
International Journal of Database Theory and Application

Vol.8, No.2 (2015), pp. 215-222

http://dx.doi.org/10.14257/ijdta.2015.8.2.20

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

FOCCX: An Optimistic Concurrency Control Protocol over

XML

Weifeng Shan

and Husheng Liao

College of Computer Science, Beijing University of Technology, Beijing

100124, China

Department of Disaster Information Engineering, Institute of Disaster

Prevention，Sanhe 065201, China

shwf@163.com, liaohs@bjut.edu.cn

Abstract

XML concurrency control protocol (CCP) is used to guard the consistence and

isolation of transactions in Native XML databases. Experiments show that locking

overhead of existing approaches based on locking may be huge, especially in the

applications with few or without conflicts. Optimistic concurrency control (OCC) is an

alternative to locking. This paper presents a new optimistic approach for concurrency

control over XML documents named FOCCX (Forward oriented Optimistic Concurrency

Control over XML) facing XPath-based API. FOCCX increases the degree of transaction

concurrency. This is achieved by aborting the current transaction when a potential

UPDATE-UPDATE conflict taking place as early as possible, and reduces comparison

times by checking a small write set against read set of a limited number of concurrent

transactions. Experimental results show that our protocol has superior performance to

approaches based on Backward Oriented mechanism (BOCC).

Keywords: XML Databases, Optimistic Concurrency Control, Transaction, XPath

1. Introduction

As a general markup language, XML has self-description, cross-platform features, and

has been widely used in data exchange and data representation fields. An XML document

is usually represented as a label tree, and accessed by XPath, XQuery languages. If an

XML document is concurrently accessed by many users in web applications or Native

XML databases, some unpredictable problems such as lost update, dirty read, or

phantoms may occur.

Concurrency control mechanism is a key component of database systems, and provides

data consistency in multi-user environment. Although these protocols have been

researched and used in many relational database systems such as Oracle, SQL Server and

MySQL, etc.,, they are not ideal approaches for XML because of its hierarchical structure

character. In the past decade, many concurrency control protocols have been proposed to

deal with XML. Most of them are locking-based where a transaction can proceed if the

lock on the target node is compatible with locks held by other transactions on the same

node[1-3].

Due to the pessimistic nature of locking, experiments of [4, 5] have shown that locking

overhead may be huge, especially for applications with few conflicts. Furthermore,

locking protocols are not deadlock-free. Optimistic concurrency control[6] scheme is an

alternative to locking when the conflict rate is low, and can get rid of the locking

overhead. [7] proposes two optimistic concurrency control mechanisms based on snapshot

technology over XML document: OptiX and SnaX. In OptiX, all nodes read and written

by transaction Ti are recorded in read phase, denoted by RS(Ti) and WS(Ti) respectively. A

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

216 Copyright ⓒ 2015 SERSC

transaction Ti passes validation if for each concurrent transaction Tj that already validated,

WS(Tj)∩RS(Ti)=Ø . SnaX provides the isolation level snapshot isolation. Different from

OptiX, SnaX does not keep track of reads. Instead, it only deals with UPDATE-UPDATE

conflicts. That is, a transaction Ti passes validation if for each concurrent transaction Tj

that already validated, WS(Tj)∩WS(Ti)=Ø . An important point is that no two transactions

can be concurrently in validation phase for both OptiX and SnaX. In order to improve the

validation phase duration, [8] presents a novel optimistic path-based approach where most

conflicts can be detected by analyzing XPath expressions instead of XML nodes.

However, it has to check the conflict at node level when XPath contains predicates or

wildcards such as ‘//’ and ‘*’. [9] discusses another for valid XML, where

READ-UPDATE and UPDATE-UPDATE conflicts are effectively detected when the

operations are specified using XPath expressions according to the scheme information of

XML such as DTD.

Experimental results show that OptiX, SnaX, [8] and [9] protocols have better

concurrency than those based on locking under low contention. However, they also have

several disadvantages. First, OptiX has to validate a potentially large read set against a

large number of old write sets since it uses the backward oriented validation

strategy(BOCC). Secondly, although SnaX needs not to keep track of read set of

transactions, it does not guarantee the serializability, and it could lead to a lost update

problem. Finally, Both [8] and [9] use XPath and scheme of XML to reduce the duration

of validation, but they only support a small set of XPath expression.

