
International Journal of Database Theory and Application

Vol.8, No.3 (2015), pp.111-130

http://dx.doi.org/10.14257/ijdta.2015.8.3.10

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Implementation of Star Schemas from ER Model

Gunjan Chandwani and Veepu Uppal

Manav Rachna College of Enginering

gunjanchindwani.mrce@mrei.ac.in, veepu.mrce@mrei.ac.in

Abstract

A Star Schema is representation of a data warehouse which is used in strategic

decision making and analysis. In this paper we present a method ER Diagram is

converted into a star schema.

Keywords: Data Warehouse, StarSchema

1. Introduction

In most database environments, users perform two basic types of tasks:

modification (inserting, updating, and deleting records) and retrieval (queries).

Modifying records is generally known as online transaction processing (OLTP).

Data retrieval is referred to as online analytical processing (OLAP) or decision

support, because the information is often used to make business decisions. This

section describes these data models and their structural requirements.

When database records are modified, the most important requirements are update

performance and data integrity. These needs are addressed by the entity relation

model of organizing data. Entity relation schemas are highly normalized. This

means that data redundancy is eliminated by separating the data into multiple tables.

The process of normalization results in a complex schema with many tables and

joins paths.

When database records are retrieved, the most important requirements are query

performance and schema simplicity. These needs are best addressed by the

dimensional model. Another name for the dimensional model is the star schema.

.

1.1. Star Schema[1, 2]

A diagram of a star schema resembles a star, with a fact table at the center. Figure

1 is a sample star schema.

A fact table usually contains numeric measurements, and is the only type of table

with multiple joins to other tables. Surrounding the fact table are dimension tables,

which are related to the fact table by a single join. Dimension tables contain data

that describe the different characteristics, or dimensions, of a business. Data

warehouses and data marts are usually based on a star schema.

In a star schema, subjects are either facts or dimensions. You define and organize

subjects according to how they are measured and whether or not they change over

time. Facts change regularly, and dimensions do not change, or change very s lowly.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

112 Copyright ⓒ 2015 SERSC

Figure 1. Star Schema

1.1.1 Advantages: Star schemas are easy for end users and applications to understand and

navigate. With a well-designed schema, users can quickly analyze large, multidimensional

data sets. The main advantages of star schemas in a decision-support environment are:

 Query Performance: Because a star schema database has a small number of tables

and clear join paths, queries run faster than they do against an OLTP system. Small

single-table queries, usually of dimension tables, are almost instantaneous. Large join

queries that involve multiple tables take only seconds or minutes to run.In a star

schema database design, the dimensions are linked only through the central fact table.

When two dimension tables are used in a query, only one join path, intersecting the

fact table, exists between those two tables. This design feature enforces accurate and

consistent query results.

 Load Performance and Administration: Structural simplicity also reduces the time

required to load large batches of data into a star schema database. By defining facts

and dimensions and separating them into different tables, the impact of a load

operation is reduced. Dimension tables can be populated once and occasionally

refreshed. You can add new facts regularly and selectively by appending records to a

fact table.

 Built-in Referential Integrity: A star schema has referential integrity built in when

data is loaded. Referential integrity is enforced because each record in a dimension

table has a unique primary key, and all keys in the fact tables are legitimate foreign

keys drawn from the dimension tables. A record in the fact table that is not related

correctly to a dimension cannot be given the correct key value to be retrieved.

 Easily Understood: A star schema is easy to understand and navigate, with

dimensions joined only through the fact table. These joins are more significant to the

end user, because they represent the fundamental relationship between parts of the

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 113

underlying business. Users can also browse dimension table attributes before

constructing a query.

1.1.2 Disadvantages: A Star schema has a narrow scope in terms of the fact and

dimensions represented as compared to the relational model.

 A star schema is good to store current data which may be historical, aggregated,

detailed.

 Not suitable for storing detailed data.

2. ER Schema

This model incorporates some of the important semantic information about the real

world. The entity-relationship model can be used as a basis for unification of different

views of data: the network model, the relational model, and the entity set model. The

entity-relationship model adopts the more natural view that the real world consists of

entities and relationships. An entity is a “thing” which can be distinctly identified. A

specific person, company, or event is an example of an entity. A relationship is an

association among entities. For instance, “father-son “is a relationship between two

“person” entities.’

