
International Journal of Database Theory and Application

Vol.8, No.2 (2015), pp.33-42

http://dx.doi.org/10.14257/ijdta.2015.8.2.04

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Efficient Information Extraction Based on Signature Index

CanghongJin
1
,

Minghui Wu

1
, Zemin Liu

2
 and Shiwen Cheng

3

1
Department of Computer Science and Engineering, Zhejiang University City

College, Hangzhou, China
1
College of Computer Science and Technology, Zhejiang University,

Hangzhou, China
2
University of California, Riverside, CA, USA

chjin@zju.edu.cn, mhwu@zucc.edu.cn

Abstract

Information Extraction (IE) is an essential tool to retrieve structured information

from at text (including web-content).Given a pattern query, an ideal IE application should

be able to extract the matched target effectively and efficiently. However, as far as we

know, efficiency and flexibility are major concern for typical IE tools since they either use

brute-force document parsing for each query off-line or support on-line query in

pre-extracted elements. In order to promote accuracy and efficiency of extraction, in this

paper we propose a novel framework iExtractor that leverages In-formation Retrieval

(IR) indexes to speed-up IE processes. We index text blocks with their signatures

(presented as bit-strings) and propose efficient IE algorithms based on the signature

index. Hence, iExtractor can validate query pattern in signature index without original

text. The framework also supports on-line extraction through a general and flexible

pattern extraction language. Our extensive experimental results on diverse real datasets

show that our approach delivers stable efficiency and has outperforms baselines in terms

of extraction accuracy.

Keywords: iExtractor, signature index, information extraction

1. Introduction

Information Extraction (IE) is the task of extracting assertions from massive corpora

without requiring a pre-specified vocabulary. It has been a critical topic and attracted lots

of attention from the areas of text understanding, data mining and machine learning. With

ever growing and often changing document corpus such as world wide web (WWW), it is

very challenging to execute IE queries over such large data sets efficiently. Furthermore,

there is an increasing need to perform ad-hoc IE queries, in which the query patterns are

not known before query time [13]. However, in some most current approaches,

documents are processed for a set of pre-defined pattern queries to support fast online

answer for these queries [1]. There is an obvious deficit of the approaches: for the queries

in the pre-defined set they need to do a brute-force match involving a parse and check

(using techniques such as wrapper-generation) over all the documents in the corpus. This

limits their ability to support ad-hoc queries. Consider the following example, which

demonstrates some of the current approaches to IE. For simplicity, we refer IE query as

query.

Example 1: Toward a collection of news documents where each document is labeled

with a pre-defined news topic, the IE task at hand is to find titles for a given topic. To

extract the title related to a certain topic in Example1, The approach in article [1] required

three critical components: relevant context, extraction pattern and a brute-force parse

process. Relevant context is a part of whole document which related with a query. In this

mailto:chjin@zju.edu.cn

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

34 Copyright ⓒ 2015 SERSC

paper, we consider proximity relationships in which the content is considered relevant to

the query if it is near the input query pattern. Extraction pattern (also named text wrapper)

is considered to be an information source that "wraps" the target content and is generally

referred to as the extractor program which fetch data by parsing documents. If the user

wants to find email subject with group termed NSWC, the first step is getting context

surrounding NSWC. Then treat words before and after target data item as its extraction

pattern. Finally, the relevant context is parsed to determine if there is a match. As a result,

IE process is time consuming and in-efficient for on-line extraction task.

Example 2: Car rentals is a car rent provider on web where the page includes car

related information as rental fares, pick up location etc. The page structure is showed in

Figure 1. Consider a user who is searching for "rent price or distance miles" based on

the crawled documents from Car rentals website.

Figure 1. Entity Information in Car Rental Web Page

In Example 2, some items like price are wrapped by HTML tags (blue boxes in Figure

1) whereas other items such as distance are wrapped by natural language content (red

box).For those in blue boxes, since the target items are wrapped in in an HTML template,

HTML parser could be used to extract them by CSS style or layout id or HTML tags.

