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Abstract 

Relational classification (RC) is concerned with the application of statistical learning 

to relational data. RC models do not have improved stability to smooth the perturbations 

generated by variations in the correlation between the relational data. Therefore, few 

studies have attempted to derive a bound and develop a stability learning framework for 

RC models. To solve this problem, we derive a learning bound with a new measure 

dependence stability and a limited Vapnik–Chervonenkis (VC) dimension. Based on the 

learning bound, we then design a stable learning framework that serves as a guideline for 

the development of new learning algorithms for a broad class of RC models. Applying a 

Markov logic network on synthesized and real-world datasets, our experimental results 

demonstrate that our bound can be tight if the RC model has appropriate dependence 

stability and limited VC dimension and our learning framework increases the stability of 

RC models while reducing the deviation between empirical risk and true risk. 

 

Keywords: Dependence Stability, Learning Bound, VC Dimension, Relational 

Classification 

 

1. Introduction 

Relational data consists of objects and the relationships between these objects are  

termed as links. Each object has a class label and some attributes. Relational data 

represented at the individual object and link level as a graph is called a relational 

data graph [1], wherein the vertices are the objects or attributes and the edges are 

the links. The left box in Figure 1 shows a toy training data. The data have three 

objects. Each object has two attributes and a class label.  

However, previous works on knowledge transfer learning transfer knowledge in a one-

to-one fashion, i.e., only from a single source domain to a single target domain. The 

knowledge transferred from a single source domain may not be enough to solve new 

problems. In contrast, Humans are far better than machines as they can learn knowledge 

from different domains. For example, in scientific innovation, humans get knowledge 

from multiple disciplines and generate new knowledge to solve new problems. What is 

missed in machine transfer learning is the ability to create new knowledge from different 

domains and to transfer pivot knowledge appearing frequently in most of domains.  

The learning process of RC models includes structure learning and parameter learning. 

In some cases the relations among in the objects are explicitly given. In this paper we 

focus on some cases that the dataset contains implicit relations, e.g. the relation is hidden 

inside of noisy attribute values. Manually extracting relations by a domain expert is an 

expensive and time consuming task. To solve the problem, during the structure learning 

the RC model searches the relational template to capture the relationships of relational 

training data. For parameter learning, given the relational template, the RC model 

searches the best parameter for fitting the data. In the process of relational classification, 

related objects are classified simultaneously. This procedure is common to graphical 
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models that assume some form of the instance dependence, including Probabilistic 

Relational Models (PRMs) [2], Markov logic Networks (MLNs) [3], and others. As an 

example, Figure 1 graphs the learning and classification process of RC models.  

Unfortunately, RC models based on maximum likelihood general learning methods 

(such as, MLN, Relational Dependence Networks (RDNs)[4], etc.) are often instable in 

the strength of dependence between related objects. Ahmed and Neville empirically 

investigated this case and observed that the dependence do vary significantly throughout 

the test data. This observation implies that the generalization of RC models is impossible. 

In contrast, empirical results [6, 7] and a recent statistical analysis suggest that such a 

generalization is possible, if a single or few examples having small internal correlation 

and the models have a suitably controlled capacity[8]. These empirical investigation 

motivate us to control the dependence stability of the RC model.  

In this paper, for quantization study on the instable in dependence, we adopt two 

dependence measures that Dhurandhar proposed [9, 10]. One measure is the number of 

independent subsets k . Another measure is the dependence strength d  [1], which 

measures the dependence within every subset. Based on the two dependence measures, 

we first propose a novel dependence stability measure. The measure parameterizes the 

independent subsets k  and the dependent of the RC model d  to restrict small changes in 

the input data. Therefore, the dependence stability enables finer control over the 

smoothness of the generalization error. We then use the dependence stability and VC 

dimension to derive a learning bound. By a detailed analysis of the feasibility of this 

bound, we obtain the conditions under which RC models are learnable, and the necessary 

criteria for the bound to be tight. Finally, based on the analysis we design a stable learning 

framework that can be used to develop novel structure and parameter learning algorithms.  

We test the stable learning framework empirically. Our experiments on synthesized 

and real-world datasets demonstrate that: (1) our bound can be tight if the RC model has 

an appropriate dependence stability and limited VC dimension; (2) our stable learning 

algorithm simultaneously increases the stability while reducing the deviation between 

empirical risk and true risk. 

