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Abstract 

A Star Schema is representation of a data warehouse which is used in strategic 

decision making and analysis. In this paper we present a method ER Diagram is 

converted into a star schema. 
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1. Introduction 

In most database environments, users perform two basic types of tasks: 

modification (inserting, updating, and deleting records) and retrieval (queries). 

Modifying records is generally known as online transaction processing (OLTP). 

Data retrieval is referred to as online analytical processing (OLAP) or decision 

support, because the information is often used to make business decisions. This 

section describes these data models and their structural requirements.  

When database records are modified, the most important requirements are update 

performance and data integrity. These needs are addressed by the entity relation 

model of organizing data. Entity relation schemas are highly normalized. This 

means that data redundancy is eliminated by separating the data into multiple tables. 

The process of normalization results in a complex schema with many tables and 

joins paths. 

When database records are retrieved, the most important requirements are query 

performance and schema simplicity. These needs are best addressed by the 

dimensional model. Another name for the dimensional model is the star schema.  

. 

1.1. Star Schema[1, 2] 

A diagram of a star schema resembles a star, with a fact table at the center. Figure 

1 is a sample star schema. 

A fact table usually contains numeric measurements, and is the only type of table 

with multiple joins to other tables. Surrounding the fact table are dimension tables, 

which are related to the fact table by a single join. Dimension tables contain data 

that describe the different characteristics, or dimensions, of a business. Data 

warehouses and data marts are usually based on a star schema. 

In a star schema, subjects are either facts or dimensions. You define and organize 

subjects according to how they are measured and whether or not they change over 

time. Facts change regularly, and dimensions do not change, or change very s lowly. 
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Figure 1. Star Schema 
 

1.1.1 Advantages: Star schemas are easy for end users and applications to understand and 

navigate. With a well-designed schema, users can quickly analyze large, multidimensional 

data sets. The main advantages of star schemas in a decision-support environment are: 

 

 Query Performance: Because a star schema database has a small number of tables 

and clear join paths, queries run faster than they do against an OLTP system. Small 

single-table queries, usually of dimension tables, are almost instantaneous. Large join 

queries that involve multiple tables take only seconds or minutes to run.In a star 

schema database design, the dimensions are linked only through the central fact table. 

When two dimension tables are used in a query, only one join path, intersecting the 

fact table, exists between those two tables. This design feature enforces accurate and 

consistent query results. 

 

 Load Performance and Administration: Structural simplicity also reduces the time 

required to load large batches of data into a star schema database. By defining facts 

and dimensions and separating them into different tables, the impact of a load 

operation is reduced. Dimension tables can be populated once and occasionally 

refreshed. You can add new facts regularly and selectively by appending records to a 

fact table. 

 

 Built-in Referential Integrity: A star schema has referential integrity built in when 

data is loaded. Referential integrity is enforced because each record in a dimension 

table has a unique primary key, and all keys in the fact tables are legitimate foreign 

keys drawn from the dimension tables. A record in the fact table that is not related 

correctly to a dimension cannot be given the correct key value to be retrieved. 

 

 Easily Understood: A star schema is easy to understand and navigate, with 

dimensions joined only through the fact table. These joins are more significant to the 

end user, because they represent the fundamental relationship between parts of the 
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underlying business. Users can also browse dimension table attributes before 

constructing a query. 

 

1.1.2 Disadvantages: A Star schema has a narrow scope in terms of the fact and   

dimensions represented as compared to the relational model. 

 A star schema is good to store current data which may be historical, aggregated, 

detailed. 

 Not suitable for storing detailed data. 

                                                             

2. ER Schema 

This model incorporates some of the important semantic information about the real 

world. The entity-relationship model can be used as a basis for unification of different 

views of data: the network model, the relational model, and the entity set model. The 

entity-relationship model adopts the more natural view that the real world consists of 

entities and relationships. An entity is a “thing” which can be distinctly identified. A 

specific person, company, or event is an example of an entity. A relationship is an 

association among entities. For instance, “father-son “is a relationship between two 

“person” entities.’ 

