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Abstract 

Information spread maximization is to find a small subset of nodes in social network 

such that they can maximize the expected spread of information. In this paper, we attempt 

harnessing historical information cascades data to learn how information propagates in 

social networks and how to maximize its spread. In particular, we proposed a voting 

algorithm to learn diffusion probabilities of edges from cascades data. Then a pruning 

method is developed to remove trivial edges whose weights are smaller than a threshold. 

Moreover, motivated by the social influence locality, we propose a Local Influence Model 

to evaluate node's influence within a local area instead of the whole network, which can 

effectively reduce the computational complexity. Based on Local Influence Model, we use 

greedy algorithm to find an approximate optimal solution. Experimental results show that 

our method significantly outperforms state-of-the-art models both in terms of information 

spread and algorithm runtime. 

 

Keywords: information spread, influence maximization, local influence model, greedy 

algorithm, pruning method 

 

1. Introduction 

Diffusions over networks, such as the spread of information, ideas, or influence are a 

pervasive phenomenon in many networks. One of the fundamental issues is to find a 

small subset of influential spreaders such that they can spread information to the largest 

number of nodes in the network. Kempe et. al. [1] first formalized the problem as 

influence maximization problem and proved that it is NP-hard. For such problem, a 

greedy algorithm [1] can be used to find a target nodes set, which is an approximate 

optimal solution with a theoretical guarantee of (1-1/e). Extensive researches show that 

the greedy algorithm significantly outperforms the approach using degree and centrality-

based heuristics [2]. 

For greedy algorithm, two factors are crucially important, 1) how to determine the 

diffusion probabilities of each edge in network G, and 2) because Monte Carlo (MC) 

simulation used in the greedy algorithm is computationally expensive, how to reduce the 

computation complexity so it can be used in large-scale social networks. 

For the first factor, existing methods either simply treat the probabilities as constant 

(e.g. 0.1) or drawing values uniformly from a small set of constants, e.g., {0.1, 0.01, 

0.001}, which obviously can't satisfy the real-world scenarios and may lead to a poor 

result. For the second factor, some improved algorithms are proposed to speed up the 

computing process, such as PMIA [3], CELF [4], SPM [5], and LDAG [6]. But this is still 

an open field need further improvements. 

In this paper, we propose a data-driven approach to maximize information spread in 

target network. The data we use is the historical information cascades data, i.e., the trace 
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of a piece of information spreading across a network. We propose a novel voting 

algorithm to learn diffusion probabilities of each edge in network using the observed 

information cascades dataset. Then, node's influence is defined based on the network 

structure and diffusion probabilities of edges. To reduce the computation complexity, we 

develop a pruning method to remove trivial edges whose diffusion probabilities are 

smaller than a thread hold value, and restrict a node's influence within a local area around 

of the node. Last, a greedy algorithm is exploited to iteratively find the top-k influential 

spreaders in the diffusion network. 

Experimental results indicate that our method is consistently better than that of repost 

algorithms in terms of information spread coverage and runtime. 

The rest of the paper is organized as follows. In section 2 we briefly surveys related 

work. In Section 3, we describe the data-driven approach in detail which can maximize 

information spread in social networks. We proceed by describing experimental evaluation 

in Section 4 and conclude in Section 5. 

 

2. Related Work 

The issue of finding influential spreaders to maximize influence spread has drawn 

much research attention over recent years. There are two research lines in this field. 

The first class methods are centrality-based. These methods include degree centrality, 

between’s centrality, closeness centrality and eigenvector centrality [2]. Degree centrality 

is a simple local measure, which neglects the global structure of the network. While some 

well-known global metrics like between’s centrality and closeness centrality can yield 

better results, they suffer expensive computational costs and can’t be applied to large-

scale networks. Recently, Kitsak et al. [7] found that the most efficient spreaders are those 

located within the core of the network as identified by the k-shell decomposition analysis. 

