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Abstract 

Information Extraction (IE) is an essential tool to retrieve structured information 

from at text (including web-content).Given a pattern query, an ideal IE application should 

be able to extract the matched target effectively and efficiently. However, as far as we 

know, efficiency and flexibility are major concern for typical IE tools since they either use 

brute-force document parsing for each query off-line or support on-line query in 

pre-extracted elements. In order to promote accuracy and efficiency of extraction, in this 

paper we propose a novel framework iExtractor that leverages In-formation Retrieval 

(IR) indexes to speed-up IE processes. We index text blocks with their signatures 

(presented as bit-strings) and propose efficient IE algorithms based on the signature 

index. Hence, iExtractor can validate query pattern in signature index without original 

text. The framework also supports on-line extraction through a general and flexible 

pattern extraction language. Our extensive experimental results on diverse real datasets 

show that our approach delivers stable efficiency and has outperforms baselines in terms 

of extraction accuracy. 
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1. Introduction 

Information Extraction (IE) is the task of extracting assertions from massive corpora 

without requiring a pre-specified vocabulary. It has been a critical topic and attracted lots 

of attention from the areas of text understanding, data mining and machine learning. With 

ever growing and often changing document corpus such as world wide web (WWW), it is 

very challenging to execute IE queries over such large data sets efficiently. Furthermore, 

there is an increasing need to perform ad-hoc IE queries, in which the query patterns are 

not known before query time [13]. However, in some most current approaches, 

documents are processed for a set of pre-defined pattern queries to support fast online 

answer for these queries [1]. There is an obvious deficit of the approaches: for the queries 

in the pre-defined set they need to do a brute-force match involving a parse and check 

(using techniques such as wrapper-generation) over all the documents in the corpus. This 

limits their ability to support ad-hoc queries. Consider the following example, which 

demonstrates some of the current approaches to IE. For simplicity, we refer IE query as 

query. 

 

Example 1: Toward a collection of news documents where each document is labeled 

with a pre-defined news topic, the IE task at hand is to find titles for a given topic. To 

extract the title related to a certain topic in Example1, The approach in article [1] required 

three critical components: relevant context, extraction pattern and a brute-force parse 

process. Relevant context is a part of whole document which related with a query. In this 
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paper, we consider proximity relationships in which the content is considered relevant to 

the query if it is near the input query pattern. Extraction pattern (also named text wrapper) 

is considered to be an information source that "wraps" the target content and is generally 

referred to as the extractor program which fetch data by parsing documents. If the user 

wants to find email subject with group termed NSWC, the first step is getting context 

surrounding NSWC. Then treat words before and after target data item as its extraction 

pattern. Finally, the relevant context is parsed to determine if there is a match. As a result, 

IE process is time consuming and in-efficient for on-line extraction task. 

 

Example 2: Car rentals is a car rent provider on web where the page includes car 

related information as rental fares, pick up location etc. The page structure is showed in 

Figure 1. Consider a user who is searching for "rent price or distance miles" based on 

the crawled documents from Car rentals website. 

 

 

Figure 1. Entity Information in Car Rental Web Page 

In Example 2, some items like price are wrapped by HTML tags (blue boxes in Figure 

1) whereas other items such as distance are wrapped by natural language content (red 

box).For those in blue boxes, since the target items are wrapped in in an HTML template, 

HTML parser could be used to extract them by CSS style or layout id or HTML tags. 

Wrappers could be classified as manually defined, auto-generated or based on machine 

learning [7] or classified as record-level, page-level or site-level wrapper [12]. All above 

mentioned wrappers, however, are defined offline phase and need work by doing an 

exhaustive scan of the corpus. Moreover, for those in red box, items are included 

non-HTML format and wrapper is designed as terms around target item, e.g. text wrapper 

of value 7:44's is Riverside and miles. Although entity recognition or NLP-based tools 

like WHISK [reference needed] can extract item from free text, it is difficult to determine 

all items the users might want to find in the web-corpus. 