 

 

 

 
Figure 2. Simplified ER Diagram 

 

As we have already stated that there are many approaches for conversion of an ER 

Schema to a Star Schema, amongst them we have chosen Moody’s and Golfarelli’s 

algorithm for converting an ER Schema to a Star schema. 

 

 
 

Figure 3. Select Approach 

 

3. Moody’s and Kortnik Approach for Designing a Star Schema From an ER 

Schema [8, 9] 

 
3.1. Introduction of the Algorithm: 

Moody’s and Kortnik algorithm describes a method for developing dimensional models from 

traditional Entity Relationship models. This can be used to design data warehouses and data 

marts based on enterprise data models. 

son Father 
parent 
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3.2.  Principle  

 

3.2.1 Chunking: As we know that a data warehouse contains a lot of information but 

humans have a limited capacity for processing information. The primary mechanism used 

by the human mind to cope with large amounts of information is to organize it into 

“chunks” of manageable sizes. The ability to recursively develop information-saturated 

chunks is the key to people’s ability to deal with complexity every day. The process of 

organizing data into a set of separate star schemas effectively provides a way of 

organizing a large amount of data into cognitively manageable “chunks. 

 

3.2.2 Hierarchical Structuring: Hierarchy is one of the most common ways of 

organizing complexity for the purposes of human understanding. Hierarchical structures 

act as a complexity management mechanism by reducing the number of items one has to 

deal with at each level of the hierarchy. Hierarchical structures are a familiar and natural 

way of organizing information, and are all around us in everyday life.Each dimension in a 

star schema typically consists of one or more hierarchies. These provide a way of 

classifying business events stored in the fact table, thereby reducing complexity. It is this 

hierarchical structure that provides the ability to analyze data at different levels of detail, 

and to “roll up” and “drill down” in OLAP tools.  The process of building dimensional 

models is largely one of extracting hierarchical structures from enterprise data. 

 

3.3 Input to the Algorithm 

The input to the Algorithm is an ER Schema. Moody’s from his experiments found that 

a star Schema is just a restricted form of an ER Schema. There is a single entity called 

fact table which is in 3NF (third normal forms).Violation to second normal form (2NF) 

would result in double counting in queries. 

The fact table forms an n-array intersection entity (where n is the number of 

dimension) between the dimension tables, and includes keys of all dimension tables. 

 There are one or more entities called dimension tables each of which is related to fact 

table via one or more one-to- many relationships. Dimension tables have simple keys and 

are atleast in 2NF.    

The following shows the sample ER Schema that is being transformed to a star 

schema: 

 

    
Figure 4: A Sample ER Schema Used as Input to Moody Approach 

 

Deriving dimensional models from ER models also provides a more structured approach 

to dimensional design than starting from first principles. There is a large conceptual 

“leap” in getting from end-user analysis requirements to dimensional models. 
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3.4. Working of the Algorithm 

The Moody’s approach of transformation of ER model to a star schema is a process of 

selective subsetting, de- normalization and optional summarization. The Transformation 

of ER Schema to Star schema takes place in four steps: 

Step 1: Classify Entity 

Step 2: Design high level star schema 

Step 3: Design detailed fact table 

Step 4: Design Detailed dimension Table 

 

3.4.1. Classify Entity: The first step in transformation approach is to classify entity into 

three distinct categories: 

 

A) Transaction Entities: These entities record details of business events (e.g., orders, 

shipments, payments, insurance claims, bank trans-actions, hotel bookings, airline 

reservations, and hospital admissions). Most decision support applications focus on such 

events to identify patterns, trends, and potential problems and opportunities. The 

exception to this rule is the case of” snapshot entities”: entities recording a static level of 

some commodity at a point in time (e.g. account balances and inventory levels).These 

record effect of business on the state of an entity. 

 

B) Component Entities: These entities are directly related to transaction entities by one –

to- many relationships. These are involved in the business event and answer 

“who”,”what”,”when”,”whom”,”how” and “why” questions about the event. 

 

c) Classification Entities:These entities are related to a component entity by a chain of 

one-to-many relationships. These define embedded hierarchies in the data model and are 

used to classify component hierarchies. 

