to get the BlockID

of the Block that contains the result

Generated query tasks of the Blocks above

The largest count of
same value of y > k(k=(N-

1)/2)

NN

YY

The Area is all the
areas and the value

of Knum is k

 Area is all areas; the
value of Knum is the

largest count of same
value of y

Query

Figure 3. Generation of Efficient Query Tasks

After data partitioning using the method described above, efficient query tasks

can be found from the query containing key columns according to the attached

metadata sheet.

It is supposed that there are n key columns in the query conditions:

If N is odd and (N - 1)/2 < n ≤ N, the generation process of an efficient query task

is shown in Fig. 3:

(1) Determining K(x, y) for each key column.

(2) Conducting statistical analysis of values of y according to value.

(3) If the y values of n key columns are identical and all belonged to Area m,

directly query the data that simultaneously satisfied n key columns in Area m.

(4) If the y values of n - 1 key columns are identical (at most), and all belonged to

Area m, directly query the data that simultaneously satisfied n - 1 key columns in

Area m.

(5) If the y values of k (k > (N - 1)/2) key columns are identical and all belonged

to Area m, we directly query the data that simultaneously satisfied k key columns in

Area m.

(6) If the y values of k (1 < k ≤ (N - 1)/2) key columns are identical (at most) and

all belonged to Area m, we directly query the data that simultaneously satisfied k

key columns in all regions.

If N is odd and 1 < n ≤ (N - 1)/2, the generation of an efficient query went as

follows: if the y values of k (1 < k ≤ (N - 1)/2) key columns are identical (at most)

we directly query the data that simultaneously satisfied k key columns in all regions.

If N is even and N/2 < n ≤ N, the efficient query task is generated as follows:

(1) Determining K(x, y) for each key column.

(2) Conducting statistical analysis of values of y according to value.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 209

(3) If the y values of n key columns are identical and all belonged to Area m,

directly query the data that simultaneously satisfied n key columns in Area m.

(4) If the y values of n - 1 key columns are identical (at most), and all belonged to

Area m, directly query the data that simultaneously satisfied n - 1 key columns in

Area m.

(5) If the y values of k (k > N/2) key columns are identical and all belonged to

Area m, we directly query the data that simultaneously satisfied k key columns in

Area m.

(6) If the y values of k (1 < k ≤ N/2) key columns are identical (at most) we

directly query the data that simultaneously satisfied k key columns in all regions.

If N is even and 1 < n ≤ N/2, the generation process of an efficient query tasks

went as follows: if the y values of k (1 < k ≤ N/2) key columns are identical (at

most) we directly query the data that simultaneously satisfied k key columns in all

regions.

5. Case Verification

In the verification, we assume that N = 3 and M = 3, that is, there are three key

columns and the value, or value range, of each column is classified into three areas.

As shown in Table 1, it is supposed that the datasheet Record has four columns: Id,

City, Age, and Month, respectively. A total of 27 data points are generated. Each

data represents a type of record.

City, Age, and Month are selected as key columns. According to KCSQ, the data

in three areas are generated, as shown in Table 2-4. In each area, data are clustered

according to the number of key columns that satisfied the area. In Area1, the three

key columns are valued by Beijing, 1-9, and Jan. respectively; in Area2, the three

key columns are valued by Tianjin, 10-19, and Feb. respectively; in Area3, the three

key columns are valued by Shanghai, 20-29, and Mar. respectively.

The query containing key columns is firstly pre-processed to obtain Area and

KNum, which are then used to determine the data blocks containing the information

and generate an efficient query task. It is supposed that there are six queries:

Table 1. Typical Record

Id City Age Month Id City Age Month

1 Beijing 7 Jan 15 Tianjin 12 Mar

2 Beijing 8 Feb 16 Tianjin 20 Jan

3 Beijing 9 Mar 17 Tianjin 21 Feb

4 Beijing 12 Jan 18 Tianjin 22 Mar

5 Beijing 15 Feb 19 Shanghai 9 Jan

6 Beijing 16 Mar 20 Shanghai 8 Feb

7 Beijing 21 Jan 21 Shanghai 7 Mar

8 Beijing 22 Feb 22 Shanghai 15 Jan

9 Beijing 23 Mar 23 Shanghai 16 Feb

10 Tianjin 5 Jan 24 Shanghai 18 Mar

11 Tianjin 6 Feb 25 Shanghai 22 Jan

12 Tianjin 7 Mar 26 Shanghai 23 Feb

13 Tianjin 10 Jan 27 Shanghai 26 Mar

14 Tianjin 11 Feb

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

210 Copyright ⓒ 2015 SERSC

Queries 1-3 contain three key columns. By pre-processing, it is found that Query 1 corresponded to

the data block for which KNum = 3 in Area1; Query 2 corresponded to the data block for which