Figure 2. Simplified ER Diagram

As we have already stated that there are many approaches for conversion of an ER

Schema to a Star Schema, amongst them we have chosen Moody’s and Golfarelli’s

algorithm for converting an ER Schema to a Star schema.

Figure 3. Select Approach

3. Moody’s and Kortnik Approach for Designing a Star Schema From an ER

Schema [8, 9]

3.1. Introduction of the Algorithm:

Moody’s and Kortnik algorithm describes a method for developing dimensional models from

traditional Entity Relationship models. This can be used to design data warehouses and data

marts based on enterprise data models.

son Father
parent

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

114 Copyright ⓒ 2015 SERSC

3.2. Principle

3.2.1 Chunking: As we know that a data warehouse contains a lot of information but

humans have a limited capacity for processing information. The primary mechanism used

by the human mind to cope with large amounts of information is to organize it into

“chunks” of manageable sizes. The ability to recursively develop information-saturated

chunks is the key to people’s ability to deal with complexity every day. The process of

organizing data into a set of separate star schemas effectively provides a way of

organizing a large amount of data into cognitively manageable “chunks.

3.2.2 Hierarchical Structuring: Hierarchy is one of the most common ways of

organizing complexity for the purposes of human understanding. Hierarchical structures

act as a complexity management mechanism by reducing the number of items one has to

deal with at each level of the hierarchy. Hierarchical structures are a familiar and natural

way of organizing information, and are all around us in everyday life.Each dimension in a

star schema typically consists of one or more hierarchies. These provide a way of

classifying business events stored in the fact table, thereby reducing complexity. It is this

hierarchical structure that provides the ability to analyze data at different levels of detail,

and to “roll up” and “drill down” in OLAP tools. The process of building dimensional

models is largely one of extracting hierarchical structures from enterprise data.

3.3 Input to the Algorithm

The input to the Algorithm is an ER Schema. Moody’s from his experiments found that

a star Schema is just a restricted form of an ER Schema. There is a single entity called

fact table which is in 3NF (third normal forms).Violation to second normal form (2NF)

would result in double counting in queries.

The fact table forms an n-array intersection entity (where n is the number of

dimension) between the dimension tables, and includes keys of all dimension tables.

 There are one or more entities called dimension tables each of which is related to fact

table via one or more one-to- many relationships. Dimension tables have simple keys and

are atleast in 2NF.

The following shows the sample ER Schema that is being transformed to a star

schema:

Figure 4: A Sample ER Schema Used as Input to Moody Approach

Deriving dimensional models from ER models also provides a more structured approach

to dimensional design than starting from first principles. There is a large conceptual

“leap” in getting from end-user analysis requirements to dimensional models.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 115

3.4. Working of the Algorithm

The Moody’s approach of transformation of ER model to a star schema is a process of

selective subsetting, de- normalization and optional summarization. The Transformation

of ER Schema to Star schema takes place in four steps:

Step 1: Classify Entity

Step 2: Design high level star schema

Step 3: Design detailed fact table

Step 4: Design Detailed dimension Table

3.4.1. Classify Entity: The first step in transformation approach is to classify entity into

three distinct categories:

A) Transaction Entities: These entities record details of business events (e.g., orders,

shipments, payments, insurance claims, bank trans-actions, hotel bookings, airline

reservations, and hospital admissions). Most decision support applications focus on such

events to identify patterns, trends, and potential problems and opportunities. The

exception to this rule is the case of” snapshot entities”: entities recording a static level of

some commodity at a point in time (e.g. account balances and inventory levels).These

record effect of business on the state of an entity.

B) Component Entities: These entities are directly related to transaction entities by one –

to- many relationships. These are involved in the business event and answer

“who”,”what”,”when”,”whom”,”how” and “why” questions about the event.

c) Classification Entities:These entities are related to a component entity by a chain of

one-to-many relationships. These define embedded hierarchies in the data model and are

used to classify component hierarchies.

The classification of entities for the sample data model is: There are two transaction

level entities in the model Order, Order item as they correspond to business events. They

represent a different level of detail for the same business event.

There are four component Entities Product, customer, Retail outlet, Employee.

There are many classification entities defining separate but partially overlapping

hierarchies in the model.Some of the entities in the above specified ER model do not fit

into the hierarchical structure of the dimensional Model and hence cannot be represented

in the form of a star schema. Thus the process of dimension-alizing ER Schema weeds out

non hierarchial data.

.