Forward oriented optimistic control protocols(FOCC) [10] is another approach that it

checks during the validation phase of Ti its write set WS(Ti) intersects with any of the read

sets RS(Tj) of all transactions Tj having not yet finished their read phases. It is clear that

the write set is often a small subset of the read set in query-dominated transactions. So

FOCC usually has less comparison times than BOCC and offers multi choices in

handling and optimizing conflict resolution.

In this paper, we consider a new optimistic concurrency control protocol over XML,

named FOCCX, based on FOCC. It has all advantages of FOCC. In addition, when a

potential UPDATE-UPDATE conflict is checked, it aborts the transaction as early as

possible to avoid some unnecessary “wasted work”. We discuss in detail the design issues

and conflict detection algorithm. Experimental results show that it has better performance

than OptiX and SnaX.

The rest of the paper is organized as follows. Section 2 presents the XML memory data

model, operations and transaction model of FOCCX. Section 3 discusses the

implementation issues, especially the conflict detection algorithm of FOCCX. Section 4

describes the experimental results. Finally, Section 5 concludes the paper.

2. FOCCX Protocol

In this section, we introduce the XML memory data model, XPath operations

and transaction model used in FOCCX.

2.1. XML Memory Data Model

Generally, an XML document is represented as a labeled tree in memory, and

everything in an XML document is viewed as a node, including document node,

element node, attribute node and text node, etc…A valid XML document is a

well-formed document that confirms to the stricter rules specified in a DTD or an

XML Schema.

In this paper, we use MemXMLTree as the memory data model in our protocol

which is a simplification of the standard XPath data model.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 217

An MemXMLTree t is a tuple(N,E,r) where N is set of nodes, is a

binary relation representing the directed edges of the tree t, and r∈N is the root

node of t.

2.2. XPath Operations

Since most of XML languages are based on XPath expressions such as XQuery, we use

XPath API to access XML in our protocol. An operation over XML document may be a

query, modification, insertion or deletion. All these operations execute over the

MemXMLTree, and travel the MemXMLTree from top to bottom to locate the target

node(s) to read and(or) write. We distinguish them two kinds of operations:

a) Read operation: The operation doesn’t change the content of nodes and the structure

of MemXMLTree.

 query(p): The operation returns all nodes located by the XPath expression p.

b) Write operations: A write operation changes the nodes’ content or the structure of

MemXMLTree. The possible write operations are deletion, insertion, updating, replace,

etc.,. In order not to overburden the discussion, we only consider to delete and insert

operations in this paper. Other complex write operations, such as replace or update, can

be defined by combining the preceding operations.

 delete(p): The operation removes the nodes(s) and its(their) sub tree located by the

XPath expression p.

 insert (p, n ,q): The operation inserts the XML fragment q as the n
th
 child node of p

located by the XPath expression p.

Where, p is a XPath expression, and it is used by query engine to locate the target

nodes that satisfy the expression p. It supports axis such as child, descendant,

descendant-or-self, parent, preceding, preceding-sibling, following, following-sibling and

ancestor, ancestor-or-self and self. Now, only position predicates are allowed in p in our

implementation. Obviously, it is easy to extend it to support other predicts such as value

predicate. If predicates contain path constraint, all the nodes satisfied it are also added to

NS read set as follows. In this paper, we omit it.

2.3. Transaction Model of FOCCX

Like those optimistic concurrency control protocols, our concurrency control

mechanism also has three phases: a working phase, a validation phase and a write phase.

Working phase: When transaction Ti starts, it receives a unique identifier TS(Ti).

Transaction Ti only access the version that was most recently committed version as of the

time Ti started, i.e., it should not see the new added nodes made by a concurrent

transaction.

Validation phase: Once a transaction Ti has finished its working phase and wants to

commit, it goes into validation phase. Only one transaction can perform validation at a

time in order to ensure the serialization order. In FOCCX, validation checks, whether the

write set WS(Ti) of Ti intersects with any of the read sets RS(Tj) of all transactions Tj

having not yet finished their working phases. Once a conflict occurs, the current

transaction Ti will be aborted.

Write phase: If the validation phase is successful, the modification carried out by the

transaction become visible to other transactions, otherwise the transaction is aborted, its

temporary space freed.

3. Implementation of FOCCX

There are two main challenges when adjusting optimistic concurrency control

protocols to XML documents for its hierarchical structure. Firstly, we have to identify the

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

218 Copyright ⓒ 2015 SERSC

read and write sets over XML. Secondly, we must decide when conflicts occur. The

ancestor/descendant relationship between nodes makes difficult to detect conflict among

transactions.