Figure 1. Learning and Classification Process of RC Models 

The Training and Test Data have three objects respectively. Each object has two 

attributes, and a class label. The green dash line represents an implicit relation in the data. 

The purple solid line represents a relation is determined by the RC model rather than 

implicit in the data. Note that, the relation that determined by the RC model may not fully 

fit the implicit relation in test data (the cross on the dash line in the test data means the 

implicit relation is unfortunately ignored). 
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2. Preliminaries 

In this section, we first set up the learning framework. We then make a detailed 

introduction to the two dependence measures k  and d .  

 

2.1. Set up 

As all graphs can be viewed as a hypergraph, the definition of uncertain graph [8] 

can be extended to uncertain hypergraph directly. 

We consider the familiar relational learning setting where the learning algorithm 

receives a sample of N  labeled objects 

1 1 1( ) (( ) ( )) ( )N

N N N NZ z z x y x x y X Y         , where X  is the attributes space 

of input objects and the Y  is the label set, which is {0 1}  in classification. In the process 

of relational classification, related objects are classified simultaneously. We denote a 

relational classifier by ˆ
NNM X Y  , where the ˆ

N

Y  is output set.  

The relational classifier has ability to determine the relation between objects (The 

purple solid line in Figure 1), thereby contributes to the construction of the object 

dependency graph. Let 1{ }N l

iG X e    be the edge indicator function, the NX  is input 

space and the output 
1{ }l

ie 
 is a set. The {0 1}e   indicates that whether there is an edge 

link two objects in the object dependency graph. When the object dependency graph have 

N  vertexes, the maximal edge number of the graph is ( 1) 2l N N   . Let 

1{ } [1 ]l

iI e k N     be a independent subset counting function. Function I  input linking 

information, and output the number of independent subset of the dependency graph.  

For study the learning bound of RC model, we denote the relational classifier set 

by 1 2{ }pM M M    , where the p  is number of relational classifier in set. Let 

ˆ
NNL Y RY    be the loss function, where Y  is the label set. The expected loss of 

the particular classifier M  be ( ) [ ( ( ) )]R M E L M x y  , and the empirical loss be 

1

1

ˆ( ) ( ( ))
N

i iN i
R M L y M x


  . 

 

2.2. Dependence Measures 

In some cases, the object dependency graph is disconnected, and consists of 

independent subsets (subgraphs). Each independent subgraph is connected. Based on 

this observation, Dhurandhar and Dobra proposed two measures to characterize the 

data relation[9][10]: the number of independent subsets k  in the range [1 ]N  ( N  is 

number of object in data), and the dependence strength d  [1], which measures the 

dependence of every subset in the range [0 1] .  

 The number of independent subsets k  capture the subset (subgraphs) property of the 

object. In general, the more number of independent subset (subgraphs), the more 

independent in relational data.  

 The dependence strength d  measures the degree of similarity between the related 

objects. For relational data, this statistical dependence is called relational 

autocorrelation.  

 

2.3. Calculation of the Dependence Measures 

The number of independent subset (subgraphs) k  can be obtained by independent 

subset counting function (repeating depth-first search on the object dependency 

graph). For computing d , we adopted the normalized version of the Kullback–

Leibler divergence [11]. 
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where k  is the number of independent subsets, ip  is the empirical distribution over 

the values of the discrete attribute computed on the thi  independent subset, q  is the 

maximum entropy distribution over the values of the discrete attribute, ( )KL   is the 

Kullback–Leibler divergence, and qH  is the entropy of q .  

Although some relational models assume the autocorrelation is stable throughout 

the data, many real-world relational datasets exhibit significant variation in k  and 

d  with increasing N . We use the expectation and variance of k  and d  to 

characterize this variability. Let [ ] ( )N kE k f N  and [ ] ( )N dE d f N  be the sampling 

expectation functions of N  about k  and d , and let [ ] ( )kvar k g N  and 

[ ] ( )dvar d g N  be the variance functions of N  about k  and d , respectively. 

Instead of considering the relational data to describe a temporal process  [10, 12], we 

are able to further study the successive process with these expectation and variance 

functions. The function can be formulated as 1D ( { } )N l

iY e k d    . 

 

3. Dependence Stability of RC Models 

If RC models cannot smooth the fluctuations caused by an increasing volume of 

sample data, the models are unstable and difficult to generalize. In this section, we 

define a dependence stability set to restrict the fluctuations in RC models.  