Figure 4. Identify Facts

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

116 Copyright ⓒ 2015 SERSC

Figure 5. Identify Dimension and Hierarchies

3.4.2 High Level Star schema design: In this step relevant star schemas are identified

and their high level structures are defined (table level design).

In this step transaction entity corresponds to fact tables and component entity corresponds

to dimension tables, but mapping is not always one to one.

 a) Identify star schema required:Each transaction entity is a candidate for a star

schema. Each star schema is based on a single business event and hence represents a

manageable sized chunk of data. There is not always a one to one correspondence

between transaction entities and star schemas.

Not all transaction entities are important for decision making; user input will be required

to choose relevant transactions. Multiple star schemas at levels of detail may be required

for a particular transaction.

 b) Define level of summarization: To design a star schema we have to choose the

appropriate level of granularity-i.e. the level of details at which the data is stored. We

have two levels of granularity:

 i) Unsummarized (transaction level granularity): this is the highest level where

each fact table corresponds to a single transaction.

ii) Summarized: transactions may be summarized by a subset of dimensions or

dimensional attributes. In this case each row in a fact table corresponds to

multiple transactions.

The lower the level of granularity i.e. higher the level of summarization the less storage

will be required and queries will be executed much faster.Summarization looses

information and limits the types of analysis that can be carried out. It is not always

necessary that all star schemas should contain summarized data.Any combination of

dimensions or dimensional attributes may be used to summarize transactions. For e.g.

Order could be summarized by:

1. Month (an attribute of date dimension) and retail outlet: this gives monthly sales total

for each outlet.

2. Date, Product, city (an attribute of retail outlet dimension):this gives daily product sales

for each outlet.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 117

c) Identify Relevant Dimensions:The component entity associated with each transaction

entity represents candidate dimensions for the star schemas. However not every

component entity is relevant for the purpose of analysis or granularity chosen.

Explicit dimension are required to represent date and time to support historical analyses.

 “How” “Where” “Who”

Figure 6. Transaction Level Star Schema for Order /Order Item Transaction
Entities

In Figure 6 we see that a star schema has six dimensions corresponding to five component

entities relating to transaction plus a date dimension.

Figure 7. Summary Level Star Schema for Order Transaction

The Figure 7 shows a summary star schema for order transaction in which daily reports

are summarized by Retail outlet, Date, Product. When non transaction level granularity

(summary) is chosen, the dimensions required will be determined by how the transactions

are summarized, this will be subset of the number of dimensions required in transaction

level star schema.

3.4.3. Detailed Fact Table Design: The Design process includes following steps.

a) Define Key: The key of each fact table is a composite key consisting of all the keys of

all dimension tables. This key is not minimal unlike of relational databases.

b) Define Fact: The non key attributes of the fact table are measures (fact) that can be

analyzed using numerical functions. What facts are defined depends on the event

information collected by operational systems-that is attributes that are stored in

transaction entities.

Delivery type
Retail

outlet

employee

Order

Item

fact

customer product

order
date

Order

Item

Fact

Date Product

Retail

outlet

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

118 Copyright ⓒ 2015 SERSC

To define fact we use additivity:

i) Fully additive facts: These are the facts that can be meaning fully added across

all dimensions. For example Qty ordered in the order item entity can be added

across dates, product, customer to get total sale volume for particular day,

product, and customer.

ii) Semi additive facts: these are the facts that can be meaning fully added to

some dimensions but not all. For example Qty on hand can be averaged over

time.

ii) Non Additive facts: These are the facts that cannot be meaning fully added

across any dimension. For e.g. Unit price from order item entity cannot be added

across any dimension

In Figure 6 each row in the fact table corresponds to an individual order item. The key

of the fact table consists of the keys of all dimension tables.

The Figure 7 shows the detailed fact table for summary level star schema. Each row in

the fact table summarizes sales by date, product, and retail outlet.

3.4.4. Detailed Dimension Table Design: In this step we complete the detailed design of

dimension tables in each star schema. This completes the detailed design of a star schema.

a) Define Dimensional Key: The key of dimension table should be simple numeric key.

Sometimes this key is the key of the underlying component entity. But we have to

sometime generate operational key to keep it unique as this may cause problems while

performing historical analysis.

b) Collapse hierarchies: Dimension tables are formed by collapsing or de normalizing

hierarchies (defining by classification entities) into component entities. The Figure2.8

shows how the hierarchies associated with the retail outlet component are collapsed to

form the Outlet dimension table. The resulting dimension table consists of union of all

attributes in the original entities. It is possible for a dimension table to contain hundred of

attributes. This process introduces redundancy in form of transitive dependencies which

are violations to third normal form (3NF). This means that resulting dimension tables is in

second normal form.