Firstly, We defined READ-UPDATE and UPDATE-UPDATE conflicts. Then the read

set and write of transaction are discussed. Finally, we talk about the conflict detecting

algorithm.

3.1. What is a Conflict?

In traditional optimistic concurrency control protocols, two transactions Ti and Tj are

not conflict if they are no read dependency, that is Ti does not read data modified by a

concurrent transaction Tj and vice versa, and no overwriting, i.e. Ti does not overwrite

data, which has been written by a concurrent transaction Tj and vice versa[10].

Read dependency means a READ-UPDATE conflict, overwriting means a

UPDATE-UPDATE conflict.. An XML document is modeled as a labeled MemXMLTree

t, where each node has a label from an infinite alphabet ∑. The set of all trees over ∑

will be denoted as T∑. We use Ri(t) and Uj(t) to indicate that transactions Ti read the XML

document t and Tj update t such as delete or insert a node[9].

Definition 1 (READ-UPDATE conflict) Ri has a conflict with Uj if there exists t∈T∑,

Ri(Uj(t))≠ Ri(t).

It means that if the scope of a READ operation includes that of an UPDATE operation,

then the two operations are a READ-UPDATE conflict.

Definition 2 (UPDATE-UPDATE conflict) Ui has a conflict with Uj if there exists t∈

T∑, Ui(Uj(t))≠ Uj(Ui(t)).

If the scope of UPDATE operation Ui includes all parts or some parts of that of Uj, or

vice versa, the two operations are UPDATE-UPDATE conflict.

3.2. Read Set and Write Set

In an XML document, when a transaction is reading the node, the other concurrent

transaction may be deleting this node’s ancestor node, this is not allowed. So we must

define Read Set and Write Set of a transaction. In order to provide quick conflict

detection, we differentiate different subsets within the read set RS(Ti) of a transaction Ti.

RS(Ti)= RR(Ti) NS(Ti).

In order to explain how to maintain the read set and write set of a transaction, we use

the following transactions. For the sake of simplicity, we only consider transactions

composed of a single operation.

T1: query(/site/regions/asia/item[x]);

T2: query(/site/regions/asia/item[x]/payment);

T3: query(/site/regions/asia/item[x]/mailbox);

T4: delete(/site/regions/asia/item[x]);

T5: delete(/site/regions/asia/item[x]/incategory);

T6: delete(/site/regions/asia/item[x]//mail[y]);

T7: insert(/site/regions/asia/item[x],0, <incategory category="computer" />);

T8: insert(/site/regions/asia/item[x]/mailbox,0,

<mail><from>beijing</from><to>shanghai</to><date>01/02/2014</date><text>book</t

ext></mail>);

T9: insert(/site/regions/asia/,x, <item>…..</ item >);

RR(Ti): The read return nodes of a transaction Ti . These nodes are the roots of the

subtrees returned as part of query operation. In T1, item[x] will be added to RS(T1).

NS(Ti): This set contains all ancestors of target nodes of query, delete and insert

operation in a transaction Ti. In T2, site, regions, asia and item[x] belongs to NS(T2).

Consider the transaction T6, site, regions, asia, item[x], mailbox will be added to NS(T6).

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 219

The write set of a transaction contains nodes that are modified in the transaction, like

delete or insert operations. WS(Ti) = D(Ti)∪I(Ti).

D(Ti): This set contains all nodes that were deleted by the transaction Ti. In T5, all

incategory nodes of item[x] are considered part of D(T5). Similar to R(Ti), although

deletion changes entire subtrees, only the roots are added in D(T) in order to keep the set

smaller.

I(Ti): This set contains all the immediate parents of any nodes inserted in the XML tree

by the transaction Ti. Let’s take T7 as an example, item[x] will be added into I(T7). In T8,

mailbox node of item [x] is considered part of I(T8).

3.3. Snapshot Technology

Like OptiX and SnaX, we use the same snapshot technology proposed in [7] to

implement a multi-version system. Each XML memory node n in MemXMLTree has a

valid timestamp V to identify the transaction that created this node. n also has an invalid

timestamp IV that is the identifier of the transaction that deleted this node. If no

transaction has deleted n so far, then it’s IV=NULL.