Some random walk methods are also proposed to rank node’s spread ability, such as 

TwitterRank [8], LeaderRank [9], etc. All these methods only focus on network structures 

without take into consideration the information diffusion mechanism, e.g. independent 

cascade model (IC model), and the influence of nodes chosen by these methods may 

overlap seriously. 

The second class methods are greedy algorithms. Kempe et al. [1] first formulated the 

problem as an optimization problem and proved that it is NP-hard. For such a NP-hard 

problem, a greedy algorithm can be used to get an approximate optimal result. Leskovec 

et al. [4] exploited the submodularity property of influence function to propose an 

efficient greedy algorithm called CELF, which used “lazy-forward” method to select 

seeds iteratively. Kimura and Saito [5] considered shortest diffusion path to reduce the 

number of evaluations in Monte Carlo simulation process of the influence spread. Chen et 

al. [3] instead considers Maximum influence Paths (MIP) to reduce the computation time 

under the IC model. Chen et al. [6] also proposed a scalable heuristic called LDAG for 

the linear threshold model (LT model). All of these models assume the weights of the 

network are known in advance which is not realistic under many situations.  

Our work is distinct from those existing works in two aspects: 1) we exploit 

information diffusion historical data to directly evaluate node's influence without the 

Monte Carlo simulations, and 2) we harness social influence locality to evaluate a node's 

influence within a local area and develop a pruning method to remove trivial edge in the 

diffusion network to reduce computation complexity. 

 

3. Information Spread Maximization Approach 

In this section we first give a formal definition of the information spread maximization 

problem. Then we develop a voting algorithm to learn diffusion probability for each edge 

in the network from information cascade data. Next, by exploiting social influence 

locality we propose a heuristic method to evaluate node’s influence approximately within 
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a local area. Based on this, we use standard greedy algorithm to find the final influential 

nodes in G. We call this data-driven model Local Influence with Voting algorithm 

(LIV). 

 

3.1. Problem Definition 

Given a directed graph ( , )G V E  where V  represents nodes set, and E  represents 

edges set. Besides, we also get some traces of information spreading within the network, 

which is called information cascade. A cascade is defined as 

: {( , , , ),..., ( , , , )}c c c c

u v w zc u v t t w z t t , where ( , , , )c c

u vu v t t  means node u spreads information 

c  to node v , and their infected time is 
c

ut  and 
c

vt , respectively. We call ( , , , )c c

u vu v t t  a 

diffusion step, and a cascade may have many diffusion steps. Notation ( )S  denotes the 

spread of information if we choose nodes set S  to publish the information. 

The information spread maximization problem can be formulated as: finding a seed 

set S , | |S k , which can maximize ( )S . Table 1 gives a description of the notations 

used in this paper.  

Table 1. Notations 

Notations Descriptions 

( , )G V E

 

A graph G with nodes set V and edges set E  

k  Number of seeds to be selected 

( , , , )c c

u vu v t t

 

A diffusion step that means node u spreads information c  to node 

v , and their infected time is 
c

ut  and 
c

vt respectively 

c  An information cascade in form of 

: {( , , , ),..., ( , , , )}c c c c

u v w zc u v t t w z t t  

C  Information cascades set that contains different information cascade 
c  

,u vp  Diffusion probability of each edge ( , )u v  in G  

S  The selected seeds set which maximize the spread of information 

diffusion 

( )S  Influence of nodes set S  

,u v  Influence of node u on node v  

 

This problem has been proved to be NP-hard [1]. It is not realistic to find an optimal 

solution. However, the influence functions of ( )S  under IC model and LT model is 

monotone and sub modular. A function ( )   is sub modular if it satisfies a natural 

“diminishing returns” property, i.e., if S T , then we 

have ( { }) ( ) ( { }) ( )S v S T v T        . For sub modular and monotone function 

( )   with ( ) 0   , the problem of finding a set S  of size k that maximizes ( )S  can 

be approximated by a simple greedy algorithm which is shown in Algorithm 1. 