KNum = 2 in Area1; Query 3 corresponded to the data block for which KNum = 1 in Area1. When

generating query tasks, it is only necessary to query corresponding data blocks.

Queries 4 and 5 contain two key columns. By pre-processing, it is found that

Query 4 corresponded to the data block for which KNum = 4 in Area1; Query 5

corresponded to the data block for which KNum = 1 in Area1. When generating

query tasks, it is only necessary to query corresponding data blocks.

Query 6 contains one key column. By pre-processing, it is found that Query 6

corresponded to the data block for which KNum = 1 in all three areas. When

generating query tasks, it is only necessary to query corresponding data blocks.

This method effectively reduces the amount of data to be queried and the number

of working nodes in a given query: it thus effectively improves the throughput rate

of the system.

Table 2. Area1

Area1 (Beijing, 1-9, Jan.)

Id City Age Month

Knum = 3 1 Beijing 7 Jan.

Knum = 2 2 Beijing 8 Feb.

3 Beijing 9 Mar.

4 Beijing 12 Jan.

7 Beijing 21 Jan.

10 Tianjin 5 Jan.

19 Shanghai 9 Jan.

Knum = 1 6 Beijing 16 Mar.

8 Beijing 22 Feb.

Table 3. Area2

Area2 (Tianjin, 10-19, Feb.)

Id City Age Month

Knum=3 14 Tianjin 11 Feb

Knum=2 13 Tianjin 10 Jan

 15 Tianjin 12 Mar

 11 Tianjin 6 Feb

 17 Tianjin 21 Feb

 5 Beijing 15 Feb

 23 Shanghai 16 Feb

Knum=1 12 Tianjin 7 Mar

 16 Tianjin 20 Jan

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 211

Table 4. Area3

Area3 (Shanghai, 20-29, Mar.)

Id City Age Month

Knum=3 27 Shanghai 26 Mar

Knum=2 25 Shanghai 22 Jan

26 Shanghai 23 Feb

21 Shanghai 7 Mar

24 Shanghai 18 Mar

9 Beijing 23 Mar

18 Tianjin 22 Mar

Knum=1 20 Shanghai 8 Feb

22 Shanghai 15 Jan

6. Conclusion

KCSQ classifies data according to some key columns and records related

metadata information when importing the database sheet files into HDFS. It pre-

processes query requests containing key columns to generate an efficient query task,

and effectively improves the processing efficiency and system throughput rate for

massive structured data operations. Moreover, it is packaged into middleware and

embedded within HDFS, which can work on other HDFS-based systems with minimal

changes to achieve an ability to conduct interactive queries.

Acknowledgements

Funding for this research was provided in part by the Program for the Top Young

and Middle-aged Innovative Talents of Higher Learning Institutions of Beijing, the

Opening Project of Beijing Key Laboratory of Internet Culture and Digital

Dissemination Research (ICDD201306), and The Project of Construction of

Innovative Teams and Teacher Career Development for Universities and Colleges

Under Beijing Municipality (IDHT20130519). We like to thank anonymous

reviewers for their valuable comments.

References

[1] R. Maggiani, “Cloud Computing Is Changing How We Communicate”, IEEE International Professional

Communication Conference, IPCC, (2009).

[2] F. Yingxun, L. Shengmei and S. Jiwu, “Secure cloud storage system and summary of key technologies”,

Computer Research and Development, (2013), vol. 50, no. 1.

[3] S. Ghemawat, H. Gobioff and S. T. Leung, “The Google file system”, ACM SIGOPS Operating Systems

Review, vol. 37, no. 5, (2003), pp. 29-43.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters”, Commun. of

ACM, vol. 51, no. 1, pp. 107-113, (2008).