 As we see from the above discussion, typical IE tools suffer from the following 

disadvantages: (1) Full text extracting requires high response time. e.g. an extraction on 

DBLife which draws 5-10 word length item takes several hours[4],and is therefore 

unsuitable for on-line extraction; (2) user can only find information on pre-structured 

data. e.g. in scenario 2, the data should be extracted and stored in structured formats; (3) 

with the additional or updating of rules, IE need to re-parse entire document collection, 

e.g. in example 2, if user defines a new wrapper to get the number of seats available for 

adults (the wrapper is Seats and adults). 

In this paper, we focus on addressing the aforementioned drawbacks. Information 

Retrieval (IR) methods have ability to manage a huge number of corpuses. We propose a 

framework wherein IE is augmented with IR approaches to significantly improve 

extraction performance. Traditional IR indexes such as inverted indexes reorganize 

information by term-doc view which is not easy to fetch background for further extract. 

Suffix tree, a kind of Tire, labels string with tree edges and provides a linear-time solution 
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for substring match problem. Therefore, it is one of solutions for our goal. Unfortunately, 

the cost of speedup is the storage of index with suffix tree is larger than the space to store 

content itself. In comparison with this index structure, signature file has advantages of 

supporting set-oriented queries efficiently and involving high processing and I/O cost [2]. 

In this article, we advocate a signature file based Information Extractor (iExtractor) to 

support on-line extraction with extraction pattern. Based on user given interesting items 

and sample documents, iExtractor generate a special wrapper and return all target items 

have the same pattern on-line efficiently. In addition, iExtractor support both tag-based or 

non-tag wrappers and regardless the format of original data. Our main contributions are as 

follows: 

 

 We formalize the task of iExtractor online extraction by several novel definition 

models. 

 We propose signature index for iExtractor and give efficient algorithms to match 

pattern in bit-strings file. 

 We design an extraction language and express the overview of extract process. 

 Experimental results of different format and size datasets validate the effectiveness 

of our framework. 

 

2. Definitions 

Pattern Query: A pattern query  is an ordered list of query 

terms ti. We define , where D denotes a 

document and  is the position of term t in D. 
We determine if the document strictly contains the pattern query phrase using Strict 

Match. 

 

Definition 1 (Strict Match): We say document D strictly match query PQ if (i) D 

contains all query terms in PQ. 

 
Where  

If document Sample is “California is a state located on the west coast of the United 

States. Sacramento is the state's capital.”, pattern  can 

be matched while  fails. 

 

Definition 2 (Block Model): can be defined as follows. Given term 

 in document  and a distance constrain, denoted as  that relevant content 

must be in range of  terms preceding and succeeding . 

 

Definition 3 (Equal Length Block Array): given a document  and an integer , 

Equal length Block Array  returns an array of blocks with the same number of 

terms. 

 

3. I Extractor Components and Algorithms 

Our framework iExtractor generates and links bit masks as fingerprints for text blocks 

and designs algorithms to use for pattern validation in index. 
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3.1 Signature File with Indexes 

Off-line phase consists of two steps. First, for given text content,  returns 

an array of blocks as . Second, map block  to bit masks  by signature 

function. 

 

Algorithm 1BuildBlockFingerprint( B,hf ) 

Input: text block B,signature function hf. 
Output: BFP. 

1: N ← # of B ; BFP ← 0 ; 
2: FORi = 1 → NDO 

3: t ← Bi ; 

4: hv ← hf(t) ; 

5:     BFP ← BFP ∨PosTrans( hv,post) ; 

6: RETURNBFP; 

 

As described in Algorithm 1, to process a new block B is split into array of terms. Then 

the hash value hv for each term t is calculated with appropriate hash function hf. Further, 

function PosTrans is designed to merge additional position information (line 5) with two 

parameters: hash value of t and its integer position value post. There are could be several 

approaches to define PosTrans. In this paper, for simplicity, we define PosTrans as 

shifting post bit offset to original hash bit arrays. Finally, we do bit OR-operation to add t 

feature to block signature value (line 5). 