In order to add the predecessor of target nodes to the NS(Ti), we keep the reference of

the parent node in each node in MemXMLTree.

When a query operation coming, it will be executed over the MemXMLTree directly.

All return nodes are added to RR set and their ancestors insert into NS set. If the operation

is insert operation, the new subtree will be inserted into the MemXMLTree immediately.

However, it is invisible to other concurrent transactions.

If it is a delete operation, it will check whether another transaction has modified it

before. If modified, it will cause the current transaction rollback. This is different from

traditional OCC, because in the implementation of FOCCX, we use one IV flag in

MemXMLNode to indicate which transaction has modified it. If this flag is not null, there

may have a possible conflict with other concurrent transactions (UPDATE-UPDATE

conflict). There are two benefits of this approach, one is it avoids unrecoverable schedule

while two conflicting concurrent transactions fail, the other is it increases the throughput

of transactions since it detects potential conflicts as early as possible. Obviously, it may

cause unnecessary abort and make the abort rate increased.

3.4. Conflict Detection

After had defined the conflict over XML tree, read and write set of a transaction, we

now have to adjust the traditional conflict detection algorithm to work with the XML tree

model. Similar to concurrency control protocols based on locking, we use conflict matrix

to detect the potential conflicts between two transactions, as shown in Table 1. If there is

a  in the matrix, operations are compatible. If there is a , the two operations conflict,

and lead to an abort of Ti.

Assume Ti and Tj are two simultaneous transactions, node p is the predecessor of node

q. When Ti enter into validation phase, we have to check write set of current transaction Ti

with read sets of other concurrent transactions to find where there is a conflict.

We first have a look at a node p (resp. q) that is both in RS(Ti) and WS(Tj).

Table 1. Conflict Matrix for FOCCX

Ti

Tj

p q

NS RR NS RR

p
I    

D    

q I    

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

220 Copyright ⓒ 2015 SERSC

D    

 p∈I(Ti)∩p∈NS(Tj): There is no conflict. This is because Tj only reads the

node p and not its descendants and so the insert of a new subtree in p by Tj does

not cause a problem.

 p∈I(Ti)∩p∈RR(Tj): There is a conflict. Because Tj returns the whole

subtree with root node p, so the added new subtree in p by Ti will be visible to Tj.

 p∈D(Ti)∩p∈{NS(Tj), RR(Tj)}: There is a conflict. Once Ti deletes the

node p, Tj cannot read and travel the node p, so they conflict.

Now, we turn to considering the condition when two transactions operating on two

different nodes with ancestor/descendant relationships.

 p∈I(Ti)∩q∈{NS(Tj), RR(Tj)}: No conflict occurs. Although Ti inserts a

new subtree in p, it does not affect Tj for it only reads the descendant node q of p.

 p∈D(Ti)∩q∈{NS(Tj), RR(Tj)}: A conflict occurs. Because Ti deletes the

node p, Tj cannot read or navigate the descendant node q through p.

 q∈I(Ti)∩p∈NS(Tj) : No conflict occurs. Although Ti inserts a new subtree

in p, it does not affect Tj for it only reads the descendant node through p.

 q∈I(Ti)∩p∈RR(Tj): A conflict occurs. Tj reads the new inserted child

node q of p, which is added by Ti.

 q∈D(Ti)∩p∈NS(Tj): No conflict occurs. Although q is deleted by Ti, it

does not affect Tj to travel other nodes by q’s ancestor node p.

 q∈D(Ti)∩p∈RR(Tj): A conflict occurs. Tj misses the node q that deleted

by Ti.

4. Experimental Evaluation

We implemented a simple memory database in Java to test the performance of different

XML concurrency control protocols. For our experiments, we used a PC with Intel Core

i5-2520 CPU (two cores, 2.5G Hz) and 12G RAM running Windows 7 Ultimate x64.

We use a standard XMark [11] tool to generate a well-formed, valid XML document

with about 100Mb. However, it is too big for our experiment machine, so we select part

of the document with about two thousand ‘item’ nodes under path ‘/site/regions/Asia/’,

about 5Mb, to evaluate the performance of different protocols. According to the

benchmark DTD definition, the height of the XML document is 7. Evaluation transactions

are T1 to T9 listed above.

As optimistic concurrency control protocols are ideal for environment with few or

without conflicts, we set query transaction occupy 90%, insert and delete transaction is

5% respectively.