3.5 Output of the Algorithm

The Figure 8 shows the complete star schema design for order transaction:

All of the tables in the star schema are de -normalized to at least some extent: each

table corresponds to multiple entities in the original normalized ER model. The dimension

tables are result of collapsing classification entities into component entities.All of the

dimension tables are in 2NF, they have simple keys and no repeating attributes. The fact

table is in 3NF.

The date dimension is a new table which does not corresponds to any entity in the original

ER model. This is because dates must be explicitly modeled in a star schema, whereas at

the operational level they are represented as the data types.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 119

Figure 8. A Star Schema Created from ER using Moody’s Approach

3.6. Conclusion

It has been derived from Moody’s and Kortnik algorithm that a dimension model is just

a restricted form of an ER schema and there is a straightforward transformation between

the two.An ER model can be transformed into a set of dimension models by a process of

selective subsetting, de normalization, and (optional) summarization.

i) Subsetting: The ER model is partitioned into a set of separate star schemas each

centered on a single business event. This reduces complexity through a process

called “chunking”.

ii) De normalization: Hierarchies in the ER model are collapsed to form

dimension tables. This further reduces complexity by reducing the number of

separate tables.

ii) Summarization: the most flexible dimensional structure is one in which each

fact represents a single transaction. However summarizations may be required for

performance reasons, or to suit the requirements of a particular group of users.

At the detailed design level a range of transformations are required:

i) Generalizations of operational keys to ensure uniqueness of keys over time.

ii) Conversion of non additive to additive facts.

4. Golfarelli and Rizzi Algorithm [5, 7]

The Moody’s Algorithm Ignores the relationship of the ER schema Golfarelli’s

algorithm takes into account relationships of ER Schema.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

120 Copyright ⓒ 2015 SERSC

Figure 9. Select the Approach

4.1. Introduction of the Algorithm

This algorithm represents a graphical conceptual model for DWH , called Dimensional

Fact Model(DFM).The representation of reality built using the DFM is called the

dimensional scheme and consists of fact scheme whose basic elements are

facts,dimension,hierarchies .Compatible fact scheme may be overlapped in order to relate

and compare data.

4.2 Keywords Used in the Algorithm:

4.2.1. DFM: It is a dimensional scheme which consists of set of fact scheme. The

components of fact scheme are facts, measures, dimension, and hierarchies.

 A fact is focus for interest for decision making process; typically it models an

event occurring in the enterprise world (e.g. sales and shipments).

 Measures are continuously valued numeric attributes which describe the fact from

different point of view; for instance each sale is measured by its revenue.

 Dimensions are discrete attributes which determine the minimum granularity

adopted to represent facts; typical dimension for the sales fact are product, store,

date.

 Hierarchies are made up of discrete attributes linked by –to one relationships and

determine how facts may be aggregated and selected significantly for the decision

making process.

 The dimension in which its hierarchy is rooted defines its finest aggregation

granularity, the other dimension define coarser granularities.

 For e.g. hierarchy on the product dimension may include the dimension attributes

product type, category, department.

 Hierarchies may also include non dimension attributes which consist of additional

information about a dimensional attribute of the hierarchy and is connected by a –

to many relationship, it cannot be used for aggregation.

4.2.2. Representation of Fact Scheme: In the DFM, a fact scheme is structured as a

quasi tree whose root is a fact. A fact is represented by a box which reports the fact name

and typically one or more measures. In the sale scheme, qty sold, revenue and no. of

customers are measures.Dimension attributes are represented by circles. Each dimension

attributes directly attached to the fact is a dimension. The dimension pattern of the sale

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 121

scheme is {date, product, store, promotion}.Non dimension attributes are terminal within

quasi tree and are represented by lines for e.g. addresses.Subtrees rooted in dimension are

hierarchies. The arc connecting two attributes represent many– to one relationship.

Figure 10. A Sale Fact Scheme

The fact scheme may not be a tree : in fact two or more distinct paths may connect two

given dimension attributes within a hierarchy ,provided that every directed path still

represents a one- to one relationship.