The classification of entities for the sample data model is: There are two transaction 

level entities in the model Order, Order item as they correspond to business events. They 

represent a different level of detail for the same business event. 

There are four component Entities Product, customer, Retail outlet, Employee. 

There are many classification entities defining separate but partially overlapping 

hierarchies in the model.Some of the entities in the above specified ER model do not fit 

into the hierarchical structure of the dimensional Model and hence cannot be represented 

in the form of a star schema. Thus the process of dimension-alizing ER Schema weeds out 

non hierarchial data. 

 

.  

Figure 4. Identify Facts 
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Figure 5. Identify Dimension and Hierarchies 

3.4.2 High Level Star schema design: In this step relevant star schemas are identified 

and their high level structures are defined (table level design). 

In this step transaction entity corresponds to fact tables and component entity corresponds 

to dimension tables, but mapping is not always one to one. 

 

 a) Identify star schema required:Each transaction entity is a candidate for a star 

schema. Each star schema is based on a single business event and hence represents a 

manageable sized chunk of data. There is not always a one to one correspondence 

between transaction entities and star schemas. 

 

Not all transaction entities are important for decision making; user input will be required 

to choose relevant transactions. Multiple star schemas at levels of detail may be required 

for a particular transaction. 

 

 b) Define level of summarization: To design a star schema we have to choose the 

appropriate level of granularity-i.e. the level of details at which the data is stored. We 

have two levels of granularity: 

 

 i) Unsummarized (transaction level granularity): this is the highest level where 

each fact      table corresponds to a single transaction. 

 

ii) Summarized: transactions may be summarized by a subset of dimensions or 

dimensional attributes. In this case each row in a fact table corresponds to 

multiple transactions. 

 

The lower the level of granularity i.e. higher the level of summarization the less storage 

will be required and queries will be executed much faster.Summarization looses 

information and limits the types of analysis that can be carried out. It is not always 

necessary that all star schemas should contain summarized data.Any combination of 

dimensions or dimensional attributes may be used to summarize transactions. For e.g. 

Order could be summarized by: 

1. Month (an attribute of date dimension) and retail outlet: this gives monthly sales total 

for each outlet. 

2. Date, Product, city (an attribute of retail outlet dimension):this gives daily product sales 

for each outlet. 
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c) Identify Relevant Dimensions:The component entity associated with each transaction 

entity represents candidate dimensions for the star schemas. However not every 

component entity is relevant for the purpose of analysis or granularity chosen. 

Explicit dimension are required to represent date and time to support historical analyses. 

 

                    “How”                            “Where”                    “Who” 

 

 

 

 

                       

 

 

 

 

  

 

 

Figure 6. Transaction Level Star Schema for Order /Order Item Transaction 
Entities 

 

In Figure 6 we see that a star schema has six dimensions corresponding to five component 

entities relating to transaction plus a date dimension. 

 

 

 

 

 

 

 

 

 

                            

 

Figure 7. Summary Level Star Schema for Order Transaction 

The Figure 7 shows a summary star schema for order transaction in which daily reports 

are summarized by Retail outlet, Date, Product. When non transaction level granularity 

(summary) is chosen, the dimensions required will be determined by how the transactions 

are summarized, this will be subset of the number of dimensions required in transaction 

level star schema. 

 

3.4.3. Detailed Fact Table Design: The Design process includes following steps. 

 

a) Define Key: The key of each fact table is a composite key consisting of all the keys of 

all dimension tables. This key is not minimal unlike of relational databases. 

 

b) Define Fact: The non key attributes of the fact table are measures (fact) that can be 

analyzed using numerical functions. What facts are defined depends on the event 

information collected by operational systems-that is attributes that are stored in 

transaction entities. 