To accommodate a variety of loss functions and relational functions, we require 

the following generic properties. With these properties, the learning bound can be 

tightened in some case. We recall the definition proposed in literature[12], and 

revise it accordingly.  

Definition 1. A loss function ˆ
NNL Y RY    is ( )B admissible   if there exist 

constants B   and     such that: (1) for any y y Y   and ˆŷ Y , 

ˆ ˆ( ) ( )L y y L y y B     ; (2) for any y Y  and ˆˆ ˆy y Y  , 

1
ˆ ˆ ˆ ˆ( ) ( )L y y L y y y y        .  

Definition 2. An independent subset counting function 1{ } [1 ]l

iI e k N    , and a 

relational autocorrelation function 1( { } ) [0 1]N l

iD Y e k R       are ( )k d acceptable    

functions if, for NY Y Y   ,
1

( ) ( ) ( )kI Y I Y Y Y     and 

1
( ) ( ) ( )dD Y D Y Y Y      hold.  

Because structure and parameter learning have different processes, better stability 

measures should be able to characterize both structure and parameter learning. However, 

the existing stability measure views the learning as separate processes. To solve this 

problem, we propose a dependence stability set to control the two learning processes 

concurrently.  

Definition 3. Let M  be a relational classification model from nX  to nY . Let the loss 

function L  be ( )B admissible  , and the functions I  and D  be ( )k d acceptable   . 

We say that M  has dependence stability { }k k d ds e s e    if, for any two inputs 
nx x X   

that differ only at a single coordinate,  

1
( )

k

ii

q

KL p q
d

kH







1
[ ( )] [ ( )]

[ ( )] (3)

sup

inf

k

M k

k
M

s
I G z I G z

N

I G z e N
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hold. For the space limited, we denote the ( )D   is the abbreviation of function D .  

The set of dependence stability has two subsets. The first is defined in formula 

(2), which includes { }k ks e . This subset restricts the number of independent subsets 

k  that can be output by the RC model. Thus, the subset can smooth the progress of 

structure learning. The second subset is defined in formula (3), which includes 

{ }d ds e . This subset restricts the dependence strength d  of the output of the RC 

model. This restriction mainly applies to parameter learning. 

 

4. Generalization Bounds 

In this section, we use dependence stability to derive PAC Generalization Bounds 

for RC models. The sufficient conditions for generalization are that the RC models 

have dependence stability and limited VC dimension.  
 

4.1. Concentration Inequality 

It is well known that VC bounds [13] for i.i.d learning are based on Hoeffding-

like bounds. However, the Hoeffding bound cannot be directly used on relational 

data. To overcome this restriction, Dhurandhar and Dobra proposed a distribution-

free bound on the generalization error of a non-i.i.d classifier[9][10]. Our study is 

based on this bound.  

Theorem 1. Let N  objects 1( )Nz z  be drawn sequentially from relational data 

with a single-strength dependence parameter d , loss function ( ) [0 ]M    , and k  

independent subsets. Assume that 1 2[ ] [ ] [ ]NE E E     , and 2i N      
1

1 1 1 1 1 1
[ , ] (1 ) [ ]

i
d

i i i k ii j
E Z Z z Z z z d E Z



   
       . Then, for 1 ( )

N
t N k Md  ,  

 
22[ ( )( )]

[ ] 2
Nt N k d

NP Z Z t e
   

     

where ( )i imax   is the error produced by violating the assumptions.  

Because the bound uses both the number of independent subsets and the 

autocorrelation values as a parameter, it will be more useful than other bounds, 

especially when most of the objects are linked via weak correlation [10]. However, 

the bound is a temporal value, and k  and d  are computed from N  given relational 

data.  
 

4.2. Dependence Stability Learning Bounds 

In this section, we present a definition of the VC dimension for the self -

contained. We then state our main result concerning the learning bound of RC 

models.  

Definition 4. The VC dimension of a hypothesis class C , denoted by VC ( )dim C , 

is the cardinality d  of the largest set S  shattered by C . If all sets S  (arbitrarily 

large) can be shattered by C , then VC ( )dim C   . Otherwise, VC 

( ) {dim C max d S      ( ) 2 }dd and growfunction S    .  

We now state our main results.  