To achieve an efficient and tractable hash based solution, storage cost and hash 

collision should be taken into account. Akin to the Bloom filter [8], block finger prints a 

space efficient probabilistic data structure designed to quickly look-up membership in a 

set. Query returns result that elements are either 'inside set (may be incorrect)" or 

'definitely not in the set". However, Hash-based approach suffers from false positive. Let 

m is the size of bit for given hash function, n is the total number of elements in set and k 

is the number of hash function. The probability of a false positive f is estimated by 

formula 2 [9]. 

        (2) 

It is easy to see that as the number of elements in a set increases, so does the 

probability of false positives. The probability of false positive of block fingerprint, in 

practice, is somewhat different with value . It is because, instead of using hash function 

directly, we redesign hash function to decrease collision. We use three 16-byte length 

hash functions that are perfectly random to do bit AND-operation for reducing the 

number of 1 in bit arrays. Consequently, Table3 shows the error-ratio with different size 

of set, which is better than f. 

The second part of off-line stage is to build connection between query terms and block 

fingerprint generated by Algorithm 1. We propose a novel index structure called Block 

Inverted Index (BII). In contrast to the typical inverted index, BII stores the pointer to the 

signature of block which query term belongs to rather than the location of term directly. 

For example, there is a block  consist of term arrays . Let BFP be the 

signature of . For given any term ti, 0 <i< n, BII returns the same BFPb. That is to say 

terms in the same block have the same signature value by BII. Since, we use EBA 

(defined in section 2) to split original text and use fixed-length BFP to present block 

feature, it is convenient to random access to another block's feature without additional 

pointer. 
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3.2 Pattern Matching with Signature File 

In this section, by using signature file developed in Section 3.1, we define pattern 

match process as two consisting phases. First, we need to grab part of bit string, which is 

considered as feature of context for extracting, from signature file by Algorithm Get 

Related Fingerprint. Second, algorithm Single Block Matcher and Multi Block Matcher 

are employed to judge availability of query pattern in bit strings. 

 

Algorithm 2GetRelatedFingerprint(t,Rl,Rr) 

Input: term t, left range Rl , right rangeRr. 

Output: the array of signature < BFP > 

1: p ← findPos(t,BII) 
2: compare Rl and Rr with N to check if the range cross multiple blocks; 

3: < BFP > ← selectBFP; 

4: return< BFP > 

 

Algorithm 2 shows the procedure of extracting query related context signature content. 

Given a query term t and BII, we first find the start position of bit strings in signature file 

(line 1). Then we calculate how many blocks need to be extracted according to the left 

and right range. The window width depends on both range width and length of each block 

(line 2). If window width crosses several blocks, the result is an array of BFP. In common 

situation, query term belongs to more than one blocks, therefore the final results are list of 

bit stings, in which each bit string is created by Algorithm 2. 

So far we have a fingerprint of blocks and inverted index structure to retrieve 

signatures. Next, we propose a solution to verify if a phrase exists in block by its 

signature. Assuming query phrase is in one block for simply, we give the process in 

Algorithm 3. First, convert a phrase to an array of terms . Then we calculate the 

bit strings for phrase by Algorithm 1 on step 1. However, position value of term in query 

phrase is usually different from that in block. 

 

Algorithm 3SingleBlockMatcher(qp,BFP) 

Input: query pattern qp, block fingerprint BFP. 

Output: if BFP match qp return true 

1: < t >← qp; 

2: step 1 

3: calculate off set pos; 
4: QH = 0 

5: FORi = 0 → N DO 

6:     post ← i + off set pos 
7: hv ← hf( ti ) 

8: hv’ ← PosTrans( hv , post ); 

9:     QH ← BFP∨hv’ 

10: Step 2 

11: IF BFP = ( BFP ∨ QH ) THEN 

12: return true; 

13: ELSE 

14: return false; 

 

For example, term at the beginning of query phrase might be positioned at the middle 

of block. Therefore, we need to get the position of first term in query as offset for block 

matching process (line 3). In order to gain off set pos, in this article, we try to estimate 

every possible position (from0 to N-1) by PosTrans method and record every passed 

value. In Step 2, we bit-ORedQH and BFP and see if the value is changed. 
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4. Extraction Process 

In this section, we describe the overview of iExtractor which includes Extraction 

Language (EL) and operation process. 