Delivery type 
Retail 

outlet 

employee 

Order 

Item 

fact 

customer product 

order 
date 

Order 

Item 

Fact 

Date Product 

Retail 

outlet 
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To define fact we use additivity: 

 

i) Fully additive facts: These are the facts that can be meaning fully added across 

all dimensions. For example Qty ordered in the order item entity can be added 

across dates, product, customer to get total sale volume for particular day, 

product, and customer. 

ii) Semi additive facts: these are the facts that can be meaning fully added to 

some dimensions but not all. For example Qty on hand can be averaged over 

time. 

ii) Non Additive facts: These are the facts that cannot be meaning fully added 

across any dimension. For e.g. Unit price from order item entity cannot be added 

across any dimension 

 

In Figure 6 each row in the fact table corresponds to an individual order item. The key 

of the fact table consists of the keys of all dimension tables. 

The Figure 7 shows the detailed fact table for summary level star schema. Each row in 

the fact table summarizes sales by date, product, and retail outlet. 

 

3.4.4. Detailed Dimension Table Design: In this step we complete the detailed design of 

dimension tables in each star schema. This completes the detailed design of a star schema. 

 

a) Define Dimensional Key: The key of dimension table should be simple numeric key. 

Sometimes this key is the key of the underlying component entity. But we have to 

sometime generate operational key to keep it unique as this may cause problems while 

performing historical analysis. 

 

b) Collapse hierarchies: Dimension tables are formed by collapsing or de normalizing 

hierarchies (defining by classification entities) into component entities. The Figure2.8 

shows how the hierarchies associated with the retail outlet component are collapsed to 

form the Outlet dimension table. The resulting dimension table consists of union of all 

attributes in the original entities. It is possible for a dimension table to contain hundred of 

attributes. This process introduces redundancy in form of transitive dependencies which 

are violations to third normal form (3NF). This means that resulting dimension tables is in 

second normal form. 

 

3.5 Output of the Algorithm 

The Figure 8 shows the complete star schema design for order transaction: 

All of the tables in the star schema are de -normalized to at least some extent: each 

table corresponds to multiple entities in the original normalized ER model. The dimension 

tables are result of collapsing classification entities into component entities.All of the 

dimension tables are in 2NF, they have simple keys and no repeating attributes. The fact 

table is in 3NF. 

The date dimension is a new table which does not corresponds to any entity in the original 

ER model. This is because dates must be explicitly modeled in a star schema, whereas at 

the operational level they are represented as the data types.  
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Figure 8. A Star Schema Created from ER using Moody’s Approach 

3.6. Conclusion 

It has been derived from Moody’s and Kortnik algorithm that a dimension model is just 

a restricted form of an ER schema and there is a straightforward transformation between 

the two.An ER model can be transformed into a set of dimension models by a process of 

selective subsetting, de normalization, and (optional) summarization. 

 

i) Subsetting: The ER model is partitioned into a set of separate star schemas each 

centered on a single business event. This reduces complexity through a process 

called “chunking”. 

 

ii) De normalization: Hierarchies in the ER model are collapsed to form 

dimension tables. This further reduces complexity by reducing the number of 

separate tables. 

 

ii) Summarization: the most flexible dimensional structure is one in which each 

fact represents a single transaction. However summarizations may be required for 

performance reasons, or to suit the requirements of a particular group of users. 

 

At the detailed design level a range of transformations are required: 

 

i) Generalizations of operational keys to ensure uniqueness of keys over time. 

ii) Conversion of non additive to additive facts. 

 

4. Golfarelli and Rizzi Algorithm [5, 7] 

The Moody’s Algorithm Ignores the relationship of the ER schema Golfarelli’s 

algorithm takes into account relationships of ER Schema. 
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Figure 9. Select the Approach 

 

4.1. Introduction of the Algorithm 

This algorithm represents a graphical conceptual model for DWH , called Dimensional 

Fact Model(DFM).The representation of reality built using the DFM is called the 

dimensional scheme and consists of fact scheme whose basic elements are 

facts,dimension,hierarchies .Compatible fact scheme may be overlapped in order to relate 

and compare data. 

 
4.2 Keywords Used in the Algorithm: 

 

4.2.1. DFM: It is a dimensional scheme which consists of set of fact scheme. The 

components of fact scheme are facts, measures, dimension, and hierarchies. 

 

 

 A fact is focus for interest for decision making process; typically it models an 

event occurring in the enterprise world (e.g. sales and shipments). 