1
( ) ( )

[ ( ) ( ) ( ( )]

sup

sup

d

M d

d

M

s
D D

N

D M X G z I G z e
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Theorem 2. For any 0  , 0k  , 0d   and 
(1 )(1 )k d

k d d k
B

 

    

 

  
 ,   

holds with probability 1   over N  samples.  

Note that, the parameters in the learning bound include extensive measures: the 

dependence stability ( { }k k d ds e s e   ), the complexity of the model (VC dimension d ) 

and data sampling stability (expectation and variance of k  and d ). Thus, we can 

make a detailed analyzes of the feasibility of the bound.  

We prove Theorem 2 via a series of lemmas. The first lemma establishes the 

bridge between the variance functions of k , d  and the dependence stability.  

Lemma 1. If M  has dependence stability { }k k d ds e s e   , the following inequalities 

hold:  

        
2

( )
2

d
d

s
g N      and 

2

( ) .
2

k
k

s
g N   

The following we extend the standardization symmetrization lemma [14] to non-

i.i.d classifiers. The extended lemma replaces the maximum difference between 

empirical and real risks by the maximum difference between two empirical risks. 

This replace is useful because the estimation value of classifier is much easier to 

compute than real risk.  

Lemma 2. For any 0  , let 
( ) ( )

( ( ) )( ( ) )k d

k d

g N g N

k dv N f N f N        , such 

that   1
2

2 (1 )(1 )1 1 1
2 2

ln k d

d k k d
N

N v
 

   


 

  
  , and with probability at least (1 ) , the following 

result holds:  

We use the Lemma 2 to build a learning bound. We also add function of 

expectation and variance of k  and d  to the learning for characterizing the 

significant variation in k  and d  with increasing N  (introduced in preliminaries 

section).  

Lemma 3. Let the classification model space is  , let [ ] ( )kE k f N  and 

[ ] ( )dE d f N  be the expectation functions of N  about k  and d , respectively, and 

[ ] ( )kvar k g N  and [ ] ( )dvar d g N  be the variance functions of N  about k  and d , 

respectively. Then we have that  

hold.  
 

( ( ( ) ( )) ) 2 ( ( ( ) ( ))) )
2

sup sup
M M

P R M R M P R M R M



 

    

4 2
( ) ( ) {ln 2 d ln( ) ln }

2 d

4 1 1
[ ][ ]

2 2
k k d d

k d

N eN
R M R M B

N

N e N s e s
N


 





   

    

( ) ( ) 22 [ ( ( ) )( ( ) )]

2eˆ ˆ( ( ) ( )) (1 )

(1 )e

sup

g N g Nk d
k dN k d

d

k

M

N N f N f N

d d k k d

N
P R M R M

d
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5. Stable Learning Framework  

We want to apply this bound to guide the designing of learning algorithm. In this 

section, we first analyzes the feasibility of our bound. Then, based on this analysis, 

we introduce a stable learning framework for RC models.  
 

5.1. Feasibility Analysis 

The VC bounds ensure that, as the number of sample data increases, the classifier 

is learnable if and only if the VC dimension of the classifier is limited. However, 

that the bound is learnable is not sufficient to guarantee it is tight. Thus, we n ow 

investigate how the bound varies as the parameters ( d N  ) and the dependence 

stability ( k k d ds e s e   ) change.  

We set 30d   for all experiments, thus focusing on the influence of varying the 

dependence stability of the RC models. We plot the experimental results in Figure 2, 

and observe the following:  

 The bound decreases with increasing N  in all sub-figures, especially in 

Figure 2(c). With the current parameter settings, this trend suggests that the 

relational model is learnable if the model has a limited VC dimension.  

 Figure 2(a), (b) shows that increasing ke  and decreasing de  leads to a tight 

bound.  

 The bound is insensitive to variations in ks  as shown in Figure 2(c).  

 The variation of ds  has a substantial impact on whether the bound is non-

trivial. Figure 2(d) shows that, although we set a large ke  and small de , the 

bound is still trivial when ds  is greater than 5.  

These observations illustrate that the dependence stability of RC models is an 

important factor for getting a tight bound. In particular, a large ke , small de  and ds  

leads to a non-trivial bound. These observations comply with some assumptions 

about obtaining a tight bound [12]. They assumption that the data exhibits a weak 

dependence and the predictor exhibits certain complexity and stability properties. In 

this study, we use a large ke  and small de  to represent the weak dependence, and 

use the VC dimension to represent the complexity of models.  