 

4.1. Extraction Language 

This subsection makes a language to describe extraction pattern in iExtractor. As 

Figure 2 shows, if user wants to gain all the email senders related with topic “Princeton”. 

The procedure gets text around “Princeton" and extracts content between words “from" 

and “subject". As a result, email"strom@watson.ibm.com" is what we want. 

 

 

Figure 2. Scenario for Extraction Language 

For more details, we define three concepts in Extraction Language and give detail 

semantic as follows: 

 

Focus Domain (FD) is terms which users are interested in. e.g. Princeton is FD 

means users want to find information entities related with Princeton. 

 

Context Range (CR) defines the scope of text area as extract background. e.g. 

 gives the window width with 5 words on left and 2 words on right of FD. 

Obviously, if CR is large enough, extract background is whole document. 

 

Extract Pattern (EP) defines target element's pattern and its length. e.g. from find 

[1] subject means extract one word between term from and subject exactly. 

Table 1 shows the notations of EL and give relevant their semantic. 

Table 1. Extraction Language Notations and their Semantic 

Notation Semantic Description 

@ mark term as focus domain 

<Rl,Rr> Return the range of extracted window 

#Find[min,max] Define the length of extracted item 

 

Based on above concepts, we write a EL as from #Find [1]subject Princeton <-5,2> 

to extract senders. 

 

4.2. Extraction Process 

Now, we turn to express the overview of iExtractor and tell how these components 

above cooperate with each other in Figure 3. There are four essential components in 

iExtractor as following. 

 GUI is a user interface to let user input Extraction Language. 

 Model parser checks the grammar of EL and transfer EL to FD, CR and EP. 

 Block Inverted Index Structure receives FD and CR and returns related array of 

bit strings by Algorithm2. 
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 Model Matcher uses Algorithm 3 to give the match probability of target element 

in blocks. 

 

 

Figure 3. iExtractor Operators and Process 

Obviously, we cannot obtain target like user name or phone number from signature 

index directly. However, iExtractor can supply a space-efficient structure to give the 

probability and help avoid string comparison in whole documents. Hence, iExtractor 

improves the efficiency of performanceand reduces the cost of I/O access. 

 

5. Experiments 

We conduct a set of comprehensive experiments to demonstrate the quality and 

efficiency of iExtrator. First, we analyze the storage overhead of datasets and indexes 

(Section5.1). Then, we evaluate compression ratio with false positive error (Section 5.2). 

Finally, we verify the efficiency of iExtractor in datasets with various structure type and 

size of data sets (Section 5.3). Table 2 introduces three datasets with their indexes. 

There are three datasets as following: 

1） 20 Newsgroups (NG) is a collection of documents which across 20 

different categories and formatted as emails. There are two versions of dataset: 

full version has nearly 20k documents while mini version is the subset of full 

version and has 2000 documents. 

2） University Web Site (UWS) is the dataset crawled from 2000 

university web sites. UWS contains total216, 495 HTML formatted files. We 

split whole dataset into full (UWS3), medium (UWS2), and small (UWS1) 

subsets and describe detail information of them in Table 2. 

3）  DBLP dataset lists more than 2 million records in single XML file 

[14]. We select parts of file to generate dataset DBLP1, DBLP2 and DBLP3 with 

size in Table 2. 

 

5.1. Implementation and Space Overhead 

Our experiments are implemented in JDK 7 and the operating system is Cenos 6.3. 

Hardware environment for experiments is Dell server with a 2.27 GHZ 16-core CPU 

anda8G RAM. 

Table 2. Dataset Description and Related Indexes 

Data Source Format Data Set # of file Size Lucence index 
iExtractor 

index 
20_Newsgroups Unstructured 

data 
NG1 
NG2 

2000 
19997 

4.46 MB 
43.90 MB 

6.25 MB 
58.60 MB 

7.03 MB 
63.80 MB 

University Web 

Site 

HTML UWS1 

UWS2 

UWS3 

1583 

60648 

216495 

13.0 MB 

521 MB 

1720 MB 

9.62 MB 

516 MB 

1660 MB 

10.86 MB 

621 MB 

2180 MB 

DBLP XML DBLP1 

DBLP2 

DBLP3 

1 

1 

1 

20.40 MB 

100 MB 

1013 MB 

20 MB 

100 MB 

990 MB 

27.50 MB 

123.70 MB 

1420 MB 
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Table3 illustrate inverted index and iExtractor storage efficiency of different datasets 

by Formula .We can see that iExtractor has 

similar or even better compression effectively like Lucerne.   