Figure 1 and Figure 2 show the performance and abort rate evaluation results for

varying the number of concurrently running transactions. Clearly, an increase in the

number of concurrent transactions leads to high throughput and more conflicts. When

there is only one running transaction, all protocols have the same throughput since no

conflict occurs. In all cases, FOCCX has better performance than OptiX and SnaX

protocols. Because FOCCX aborts the transaction in working phase when a potential

conflict is checked, it has a higher abort rate than OptiX and SnaX in most cases. SnaX

has a lower abort rate for it only checks the UPDATE-UPDATE conflicts in validation

phase. However, it cannot ensure the serializability of transactions.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

Copyright ⓒ 2015 SERSC 221

Figure 1. Throughput of Protocols

Figure 2. Abort Rate of Protocols

5. Conclusion

In order to isolate read and modifications over XML document and guarantee

serializability, we introduced a new optimistic concurrency control protocol—FOCCX.

Unlike others adopt backward validation strategy, FOCCX uses forward validation

solution. As FOCCX allows read-only transaction committed directly without validation,

it has better performance in experiments.

Since the transactions to be checked during validation have not yet committed, FOCCX

offers more flexibility in handing a detected conflict than OptiX and SnaX. For example,

the current transaction can be deferred instead of aborting or abort the conflict transaction.

Like OptiX and SnaX, we use a simple snapshot technology in FOCCX. However, it

does not allow two concurrent transactions to modify the same node, so we abort the later

transaction in the current version of FOCCX. We plan to implement a real multi-version

FOCCX based on snapshot isolation technology to improve its performance.

International Journal of Database Theory and Application

Vol.8, No.2 (2015)

222 Copyright ⓒ 2015 SERSC

Acknowledgements

This work was supported by the National Science Foundation for Young Scholars

of China (61202074) and Beijing Natural Science Foundation (4122011).

References

[1] S. Helmer, C. C. Kanne and G. Moerkotte, “Evaluating lock-based protocols for cooperation on XML

documents”, SIGMOD Record, vol. 33, no. 1, (2004).

[2] K. F. Jea and S. Y. Chen, “A high concurrency XPath-based locking protocol for XML databases”,

Information and Software Technology, vol. 48, no. 8, (2006).

[3] S. Helmer, C. C. Kanne, G. Moerkotte, et al., “Lock-based protocols for cooperation on XML

documents”, 14th International Workshop on Database and Expert Systems Applications, (2003)

September 1-5, Prague, Czech Republic.

[4] M. P. Haustein and T. Harde, “Adjustable transaction isolation in XML database management systems”,

Second International XML Database Symposium(XSym 2004), (2004) Auguest 29-30, Berlin, Germany.

[5] M. Haustein, T. Harderand and K. Luttenberger, “Contest of XML lock protocols. Proceedings of the

32nd international conference on Very large data bases, (2006) September 12-15, Seoul, Korea.

[6] H. T. Kung and J. T. Ronbinson, “On Optimistic Methods for Concurrency Control. ACM Transactions

on Database Systems,” vol. 6, no. 2, (1981).

[7] Z. Sardar and B. Kemme, “Don't be a pessimist: Use snapshot based concurrency control for XML”,

Proceedings of International Conference on Data Engineering, (2006) April 3–7, Atlanta, GA, USA.

[8] D. Berrabah, S. Gancarski, S. K. Chikh and C. L. Pape, “Optimistic path-based concurrency control over

XML documents,” 5th International Conference on Soft Computing as Transdisciplinary Science and

Technology, (2008) October 27-31, Cergy-Pontoise, France.

[9] C. Byun, I. Yun and S. Park, “A New Optimistic Concurrency Control in Valid XML”, Journal of

Information Science and Engineering, vol. 25, no. 1, (2009).

[10] T. Hardert, “Observations on Optimistic Concurrency Control Schemes. Information Systems”, vol. 9,

vol. 2 (1984).

[11] A. Schmidt, “X Mark-An XML Benchmark Project, http://www. xml-benchmark. org . (2009).

Authors

Weifeng Shan, He is a PhD student at the Beijing University of

Technology with research interests in XML and parallel

computing. He has received his master’s degree in Software

Engineering from YunNan University, China.

Husheng Liao, He received his M.S degree from Tsinghai

University in 1981. Now, he is a professor of Beijing University of

Technology. His main research interests include compiler,

program languages and XML.