 

 

 

 

 

 

(a) Varying ke  and N                            (b)Varying ke  and N  
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(c) Varying ks  and N                         (d)Varying ds  and N  

Figure 2. Each Point is the Average over Four Folds. The Solid Lines 
Represent a Moving Average over a Five-point Window. The Red Color 

Represent the 1C  , the Blue Color Represent the 0 2C   , the Green Color 

Represent the 0 1C   . 

 

5.2. Learning Framework Design 

According to above analysis, a stable learning algorithm must ensure a large ke , 

small de , ds  and limited VC dimension.  

 We ensure a large ke  in structure learning. We found the relational template 

and data determining the number of independent subset of RC models. For 

example, if all relational data are instances of a relational template, the 

dependency graph of the model is connected. Thus, the number of 

independent subsets k  is 1. Additionally, when the relational template is 

determined, changing the parameters of the RC model only influences the 

dependence within each subset. Thus, in our learning framework, during 

structure learning, we mainly restrict ke . Based on this consideration, line 5 

to line 7 in Algorithm 1 ensures the ke  is large.  

 We restrict de  and ds  in the parameter learning. In line 8, we add a 

punishment item d  to guarantee dependence stability during parameter 

learning. The more detail parameter learning process we will introduce in 

section 8.2.  

 We also restrict the complexity of the relational template to indirectly obtain 

a small VC dimension of the RC models. Note that, the complexity of RC 

models increases with the number of relational template. A relational 

template can be regarded as a first order logic formula in MLN or a mode in 

RDN. This observation is in agreement with preceding studies [15] [16] [17] 

that restricted the learned relational template in the structure learning process 

to prevent over-fitting.  

 

 

Algorithm 1: Stable learning framework 

Input: relational data T , ke , de , ks , ds , a threshold minGain   

Output: RC models include a set of relational template and parameters 

1  while no  candidate  relational  schemas  added  or  Gain    minGain  do 

2        Generate  or  revise  the  candidate  relational  schemas  with  limited  

complexity  
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3     Create  the  data  graph  based  on  current  candidate  relational  schemas  and  

relational  data  

4    C o m p u t e the  k  of  data  graph  by  repeated  depth first  searches  (by  a  

independent  subset  counting  function  )I  

5        if k N  
ke  then 

6       Heuristic  delete  some  candidate  relational  schemas  that  decrease  the  k  

7        end 

8  P a r a m e t e r learning  with  current  candidate  relational  schemas  

iterative learning process  for  the  restricted  
de , 

ds , and  obtaining  an  

optimum  fitting  value  for  Gain  

9   end 

 

 

The structure learning method in line 2 is already widely applied in many RC 

models. For instance, the learning algorithm of MLN will predefine the maximum 

length of the first logic formula, and the RDNs will limit the maximum depth of the 

tree. Note that, the main difference between our learning framework and existing 

method is not the method in line 2, but the method of finer-grain control ke , de  and 

ds  that describe in line 4 to 8.  

How to use the stable learning framework for a broad class of RC models? 

Briefly, first we need to add an independent subset counting function I  in structure 

learning process and ensure the number of independent subset of the dependence 

graph is large enough. Second we have to add the stability punishment item in the 

optimizing process in parameter learning (the more detail information is described 

in Section 8.2).  
 

6. Experiments 
 

6.1. Synthetic and Real Datasets 

We evaluated the dependence stability using two real datasets. The first contains 

a classification of webpages from a subset of the WebKB data set, as preprocessed 

by literature [18]. The processed dataset consists of networks of webpages 

categorized by course, faculty, project, staff, and student. The pages were collected 

from four universities, and each page is annotated with word occurrences and links. 

This preprocessed version of the WebKB data set is relatively small, containing on 

average 219 pages and 402 links per school.  

The second real dataset was the Internet Movie Database (IMDb), downloaded 

from the alchemy system [19]. The classification task involved identifying the 

gender of an actor based on the directors they have worked under. Directors usually 

produce movies of a particular genre, which may demand more actors of a certain 

gender.  
 

6.2. Dependence Stability Learning 

To instantiate a structured predictor with which we can experiment by adjusting 

the dependence stability, we modify a MLN structure learning algorithm [16] and a 

variant of Max-Margin Markov Logic network (M3LN) parameter learning method 

[20].  