Table 3. Space Efficiency of Indexes 

approach NG1 NG2 UWS1 UWS2 DBLP1 DBLP2 

Lucence 0.71 0.74 1.35 1.09 1.02 1.00 

iEtractor 0.63 0.68 1.19 0.84 0.74 0.81 

 

5.2. Extraction Efficiency Evaluation 

In this section, we compare execute time efficiency of three extract models. (1) Text 

based Model (TBM) means extract item by exhausted parsing documents. We use Java 

regular pattern API to define extraction pattern and parse whole documents to grab result; 

(2) Index based Model (IBM) uses inverted index to gain term position values in query 

pattern and verify the correction of order by posting positions; (3) Signature based Model 

(SBM) uses iExtractor to find result. 

 To find the relationship between length of query pattern and extract performance, we 

choose 2, 6 and 10 terms EP to estimate execute time. 
 

 

(a) TBM vs. EP              (b) IBM vs. EP            (c) SBM vs. EP 

Figure 4. Execution Time Growth in Different Length of EP 

Depicted Figures 4a and 4c, the length factor has less influence on TBM and SBM than 

on IBM. It is because IBM needs more indexes and calculation when EP is growing. 

TBM and SBM load content regardless EP length. 

Next, we evaluate the influence of data format in three models. Execute time results are 

found with comparison of TBM, IBM and SBM and described. Motivated by the 

comparison of increment speed, we need to normalize result by Formulas size increment 

equals Sizetarget=Sizebenchand Execute time increment equals (Timetarget=Timebench), where 

smallest value is treated as bench and other values are treated as target. Figure 5 gives the 

performance details in three types of dataset. 
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(a) Flat Data               (b) HTML Data          (c) XML Data 

Figure 5. Execution Time Growth in Various Formatted Data Sets 

As shown in Figure 5, we can see with the growth of dataset, execute time of SBM is 

low and stable in various data format and size. Execute time of TBM grows quickly with 

increasing data corpus size. IBM approach has good execute time in unstructured and 

HTML documents (Figures 5a and 5b). But growth rate becomes the worst in DBLP as 

Figure 5c depicted that is because DBLP file contains many high frequent tags which cost 

IBM more time to compare position for keeping correct order. 
 

6. Related Work 

There are several lines of work we build upon. In article [1], authors survey the major 

data extraction approaches and analyze relevant techniques. Typical IE tools mainly 

supply Brute-force parsing algorithms to gain data. For various sources like free web page 

or semi-structure XML file, text wrappers like Stalker [11] and WIEN [10] are useful to 

discover entities and relationships. Moreover, ontology and semantic web are used to 

extract information automatically [5]. 

IE tools with indexes could improve efficiency and support on-line extraction. For 

example, entity search [3] returns web entities instead of documents to user by indexes. 

TEXTRUNNER [6] use REVERB model to support relation and argument extraction. But 

element types in these approaches are limited and predefined off-line. Signature construct 

and compression methods are introduced in [2] to speed up file scanning and query 

evaluation. 

 

7. Conclusion 

Information Extraction provides a mechanism to extract items from free text. But the 

problem is that extractors need to scan the document brute-force to find interesting things 

resulting in poor performance. Moreover, text wrappers should be defined during off-line 

phase which makes the extraction process inflexible. In this paper, we propose a novel 

framework iExtractor, which is based on a signature file index, to speed up the text 

extraction process and promote flexible pattern extraction. Experimentally demonstrate 

that, in both unstructured and semi-structured datasets and with different data size, 

iExtractor provides efficient and stable performance than competing approaches. 

Extensions of iExtractor with more complex extraction patterns and further 

compression of indexes could be interesting avenues for future research. 
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