Wrappers could be classified as manually defined, auto-generated or based on machine

learning [7] or classified as record-level, page-level or site-level wrapper [12]. All above

mentioned wrappers, however, are defined offline phase and need work by doing an

exhaustive scan of the corpus. Moreover, for those in red box, items are included

non-HTML format and wrapper is designed as terms around target item, e.g. text wrapper

of value 7:44's is Riverside and miles. Although entity recognition or NLP-based tools

like WHISK [reference needed] can extract item from free text, it is difficult to determine

all items the users might want to find in the web-corpus.

 As we see from the above discussion, typical IE tools suffer from the following

disadvantages: (1) Full text extracting requires high response time. e.g. an extraction on

DBLife which draws 5-10 word length item takes several hours[4],and is therefore

unsuitable for on-line extraction; (2) user can only find information on pre-structured

data. e.g. in scenario 2, the data should be extracted and stored in structured formats; (3)

with the additional or updating of rules, IE need to re-parse entire document collection,

e.g. in example 2, if user defines a new wrapper to get the number of seats available for

adults (the wrapper is Seats and adults).

In this paper, we focus on addressing the aforementioned drawbacks. Information

Retrieval (IR) methods have ability to manage a huge number of corpuses. We propose a

framework wherein IE is augmented with IR approaches to significantly improve

extraction performance. Traditional IR indexes such as inverted indexes reorganize

information by term-doc view which is not easy to fetch background for further extract.

Suffix tree, a kind of Tire, labels string with tree edges and provides a linear-time solution

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 35

for substring match problem. Therefore, it is one of solutions for our goal. Unfortunately,

the cost of speedup is the storage of index with suffix tree is larger than the space to store

content itself. In comparison with this index structure, signature file has advantages of

supporting set-oriented queries efficiently and involving high processing and I/O cost [2].

In this article, we advocate a signature file based Information Extractor (iExtractor) to

support on-line extraction with extraction pattern. Based on user given interesting items

and sample documents, iExtractor generate a special wrapper and return all target items

have the same pattern on-line efficiently. In addition, iExtractor support both tag-based or

non-tag wrappers and regardless the format of original data. Our main contributions are as

follows:

 We formalize the task of iExtractor online extraction by several novel definition

models.

 We propose signature index for iExtractor and give efficient algorithms to match

pattern in bit-strings file.

 We design an extraction language and express the overview of extract process.

 Experimental results of different format and size datasets validate the effectiveness

of our framework.

2. Definitions

Pattern Query: A pattern query is an ordered list of query

terms ti. We define , where D denotes a

document and is the position of term t in D.
We determine if the document strictly contains the pattern query phrase using Strict

Match.

Definition 1 (Strict Match): We say document D strictly match query PQ if (i) D

contains all query terms in PQ.

Where

If document Sample is “California is a state located on the west coast of the United

States. Sacramento is the state's capital.”, pattern can

be matched while fails.

Definition 2 (Block Model): can be defined as follows. Given term

 in document and a distance constrain, denoted as that relevant content

must be in range of terms preceding and succeeding .

Definition 3 (Equal Length Block Array): given a document and an integer ,

Equal length Block Array returns an array of blocks with the same number of

terms.

3. I Extractor Components and Algorithms

Our framework iExtractor generates and links bit masks as fingerprints for text blocks

and designs algorithms to use for pattern validation in index.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

36 Copyright ⓒ 2015 SERSC

3.1 Signature File with Indexes

Off-line phase consists of two steps. First, for given text content, returns

an array of blocks as . Second, map block to bit masks by signature

function.

Algorithm 1BuildBlockFingerprint(B,hf)

Input: text block B,signature function hf.
Output: BFP.