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System”, Proceedings

of IEEE Conference on Mass Storage Systems and Technologies (MSST), (2010), pp. 1-10.

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, and R. Murthy, “Hive

- a petabyte scale data warehouse using Hadoop”, IEEE 29th International Conference on Data

Engineering (ICDE), (2010), pp. 996-1005.

[7] E. F. Codd, “A Relational Model of Data for Large Shared Data Banks”, Communications of the ACM,

vol. 13, no. 6, (1970), pp. 377-387.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

212 Copyright ⓒ 2015 SERSC

[8] L. Bellatreche and K. Y. Woameno, “Dimension table driven approach to referential partition relational

data warehouses”, Proceedings of the ACM twelfth international workshop on Data warehousing and

OLAP, (2009); New York, NY, USA.

[9] J. Han , J. Y. Chiang , S. Chee , J. Chen , Q. Chen , S. Cheng , W. Gong , M. Kamber , K. Koperski , G.

Liu , Y. Lu , N. Stefanovic , L. Winstone , B. Xia , O. R. Zaiane , S. Zhang , and H. Zhu, DBMiner, “a

system for data mining in relational databases and data warehouses”, Proceedings of the 13th Biennial

Conference of the Canadian Society on Computational Studies of Intelligence: Advances in Artificial

Intelligence, (1997), pp. 326-336.

[10] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis, Dremel,

“Interactive analysis of webscale datasets”, Proceedings of the VLDB Endowment, vol. 3, n. 1-2, pp.

330-339, (2010).

[11] Impala project, http://impala.io/.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker, and I.

Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing”,

Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, (2012).

[13] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica, BlinkDB, “Queries with

Bounded Errors and Bounded Response Times on Very Large Data”, Proceedings of the 8th ACM

European Conference on Computer Systems, (2013), New York, NY, USA.

[14] J. Li, “A Dynamic and Multidimensional Declustering Method for Parallel Databases, Journal of

Software, 1999, 10(9):909-916.

[15] J. Li and H. Gao, Multidimensional Data Model for Data warehouses”, Journal of Software, vol. 11, no.

7, (2000), pp. 908-917.

[16] H. Pan, L. Gao, Y. Liu, “Research on Query and Data Distribution Strategy of Data Cube in Cloud

Computing Environment”, Microelectronics & Computer, vol. 29, no. 8, (2012).

[17] J. Wang, S. Wu, H. Gao and B. C. Ooi, Indexing Multi-dimensional Data in a Cloud System, in

Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, ACM,

(2010), pp. 591-602.

[18] M. Wen and Z. Ding, “Selection Oriented Database Data Distribution Strategy for Cloud Computing”,

Computer Science, (2010), vol.37, no. 9.

[19] Apache Sqoop project, http://sqoop.apache.org/.

[20] A. Chandrasekar, K. Chandrasekar, H. Ramasatagopan, A. R. Rafica and J. Balasubramaniyan,

“Classification Based Metadata Management for HDFS”, Proceeding of High Performance Computing

and Communication, (2012), pp. 1021-1026.

[21] C. L. Abad, H. Luu, N. Roberts, K. Lee, Y. Lu and R. H. Campbell, “Metadata Traces and Workload

Models for Evaluating Big Storage Systems”, Proceedings of the 2012 IEEE/ACM Fifth International

Conference on Utility and Cloud Computing, (2012), pp. 125-132.

Authors

Xu Tao, he is currently a PhD candidate in Department of

Computer Science and Technology of Tsinghua University. He

received his MS degree from Tsinghua University in 2005. His

research interests include massive storage, large-scale distributed

system, and stream computing.

 Zhang Wei, he is now an associate professor in School of

Computer Science at Beijing Information Science & Technology

University. He is a senior member of Beijing Key Laboratory of

Internet Culture and Digital Dissemination Research. His research

interests include big data storage and security, software hardware co-

design.

http://impala.io/

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 213

 Li Baolu, he is currently a master student in School of

Computer Science at Beijing Information Science & Technology

University. His research focuses on big data storage.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

214 Copyright ⓒ 2015 SERSC