Optional relationship is represented by marking with a dash the corresponding arc. For

example attribute diet takes value only for food products, for others it will take null value.

A measure is additive on a dimension if its values can be aggregated along the

corresponding hierarchy by the sum operator.

4.2.3. Additivity: Aggregation requires defining a proper operator to compose the

measure values characterizing primary fact instances into measure values characterizing

each secondary fact instances.

An example of fact scheme in the example above is qty sold; the qty sold for a given

sales manager is the sum of the quantities sold for all stores managed by that manager.A

measure may be non additive on one or more dimension. E.g. are inventory levels or

temperature etc.An inventory level is non additive on time. A temperature is non additive

on all dimensions.

The Figure 11 shows an example where AVG,MIN can be used for aggregation.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

122 Copyright ⓒ 2015 SERSC

 Figure 11. Inventory Fact Scheme

4.2.4. Overlapping Fact schemes: In the DFM, different facts are represented in

different fact schemes. Overlapping fact schemes means combining two related fact

schemes into one fact scheme if the compatibility is strict i.e. the inter attribute

dependencies in the two schemes are not conflicting

.

 Figure 14. The Shipment Fact Scheme

Figure 12. Overlapped Fact Scheme

The measure in resulting overlapped fact scheme is the union of the two fact schemes

which are overlapped. Each hierarchy in resulting scheme includes all and only the

attributes included in the corresponding hierarchies of both the fact scheme.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 123

4.3 Working of the Algorithm

The transformation of ER schema to a DFM requires following steps:

Step 1: Defining Facts

Step 2: For each fact:

a) Building the attribute tree

b) Pruning and grafting the attribute tree

c) Defining Dimension

d) Defining measures

e) Defining hierarchies

The Figure 13 shows the Simplified ER Scheme that is to be converted into DFM.

Figure 13. Simplified ER Scheme

Figure 14. ER Diagram used for Conversion

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

124 Copyright ⓒ 2015 SERSC

4.3.1. Defining Fact: Facts are concept of primary interest for decision making. They

correspond to events occurring dynamically in the world.A fact may be represented either

by an entity F or by an n-array relationship R between entities E1-En.When a relationship

R is a fact we have to transform this R into an entity F by replacing each branch Ei with a

binary

Relationship Ri between F and Ei. The attributes of the relationship become attributes of

F; the identifier of F is the combination of the identifiers of Ei.Each fact identified on the

source scheme becomes the root of different fact scheme.

Figure 15. Transformation of Relationship Into Entity

In the above example, the fact of primary interest for business analysis is the sale of

product, represented in the ER scheme by relationship sale.

Figure 16. Define Facts

4.3.2. Building the Attribute Tree:Given a source scheme and an entity F belonging to

it, we call attribute tree the quasi- tree such that:

 Each vertex corresponds to an attribute-simple or compound of the scheme.

 The root corresponds to the identifier of entity F

 For each vertex v, the corresponding attribute functionally determines all the

attributes corresponding to the descendants of v.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 125

 Let identifier (E) denote the set of attributes which make up the identifier of entity E. The

attribute tree for F may be constructed automatically by applying following recursive

procedure.

root= newVertex(identifier(F));

translate (E,v):

E is the current entity, v is the current vertex

{

 for each attribute aÎE | a identifier(E) do

 addChild(v,newVertex({a})); // adds child a to vertex v

 for each entity G connected to E by a relationship R | max(E,R)=1 do

{

 For each attribute bÎR do

addChild (v,newVertex({b}));

next=newVertex(identifier(G));

addChild (v,next);

translate (G,next);

 }

 }

In the following we illustrate how procedure translate works by showing in a step by step

fashion how a branch of the attribute tree is generated.

root=newVertex(ticketNumber+product)

translate(E=SALE,v=sale):

 addchild(v,qty);

 addchild(v,unitPrice);

For G=PURCHASE TICKET:

addchild(v,ticketNumber);

translate(PURCHASE TICKET,ticketNumber);

for G=PRODUCT:

addchild(v,product); translate(PRODUCT,product);

translate(E=PURCHASE TICKET,v=ticketNumber):

addchild(v,date);

for G=STORE:

addchild(v,store); translate(STORE,store);

translate(E=STORE,v=store):

addchild(v,address); addchild(v,phone);

addchild(v,salesManager);

for G=SALE DISTRICT:

addchild(v,districtNo+state);

translate(SALE DISTRICT,districtNo+state);

for G=CITY:

addchild(v,city);

 translate(CITY,city);

translate(E=SALE DISTRICT,v=districtNo+state):

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

126 Copyright ⓒ 2015 SERSC

addchild(v,districtNo);

for G=STATE:

addchild(v,state); translate(STATE,state);

translate(E=STATE,v=state):

Figure 17. Attribute Tree for the Sale Example

As the attribute tree undergoes the next step in the methodology, the granularity of fact

instances may change and become coarser than that expressed by the identifier of F.