1: N ← # of B ; BFP ← 0 ;
2: FORi = 1 → NDO

3: t ← Bi ;

4: hv ← hf(t) ;

5: BFP ← BFP ∨PosTrans(hv,post) ;

6: RETURNBFP;

As described in Algorithm 1, to process a new block B is split into array of terms. Then

the hash value hv for each term t is calculated with appropriate hash function hf. Further,

function PosTrans is designed to merge additional position information (line 5) with two

parameters: hash value of t and its integer position value post. There are could be several

approaches to define PosTrans. In this paper, for simplicity, we define PosTrans as

shifting post bit offset to original hash bit arrays. Finally, we do bit OR-operation to add t

feature to block signature value (line 5).

To achieve an efficient and tractable hash based solution, storage cost and hash

collision should be taken into account. Akin to the Bloom filter [8], block finger prints a

space efficient probabilistic data structure designed to quickly look-up membership in a

set. Query returns result that elements are either 'inside set (may be incorrect)" or

'definitely not in the set". However, Hash-based approach suffers from false positive. Let

m is the size of bit for given hash function, n is the total number of elements in set and k

is the number of hash function. The probability of a false positive f is estimated by

formula 2 [9].

 (2)

It is easy to see that as the number of elements in a set increases, so does the

probability of false positives. The probability of false positive of block fingerprint, in

practice, is somewhat different with value . It is because, instead of using hash function

directly, we redesign hash function to decrease collision. We use three 16-byte length

hash functions that are perfectly random to do bit AND-operation for reducing the

number of 1 in bit arrays. Consequently, Table3 shows the error-ratio with different size

of set, which is better than f.

The second part of off-line stage is to build connection between query terms and block

fingerprint generated by Algorithm 1. We propose a novel index structure called Block

Inverted Index (BII). In contrast to the typical inverted index, BII stores the pointer to the

signature of block which query term belongs to rather than the location of term directly.

For example, there is a block consist of term arrays . Let BFP be the

signature of . For given any term ti, 0 <i< n, BII returns the same BFPb. That is to say

terms in the same block have the same signature value by BII. Since, we use EBA

(defined in section 2) to split original text and use fixed-length BFP to present block

feature, it is convenient to random access to another block's feature without additional

pointer.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 37

3.2 Pattern Matching with Signature File

In this section, by using signature file developed in Section 3.1, we define pattern

match process as two consisting phases. First, we need to grab part of bit string, which is

considered as feature of context for extracting, from signature file by Algorithm Get

Related Fingerprint. Second, algorithm Single Block Matcher and Multi Block Matcher

are employed to judge availability of query pattern in bit strings.

Algorithm 2GetRelatedFingerprint(t,Rl,Rr)

Input: term t, left range Rl , right rangeRr.

Output: the array of signature < BFP >

1: p ← findPos(t,BII)
2: compare Rl and Rr with N to check if the range cross multiple blocks;

3: < BFP > ← selectBFP;

4: return< BFP >

Algorithm 2 shows the procedure of extracting query related context signature content.

Given a query term t and BII, we first find the start position of bit strings in signature file

(line 1). Then we calculate how many blocks need to be extracted according to the left

and right range. The window width depends on both range width and length of each block

(line 2). If window width crosses several blocks, the result is an array of BFP. In common

situation, query term belongs to more than one blocks, therefore the final results are list of

bit stings, in which each bit string is created by Algorithm 2.

So far we have a fingerprint of blocks and inverted index structure to retrieve

signatures. Next, we propose a solution to verify if a phrase exists in block by its

signature. Assuming query phrase is in one block for simply, we give the process in

Algorithm 3. First, convert a phrase to an array of terms . Then we calculate the

bit strings for phrase by Algorithm 1 on step 1. However, position value of term in query

phrase is usually different from that in block.

Algorithm 3SingleBlockMatcher(qp,BFP)

Input: query pattern qp, block fingerprint BFP.