We modify the structure learning algorithm by mainly restricting ke , and also 

restrict the complexity of the relational template indirectly to obtain a small VC 

dimension of the RC models. We modify the M3LN framework by augmenting the 
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inference objective with a dependence stability regularization term. Though the 

theory provides guarantees for dependence stability with respect to the 1 -norm, in 

these preliminary experiments, we use a squared 2-norm as the dependence stability 

term for computational convenience.  

The max-margin learning objective is  

The entire learning progress is same as Algorithm 2, which includes structure and 

parameter learning simultaneously. In each experiment, we apply a variety of slack 

parameters (C: 0.1, 0.2, 1) and a range of dependence stability parameters ( ke [0, 

0.5], de  [0, 0.5]). To evaluate our predictions, we compute the classification error 

rates on both the training and test sets. In Figure 3, we plot the difference between 

the training and test error rates following four-fold cross-validation.  

Because the training is conducted on one relatively small network at a time, 

changes in dependence stability and C  can cause spurious jumps in the score. Thus, 

we plot smoothed curves in addition to the point estimates. We compute the 

smoothed curves by taking the average over a five-point moving window.  

Examining the accuracies reveals that larger values of ke  or small values of de  

tend to decrease the difference between the training and test error rates. These 

observation are in according with our feasibility analysis in designing a stable 

algorithm section.  

(a) Varying ke                                   (b) Varying de  

Figure 3. Each Point is the Average over Four Folds. The Solid Lines 
Represent a Moving Average over a Five-point Window. The Red Color 

Represent the 1C  , the Blue Color Represent the 0 2C   , the Green Color 

Represent the 0 1C   . 

 

7. Conclusion 

In this paper, we have derived generalization bounds for RC models. We 

analyzed the feasibility of these bounds, and identified two sufficient conditions: a 

limited VC dimension, and a new measure that is specific to RC, the dependence 

stability. We proposed an experimental estimation method based on our learning 

bound to better estimate the VC dimension of RC models, and designed a stable 

learning framework. Our experimental results demonstrate that our bound can be 

non-trivial if the two conditions are satisfied, and that our stable learning algorithm 

2

2

2

2
[ ( ) ( )] ( )] ( ) ( )

min

d
d

d

C

s
s t y Y n x y n x y y y e D y y y

N
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increases the stability of RC models while reducing the deviation between empirical 

risk and true risk.  
 

8. Appendex 

 
8.1. A. Proof of Lemma 1 

By Definition 3, we have that  

The function D  satisfies bounded differences property. Using Corollary 1 that [5] 

described, we have that 2( ) 2d dg N s  . Repeating this process, we can obtain that 
2( ) 2k kg N s  .  

 

8.2. B. Proof of Lemma 2 

Because 1{ ( ) ( ) } 1{ ( ) ( ) 2} 1{ ( ) ( ) 2}R M R M R M R M R M R M            

 is hold for any two dataset. Taking expectations with respect to another sample (the 

extra data set is usually called ’virtual’ or ’ghost’ sample) 
     

1 1{( ) ( )}N NT x y x y
    
     , we have that  

Using Theorem 1 we get  

Introducing the expectation and variance of k  and d , let 

( ) ( )
( ( ) )( ( ) )k d

k d

g N g N

k dv N f N f N        , then   22 1
2

exp
N

V N v    we get  

Taking expectation with respect to first sample gives the following result,  

Let 
 

1 1
21 (1 )(1 )k d d k k dV          

  and introduce the expectation and variance of k  and 

d , and the N  samples are considered to be sampled from data only once, we get 

the results.  

 

8.3. C. Proof of Lemma 3 

If we have a finite set  , the union bound immediately yields  

1
( ) ( )

[ ( ) ] [ ( ) ]

{ [ ( ) ]} { [ ( ) ]}

sup

sup

sup

d
d

M

d

M

M

s
M x M x

N

L M x y L M x y

D L M x y D L M x y
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By Lemma 2 and introducing the expectation and variance of k  and d , and the N  

samples are sampled from data only once. By the law of total probability, we have 

that  

 

 

Replacing   with bound of growth  function   2e
d

N
d




, we have that  

which completes the proof.  
 

 

 

8.4. D. Proof of Theorem 2 

Using Lemma 3 and Definition 1, we replace the ( )kf N , ( )df N , ( )kg N  and 

( )kg N  with ke , de , ks  and ds , we have that  

 

 

Let right hand of above inequations equals to  , and we solve this equation, we 

have that  
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