Thus, in order to avoid confusion, we prefer to label the root of the attribute tree with

the name of entity F rather than with its identifier. Generalization hierarchies in the E/R

scheme are equivalent to one-to-one relationships between the super-entity and each sub-

entity, and should be treated as such by the algorithm.

4.3.3 Pruning and Grafting the Attribute Tree: It may happen that not all of the

attributes represented in the attribute tree are interesting for the DW. Thus, the attribute

tree may be pruned and grafted in order to eliminate the unnecessary levels of

detail.Pruning is carried out by dropping any subtree from the quasi-tree. The attributes

dropped will not be included in the fact scheme, hence it will be impossible to use them to

aggregate data. For instance, on the sale example, the subtree rooted in county may be

dropped from the brand branch.Grafting is used when, though a vertex of the quasi-tree

expresses an uninteresting piece of information, its descendants must be preserved; for

instance, one may want to classify products directly by category, without considering the

information on their type.

Let v be the vertex to be eliminated:

graft(v):

{ for each v' | v' is father of v do

{for each v" | v" is child of v do

{addChild(v',v");

drop v;

 }

 }

 }

Thus, grafting is carried out by moving the entire subtree with root in v to its father(s) v';if

we denote with t the attribute tree and with I the set of its vertices, procedure graft(v)

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 127

returns cnt(t,I-{v}). As a result, attribute v will not be included in the fact scheme and the

corresponding aggregation level will be lost; However on the other hand, all the

descendant levels will be maintained. In the sale example, the detail of purchase tickets is

uninteresting and vertex ticket number can be grafted. In general, grafting a child of the

root corresponds to making the granularity of fact instances coarser and, if the node

grafted has two or more children, leads to increasing the number of dimensions in the fact

scheme.

 Figure 18. Attribute Tree for the Sale Example after Grafting and Pruning

4.3.4. Defining Measures: Measures are defined by applying, to numerical attributes of

the attribute tree, aggregation functions which operate on all the instances (tuples) of F

corresponding to each primary fact instance. The aggregation function typically consists

either of the sum/average/maximum/ minimum of expressions or of the count of the

number of entity instances (tuples). A fact may have no attributes, if the only information

to be recorded is the occurrence of the fact. The measures determined, if any, are reported

on the fact scheme.

Figure 19. Identifying Dimensions

4.3.5. Defining hierarchies:Along each hierarchy, attributes must be arranged into a

quasi-tree such that a one-to-one relationship holds between each node and its

descendants. The attribute tree already shows a plausible organization for hierarchies; at

this stage, it is still possible to prune and graft the quasi-tree in order to eliminate

irrelevant details.

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

128 Copyright ⓒ 2015 SERSC

It is also possible to add new levels of aggregation by defining range for numerical

attributes. Typically, this is done on the time dimension. In the sale example, the time

dimension is enriched by introducing attributes month, quarter, etc.

During this phase, the attributes which should not be used for aggregation but only for

informative purposes may be identified as non-dimension attributes (for instance, address,

weight, etc.). It should be noted that non-numerical attributes which are children of the

root but have not been chosen as dimensions must necessarily either be grafted (if the

granularity of the primary fact instances is coarser than that of the fact) or be represented

as non-dimension (if the two granularities are equal).

Figure 20. Star Schema Created from Golfarelli’s Approach

5. Comparison of the Algorithm

From our detailed study of both the algorithms we have drawn following comparisons.

They are discussed under different headings as follows:

5.1. Principle

The basic principle behind Moody’s algorithm is chunking in which large amount of

information is organized into small chunks of manageable sizes, and hierarchical

structuring in which we reduce the number of items at each level of hierarchy., Where as

the Golfarelli’s design principle was to design a dimensional fact model.

Moody claims that an ER schema is just a restricted form of a star schema.