Output: if BFP match qp return true

1: < t >← qp;

2: step 1

3: calculate off set pos;
4: QH = 0

5: FORi = 0 → N DO

6: post ← i + off set pos
7: hv ← hf(ti)

8: hv’ ← PosTrans(hv , post);

9: QH ← BFP∨hv’

10: Step 2

11: IF BFP = (BFP ∨ QH) THEN

12: return true;

13: ELSE

14: return false;

For example, term at the beginning of query phrase might be positioned at the middle

of block. Therefore, we need to get the position of first term in query as offset for block

matching process (line 3). In order to gain off set pos, in this article, we try to estimate

every possible position (from0 to N-1) by PosTrans method and record every passed

value. In Step 2, we bit-ORedQH and BFP and see if the value is changed.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

38 Copyright ⓒ 2015 SERSC

4. Extraction Process

In this section, we describe the overview of iExtractor which includes Extraction

Language (EL) and operation process.

4.1. Extraction Language

This subsection makes a language to describe extraction pattern in iExtractor. As

Figure 2 shows, if user wants to gain all the email senders related with topic “Princeton”.

The procedure gets text around “Princeton" and extracts content between words “from"

and “subject". As a result, email"strom@watson.ibm.com" is what we want.

Figure 2. Scenario for Extraction Language

For more details, we define three concepts in Extraction Language and give detail

semantic as follows:

Focus Domain (FD) is terms which users are interested in. e.g. Princeton is FD

means users want to find information entities related with Princeton.

Context Range (CR) defines the scope of text area as extract background. e.g.

 gives the window width with 5 words on left and 2 words on right of FD.

Obviously, if CR is large enough, extract background is whole document.

Extract Pattern (EP) defines target element's pattern and its length. e.g. from find

[1] subject means extract one word between term from and subject exactly.

Table 1 shows the notations of EL and give relevant their semantic.

Table 1. Extraction Language Notations and their Semantic

Notation Semantic Description

@ mark term as focus domain

<Rl,Rr> Return the range of extracted window

#Find[min,max] Define the length of extracted item

Based on above concepts, we write a EL as from #Find [1]subject Princeton <-5,2>

to extract senders.

4.2. Extraction Process

Now, we turn to express the overview of iExtractor and tell how these components

above cooperate with each other in Figure 3. There are four essential components in

iExtractor as following.

 GUI is a user interface to let user input Extraction Language.

 Model parser checks the grammar of EL and transfer EL to FD, CR and EP.

 Block Inverted Index Structure receives FD and CR and returns related array of

bit strings by Algorithm2.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 39

 Model Matcher uses Algorithm 3 to give the match probability of target element

in blocks.

Figure 3. iExtractor Operators and Process

Obviously, we cannot obtain target like user name or phone number from signature

index directly. However, iExtractor can supply a space-efficient structure to give the

probability and help avoid string comparison in whole documents. Hence, iExtractor

improves the efficiency of performanceand reduces the cost of I/O access.

5. Experiments

We conduct a set of comprehensive experiments to demonstrate the quality and

efficiency of iExtrator. First, we analyze the storage overhead of datasets and indexes

(Section5.1). Then, we evaluate compression ratio with false positive error (Section 5.2).

Finally, we verify the efficiency of iExtractor in datasets with various structure type and

size of data sets (Section 5.3). Table 2 introduces three datasets with their indexes.

There are three datasets as following:

1） 20 Newsgroups (NG) is a collection of documents which across 20

different categories and formatted as emails. There are two versions of dataset:

full version has nearly 20k documents while mini version is the subset of full

version and has 2000 documents.

2） University Web Site (UWS) is the dataset crawled from 2000

university web sites. UWS contains total216, 495 HTML formatted files. We

split whole dataset into full (UWS3), medium (UWS2), and small (UWS1)

subsets and describe detail information of them in Table 2.

3） DBLP dataset lists more than 2 million records in single XML file

[14]. We select parts of file to generate dataset DBLP1, DBLP2 and DBLP3 with

size in Table 2.