 Measures are continuously valued numeric attributes which describe the fact from 

different point of view; for instance each sale is measured by its revenue. 

 Dimensions are discrete attributes which determine the minimum granularity 

adopted to represent facts; typical dimension for the sales fact are product, store, 

date.  

 Hierarchies are made up of discrete attributes linked by –to one relationships and 

determine how facts may be aggregated and selected significantly for the decision 

making process. 

 The dimension in which its hierarchy is rooted defines its finest aggregation 

granularity, the other dimension define coarser granularities. 

 For e.g. hierarchy on the product dimension may include the dimension attributes 

product type, category, department.  

 Hierarchies may also include non dimension attributes which consist of additional 

information about a dimensional attribute of the hierarchy and is connected by a – 

to many relationship, it cannot be used for aggregation. 

 

4.2.2. Representation of Fact Scheme: In the DFM, a fact scheme is structured as a 

quasi tree whose root is a fact. A fact is represented by a box which reports the fact name 

and typically one or more measures. In the sale scheme, qty sold, revenue and no. of 

customers are measures.Dimension attributes are represented by circles. Each dimension 

attributes directly attached to the fact is a dimension. The dimension pattern of the sale 
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scheme is {date, product, store, promotion}.Non dimension attributes are terminal within 

quasi tree and are represented by lines for e.g. addresses.Subtrees rooted in dimension are 

hierarchies. The arc connecting two attributes represent many– to one relationship. 

 

Figure 10. A Sale Fact Scheme 

The fact scheme may not be a tree : in fact two or more distinct paths may connect two 

given dimension  attributes within a hierarchy ,provided that every directed path still 

represents a one- to one relationship. 

Optional relationship is represented by marking with a dash the corresponding arc. For 

example attribute diet takes value only for food products, for others it will take null value. 

A measure is additive on a dimension if its values can be aggregated along the 

corresponding hierarchy by the sum operator. 

 

4.2.3. Additivity: Aggregation requires defining a proper operator to compose the 

measure values characterizing primary fact instances into measure values characterizing 

each secondary fact instances. 

An example of fact scheme in the example above is qty sold; the qty sold for a given 

sales manager  is the sum of the quantities sold for all stores managed by that manager.A 

measure may be non additive on one or more dimension. E.g. are inventory levels or 

temperature etc.An inventory level is non additive on time. A temperature is non additive 

on all dimensions. 

The Figure 11 shows an example where AVG,MIN can be used for aggregation. 
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        Figure 11. Inventory Fact Scheme 
 

4.2.4. Overlapping Fact schemes: In the DFM, different facts are represented in 

different fact schemes. Overlapping fact schemes means combining two related fact 

schemes into one fact scheme if the compatibility is strict i.e. the inter attribute 

dependencies in the two schemes are not conflicting 

 

. 

                                         

      Figure 14. The Shipment Fact Scheme 
 

 

Figure 12. Overlapped Fact Scheme 

The measure in resulting overlapped fact scheme is the union of the two fact schemes 

which are overlapped. Each hierarchy in resulting scheme includes all and only the 

attributes included in the corresponding hierarchies of both the fact scheme. 
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4.3 Working of the Algorithm 

The transformation of ER schema to a DFM requires following steps: 

 

Step 1: Defining Facts 

Step 2: For each fact: 

a) Building the attribute tree 

b) Pruning and grafting the attribute tree 

c) Defining Dimension 

d) Defining measures 

e) Defining hierarchies 

 

The Figure 13 shows the Simplified ER Scheme that is to be converted into DFM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Simplified ER Scheme 

 

Figure 14. ER Diagram used for Conversion 
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4.3.1. Defining Fact: Facts are concept of primary interest for decision making. They 

correspond to events occurring dynamically in the world.A fact may be represented either 

by an entity F or by an n-array relationship R between entities E1-En.When a relationship 

R is a fact we have to transform this R into an entity F by replacing each branch Ei with a 

binary  

Relationship Ri between F and Ei. The attributes of the relationship become attributes of 

F; the identifier of F is the combination of the identifiers of Ei.Each fact identified on the 

source scheme becomes the root of different fact scheme. 