5.2. Working of the Algorithm:

The Moody’s algorithm start by classifying entities into transaction, component and

classification entities after which we design a high level star schema in which transaction

entities corresponds to the fact (at this point a user input is required to choose which

transaction entity will be relevant for decision making purposes) component entities

correspond to dimensions and classification entities correspond to hierarchies. There after

we design detailed fact table and detailed dimension table.The Golfarelli’s algorithm

starts by building a DFM by defining facts and for each fact it build a attribute tree,

pruning and grafting the attribute tree, and then defining measures, hierarchies and

dimensions. The basic difference between the two algorithms is that Moody’s algorithm

allows only entities to become facts in a star schema where as Golfarelli’s algorithm

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

Copyright ⓒ 2015 SERSC 129

allows relationship in a ER model to become facts in a DFM for this we have to convert

this relationship to an entity.

Another difference is that the pruning and grafting of the attributes in DFM is done

after designing of the attribute tree where as in Moody’s algorithm this is done at the

stage of designing a high level star schema which requires a user input to decide which

transaction entities will become facts and which component entity will correspond to

dimension.

The major difference is that in Moody’s algorithm a star schema is represented in the

form of relations (i.e. Facts are represented in form of fact table and hierarchies are

collapsed to dimension

Which are represented in the form of a dimension table) where as in Golfarelli’s

algorithm a star schema is represented in the form of a quasi tree whose root is a fact and

nodes directly attached to the fact are the dimensions and sub trees rooted in dimension

are the hierarchies

Acknowledgement

I would like to gratefully and sincerely thank Dr. Naveen Prakash for his guidance,

understanding, patience, and most importantly, his friendship during my postgraduate

studies. His mentorship was paramount in providing a well rounded experience consistent

my long-term career goals. He encouraged me to not only grow as an experimentalist and

a chemist but also as an instructor and an independent thinker. I am not sure many

graduate students are given the opportunity to develop their own individuality and self-

sufficiency by being allowed to work with such independence. For everything you’ve

done for me. I would also like to thank Ms. Veepu for helping me.

References

[1] R. Thareja, “Data warehousing”, Oxford, (2009).

[2] W.H. Inmon, “Building the Data Warehouse”, John Wiley, New York, (2000).

[3] F. Rilson and J. Freire, “DWARF: AN Approach for Requirements Definition and Management of Data

Warehouse Systems”, Proceeding of the 11th IEEE International Requirements Engineering

Conference 1090-9, (2003).

[4] B. Husemann, J. Lechtenborger, G. Vossen, “Conceptual Data Warehouse Design” Proceedings of the

International Workshop on Design and Management of Data Warehouses (DMDW’2000), (2000);

Stockholm, Sweden.

[5] M. Golfarelli, D. Maio and S. Rizzi, “Conceptual design of data warehouses from E/R schemes”, Proc.

Hawaii International Conference on System Sciences, (1998); Kona, Hawaii.

[8] D. Dori, R. Feldman, A. Sturnm, “Transforming an Operational System Model to a Data Warehouse

Model: A Survey of Techniques”, Proceedings of the IEEE International Conference on Software -

Science, Technology & Engineering

[9] M. Golfarelli, S. Rizzi, “Designing the Data Warehouse: Key Steps and Crucial Issues”, Journal of

Computer Science and Information Management, vol. 2. no.3, (1999).

[10] N. Prakash, A. Gosain, “An approach to engineering requirement of datawarehouses, Requirement

enginnering”, vol 1, no.13, (2008), pp. 49-72.

[11] D.L. Moody and M.A.R. Kortink, "From ER Models to Dimensional Models: Bridging theGapbetween

OLTP and OLAP Design", Journal of Business Intelligence, vol. 8, (2003).

[12] D.L. Moody and M.A.R. Kortink,” From ER Models to Dimensional Models: Advanced Design Issues”,

Journal of Business Intelligence, vol. 8, (2003).

[13] P.P. Chen, “The entity relationship model :toward a unified view of data”, ACM transactions on

database system, vol. 1, no. 1,(1976), pp. 9-37.

[12] www.xml.com

[13] www.xmlvalidation.com

[14] www.xmlmaster.org/en/article/d01/c04

International Journal of Database Theory and Application

Vol.8, No.3 (2015)

130 Copyright ⓒ 2015 SERSC

Authors

Gunjan Chandwani
 Assistant Professor

Manav Rachna College of Enginering

Veepu Uppal
Assistant Professor

Manav Rachna College of Enginering