5.1. Implementation and Space Overhead

Our experiments are implemented in JDK 7 and the operating system is Cenos 6.3.

Hardware environment for experiments is Dell server with a 2.27 GHZ 16-core CPU

anda8G RAM.

Table 2. Dataset Description and Related Indexes

Data Source Format Data Set # of file Size Lucence index
iExtractor

index
20_Newsgroups Unstructured

data
NG1
NG2

2000
19997

4.46 MB
43.90 MB

6.25 MB
58.60 MB

7.03 MB
63.80 MB

University Web

Site

HTML UWS1

UWS2

UWS3

1583

60648

216495

13.0 MB

521 MB

1720 MB

9.62 MB

516 MB

1660 MB

10.86 MB

621 MB

2180 MB

DBLP XML DBLP1

DBLP2

DBLP3

1

1

1

20.40 MB

100 MB

1013 MB

20 MB

100 MB

990 MB

27.50 MB

123.70 MB

1420 MB

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

40 Copyright ⓒ 2015 SERSC

Table3 illustrate inverted index and iExtractor storage efficiency of different datasets

by Formula .We can see that iExtractor has

similar or even better compression effectively like Lucerne.

Table 3. Space Efficiency of Indexes

approach NG1 NG2 UWS1 UWS2 DBLP1 DBLP2

Lucence 0.71 0.74 1.35 1.09 1.02 1.00

iEtractor 0.63 0.68 1.19 0.84 0.74 0.81

5.2. Extraction Efficiency Evaluation

In this section, we compare execute time efficiency of three extract models. (1) Text

based Model (TBM) means extract item by exhausted parsing documents. We use Java

regular pattern API to define extraction pattern and parse whole documents to grab result;

(2) Index based Model (IBM) uses inverted index to gain term position values in query

pattern and verify the correction of order by posting positions; (3) Signature based Model

(SBM) uses iExtractor to find result.

 To find the relationship between length of query pattern and extract performance, we

choose 2, 6 and 10 terms EP to estimate execute time.

(a) TBM vs. EP (b) IBM vs. EP (c) SBM vs. EP

Figure 4. Execution Time Growth in Different Length of EP

Depicted Figures 4a and 4c, the length factor has less influence on TBM and SBM than

on IBM. It is because IBM needs more indexes and calculation when EP is growing.

TBM and SBM load content regardless EP length.

Next, we evaluate the influence of data format in three models. Execute time results are

found with comparison of TBM, IBM and SBM and described. Motivated by the

comparison of increment speed, we need to normalize result by Formulas size increment

equals Sizetarget=Sizebenchand Execute time increment equals (Timetarget=Timebench), where

smallest value is treated as bench and other values are treated as target. Figure 5 gives the

performance details in three types of dataset.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 41

(a) Flat Data (b) HTML Data (c) XML Data

Figure 5. Execution Time Growth in Various Formatted Data Sets

As shown in Figure 5, we can see with the growth of dataset, execute time of SBM is

low and stable in various data format and size. Execute time of TBM grows quickly with

increasing data corpus size. IBM approach has good execute time in unstructured and

HTML documents (Figures 5a and 5b). But growth rate becomes the worst in DBLP as

Figure 5c depicted that is because DBLP file contains many high frequent tags which cost

IBM more time to compare position for keeping correct order.

6. Related Work

There are several lines of work we build upon. In article [1], authors survey the major

data extraction approaches and analyze relevant techniques. Typical IE tools mainly

supply Brute-force parsing algorithms to gain data. For various sources like free web page

or semi-structure XML file, text wrappers like Stalker [11] and WIEN [10] are useful to

discover entities and relationships. Moreover, ontology and semantic web are used to

extract information automatically [5].

IE tools with indexes could improve efficiency and support on-line extraction. For

example, entity search [3] returns web entities instead of documents to user by indexes.