 

 
 

Figure 15. Transformation of Relationship Into Entity 

In the above example, the fact of primary interest for business analysis is the sale of 

product, represented in the ER scheme by relationship sale. 

 

 
 

Figure 16. Define Facts 

 

4.3.2. Building the Attribute Tree:Given a source scheme and an entity F belonging to 

it, we call attribute tree the quasi- tree such that: 

 Each vertex corresponds to an attribute-simple or compound of the scheme. 

 The root corresponds to the identifier of entity F 

 For each vertex v, the corresponding attribute functionally determines all the 

attributes corresponding to the descendants of v. 
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 Let identifier (E) denote the set of attributes which make up the identifier of entity E. The 

attribute tree for F may be constructed automatically by applying following recursive 

procedure. 

 

root= newVertex(identifier(F)); 

 

translate (E,v): 

 

E is the current entity, v is the current vertex 

{ 

 for each attribute aÎE | a identifier(E) do 

     addChild(v,newVertex({a})); // adds child a to vertex v 

    for each entity G connected to E by a relationship R | max(E,R)=1 do 

{  

   For each attribute bÎR do 

addChild (v,newVertex({b})); 

next=newVertex(identifier(G)); 

addChild (v,next); 

translate (G,next); 

                                                  } 

                          } 

 

In the following we illustrate how procedure translate works by showing in a step by step 

fashion how a branch of the attribute tree is generated. 

 

root=newVertex(ticketNumber+product) 

translate(E=SALE,v=sale): 

          addchild(v,qty);  

          addchild(v,unitPrice); 

For G=PURCHASE TICKET: 

addchild(v,ticketNumber); 

translate(PURCHASE TICKET,ticketNumber); 

for G=PRODUCT: 

addchild(v,product); translate(PRODUCT,product); 

translate(E=PURCHASE TICKET,v=ticketNumber): 

addchild(v,date); 

 

for G=STORE: 

addchild(v,store); translate(STORE,store); 

translate(E=STORE,v=store): 

addchild(v,address); addchild(v,phone); 

addchild(v,salesManager); 

 

for G=SALE DISTRICT: 

addchild(v,districtNo+state); 

translate(SALE DISTRICT,districtNo+state); 

 

for G=CITY: 

addchild(v,city); 

 translate(CITY,city); 

 

translate(E=SALE DISTRICT,v=districtNo+state): 
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addchild(v,districtNo); 

for G=STATE: 

addchild(v,state); translate(STATE,state); 

translate(E=STATE,v=state): 

 

 

 
 

Figure 17. Attribute Tree for the Sale Example 

As the attribute tree undergoes the next step in the methodology, the granularity of fact 

instances may change and become coarser than that expressed by the identifier of F. 

Thus, in order to avoid confusion, we prefer to label the root of the attribute tree with 

the name of entity F rather than with its identifier. Generalization hierarchies in the E/R 

scheme are equivalent to one-to-one relationships between the super-entity and each sub-

entity, and should be treated as such by the algorithm. 

 

4.3.3 Pruning and Grafting the Attribute Tree: It may happen that not all of the 

attributes represented in the attribute tree are interesting for the DW. Thus, the attribute 

tree may be pruned and grafted in order to eliminate the unnecessary levels of 

detail.Pruning is carried out by dropping any subtree from the quasi-tree. The attributes 

dropped will not be included in the fact scheme, hence it will be impossible to use them to 

aggregate data. For instance, on the sale example, the subtree rooted in county may be 

dropped from the brand branch.Grafting is used when, though a vertex of the quasi-tree 

expresses an uninteresting piece of information, its descendants must be preserved; for 

instance, one may want to classify products directly by category, without considering the 

information on their type. 

 

Let v be the vertex to be eliminated: 

 

graft(v): 

{ for each v' | v' is father of v do 

{for each v" | v" is child of v do 

{addChild(v',v"); 

drop v; 

                           }  

                 } 

              } 

    

 

Thus, grafting is carried out by moving the entire subtree with root in v to its father(s) v';if 

we denote with t the attribute tree and with I the set of its vertices, procedure graft(v) 
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returns cnt(t,I-{v}). As a result, attribute v will not be included in the fact scheme and the 

corresponding aggregation level will be lost; However on the other hand, all the 

descendant levels will be maintained. In the sale example, the detail of purchase tickets is 

uninteresting and vertex ticket number can be grafted. In general, grafting a child of the 

root corresponds to making the granularity of fact instances coarser and, if the node 

grafted has two or more children, leads to increasing the number of dimensions in the fact 

scheme. 

 
  

  Figure 18. Attribute Tree for the Sale Example after Grafting and Pruning 

4.3.4. Defining Measures: Measures are defined by applying, to numerical attributes of 

the attribute tree, aggregation functions which operate on all the instances (tuples) of F 

corresponding to each primary fact instance. The aggregation function typically consists 

either of the sum/average/maximum/ minimum of expressions or of the count of the 

number of entity instances (tuples). A fact may have no attributes, if the only information 

to be recorded is the occurrence of the fact. The measures determined, if any, are reported 

on the fact scheme. 

 

Figure 19. Identifying Dimensions 

4.3.5. Defining hierarchies:Along each hierarchy, attributes must be arranged into a 

quasi-tree such that a one-to-one relationship holds between each node and its 

descendants. The attribute tree already shows a plausible organization for hierarchies; at 

this stage, it is still possible to prune and graft the quasi-tree in order to eliminate 

irrelevant details. 
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It is also possible to add new levels of aggregation by defining range for numerical 

attributes. Typically, this is done on the time dimension. In the sale example, the time 

dimension is enriched by introducing attributes month, quarter, etc. 

During this phase, the attributes which should not be used for aggregation but only for 

informative purposes may be identified as non-dimension attributes (for instance, address, 

weight, etc.). It should be noted that non-numerical attributes which are children of the 

root but have not been chosen as dimensions must necessarily either be grafted (if the 

granularity of the primary fact instances is coarser than that of the fact) or be represented 

as non-dimension (if the two granularities are equal). 

 

 

Figure 20. Star Schema Created from Golfarelli’s Approach 

 

5. Comparison of the Algorithm 

From our detailed study of both the algorithms we have drawn following comparisons. 

They are discussed under different headings as follows: 

 

5.1. Principle 

The basic principle behind Moody’s algorithm is chunking in which large amount of 

information is organized into small chunks of manageable sizes, and hierarchical 

structuring in which we reduce the number of items at each level of hierarchy., Where as 

the Golfarelli’s design principle was to design a dimensional fact model.  

Moody claims that an ER schema is just a restricted form of a star schema. 

 

5.2. Working of the Algorithm: 

The Moody’s algorithm start by classifying entities into transaction, component and 

classification entities after which we design a high level star schema in which transaction 

entities corresponds to the fact ( at this point a user input is required to choose which 

transaction entity will be relevant for decision making purposes) component entities 

correspond to dimensions and classification entities correspond to hierarchies. There after 

we design detailed fact table and detailed dimension table.The Golfarelli’s algorithm 

starts by building a DFM by defining facts and for each fact it build a attribute tree, 

pruning and grafting the attribute tree, and then defining measures, hierarchies and 

dimensions. The basic difference between the two algorithms is that Moody’s algorithm 

allows only entities to become facts in a star schema where as Golfarelli’s algorithm 
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allows relationship in a ER model to become facts in a DFM for this we have to convert 

this relationship to an entity. 

Another difference is that the pruning and grafting of the attributes in DFM is done 

after designing of the attribute tree where as in Moody’s algorithm this is done at the 

stage of designing a high level star schema  which requires a user input to decide which 

transaction entities will become facts and which component entity will correspond to 

dimension. 

The major difference is that in Moody’s algorithm a star schema is represented in the 

form of relations (i.e. Facts are represented in form of fact table and hierarchies are 

collapsed to dimension  

Which are represented in the form of a dimension table) where as in Golfarelli’s 

algorithm a star schema is represented in the form of a quasi tree whose root is a fact and 

nodes directly attached to the fact  are the dimensions and sub trees rooted in dimension 

are the hierarchies 
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