TEXTRUNNER [6] use REVERB model to support relation and argument extraction. But

element types in these approaches are limited and predefined off-line. Signature construct

and compression methods are introduced in [2] to speed up file scanning and query

evaluation.

7. Conclusion

Information Extraction provides a mechanism to extract items from free text. But the

problem is that extractors need to scan the document brute-force to find interesting things

resulting in poor performance. Moreover, text wrappers should be defined during off-line

phase which makes the extraction process inflexible. In this paper, we propose a novel

framework iExtractor, which is based on a signature file index, to speed up the text

extraction process and promote flexible pattern extraction. Experimentally demonstrate

that, in both unstructured and semi-structured datasets and with different data size,

iExtractor provides efficient and stable performance than competing approaches.

Extensions of iExtractor with more complex extraction patterns and further

compression of indexes could be interesting avenues for future research.

References

[1] C. H. Chang, M. Kayed, M. R. Girgis, and K. Shaalan, “A survey of web information extraction

systems”, Knowledge and Data Engineering, IEEE Transactions, vol. 18, no. 10, (2006).

[2] Y. Chen and Y. Chen, “On the signature tree construction and analysis”, Knowledge and Data

Engineering, IEEE Transactions, vol. 18, no. 9, (2006).

[3] T. Cheng, X. Yan, and K. Chang, “Entity rank: searching entities directly and holistically”, Proceedings

of the 33rd international conference on Very large data bases, (2007) September 23-27, Vienna, Austria.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

42 Copyright ⓒ 2015 SERSC

[4] A. Doan, R. Ramakrishnan, and S. Vaithyanathan, “Managing information extraction, state of the art and

research directions”, Proceedings of the ACM SIGMOD international conference on Management of

data, (2006) June 26-29, Chicago, USA.

[5] D. W. Embley, Y. Jiang, and Y. Ng, “Record-boundary discovery in web documents”, ACM SIGMOD

Record, vol. 28, no. 2, (1999).

[6] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open information extraction”,

Proceedings of the Conference on Empirical Methods in Natural Language Processing, (2011) July

27-31, Stroudsburg, USA.

[7] C. N. Hsu and M. T. Dung, “Generating finite-state transducers for semi-structured data extraction from

the web”, Information System, vol. 23, no. 8, (1998).

[8] F. Keith, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An improved construction for

counting bloom filters”, In Lecture Notes in Computer Science, (2006).

[9] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance, building a better bloom filter,”

Random Struct, Algorithms, vol. 33, no. 2, (2006).

[10] N. Kushmerick, Wrapper induction for information extraction, University of Washington, (1997).

[11] I. Muslea, S. Minton, and C. Knoblock, “A hierarchical approach to wrapper induction,” Proceedings of

the third annual conference on Autonomous Agents, (1999), New York, USA.

[12] S. Sarawagi, “Automation in information extraction and integration”, Tutorial of the 28th International

Conference on Very Large Data Bases, (2002) August 20-23, Hong Kong, China.

[13] S. Liao and R. Grishman, “Filtered ranking for bootstrapping in event extraction”, Proceedings of the

23rd International Conference on Computational Linguistics, (2010) August 23-27, Beijing,China.

[14] M. Ley, “Dblp: some lessons learned”, Proceedings of the VLDB Endowment, vol. 2, no. 2, (2009).

Authors

Canghong Jin, He get Ph.D. from Zhejiang University and works

in Zhejiang University City College now. His research interests are

information retrieval, data mining and big data.

Shiwen Cheng, He is a Ph.D. candidate in the Department of

Computer Science and Engineering at UC Riverside. His research

interests are web search, social network data, keyword search on

structured data.

Minghui Wu, He is a Professor of Computer Science in Zhejiang

University City College. His research interests are software

engineering, program language and data mining.

Zemin Liu, He is a Master student of Computer Science in

Zhejiang University. His research interests are streaming data, data

mining and big data platform.