 

Algorithm 1: Greedy algorithm ( , ( ))GA k    

1

: 
Initialize S   

2

: 
for i=1 to k do 

3

: \
( ( { }) ( ))argmax

u V S
S u Sv=  


   
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4

: 
{ }S S v   

5

: 
end for 

6

: 
Output S  

 

3.2. Learn Information Diffusion Probability of Edge 

To compute the spread of a seeds set ( )S , a probability attached to the network edge 

is necessary and important. We propose to exploit information cascades data to learn 

diffusion probability ,u vp  for each edge ( , )u v  inG . We borrow the concept of “vote” 

from political election and use it to learn diffusion probability ,u vp . The proposed 

algorithm is called Voting algorithm, where each edge in G  is viewed as a candidate, and 

each diffusion step ( , , , )c c

u vu v t t  is viewed as a vote to edge ( , )u v . Let ,u vVOT denotes the 

votes that edge ( , )u v  gets. If there exists a diffusion step ( , , , )c c

u vu v t t , then ,u vVOT  will 

be updated as 

 , , 1u v u vVOT VOT 
 (3.1) 

By scanning all the diffusion steps in C  and updating the votes of edges, we finally get 

a total votes count for each edge in G . Note that, the more times node u  spreading 

information to node v , the more votes the edge ( , )u v  gets. A higher value of votes for 

edge (u, v) means a larger diffusion probability assigned to it. Furthermore, we note that 

for a node v , all its inbound neighbors ( )inN v  share the influence on him, so a 

normalization method is used to make the sum of the total influence from ( )inN v  being 

exactly 1. 

In the above model, we may suffer from a scarcity issue, i.e., because the data we 

collect is not sufficient enough, there may be some edges which get no votes at all, but we 

should not naively set their diffusion probability as zero. To solve this problem, we give 

each edge an initial vote and in particular we set this value as 1. Then we get a smooth 

diffusion graph ( , , )G V E p , where p  indicates the edge’s diffusion probability.  

Note that, in the basic voting algorithm, we ignore the time factor in diffusion 

step ( , , , )c c

u vu v t t . Previous work [10] shows that influence decays over time in an 

exponential fashion, so diffusion steps with different time delays ,

t c c

u v v ut t    should 

have different weights in the voting algorithm. Motivated by these ideas, we improve the 

vote updating process in algorithm 1 and rewrite it as  

 
, , exp{ }

c c

v u
u v u v

t t
VOT VOT




    (3.2) 

which captures temporal feature of diffusion step. In equation (3.2),  is a parameter 

which controls the scale of time delay.  

The voting process is shown in Algorithm 2. 

 

Algorithm 2. Voting algorithm ( , )VA G C : Learning diffusion probability ,u vp  

from information cascades 

1

: 
Initialize , 1u vVOT   for each edge ( , )u v  in E 

2

: 

for each cascade c in C do   /*scanning*/ 
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3

: 
  for each diffusion step ( , , , )c c

u vu v t t  in cascade c do 

4

: , , exp{ }
c c

v u
u v u v

t t
VOT VOT




      /*updating*/ 

 end for 

 end for 

5

: 
for each ( , )u v E  do   /*regularization*/ 

6

: pu,v=
,

,

( )in

u v

u v

u N v

VOT

VOT



 

7

: 
end for 

8

: 
Output ( , , )G V E p  

 

3.3. Local Influence Computation 

The key step in greedy algorithm is to evaluate the influence ( )S  for target seed 

set S . Because there are no effective approaches to compute ( )S  exactly, Kempe [1] 

proposed to simulate the random diffusion process by generating different diffusion 

cascades enough times. However, this approach is computationally expensive, which 

makes it not applicable to large scale network. 

Here, based on the learned graph ( , , )G V E p , we develop an approximate approach 

to compute node’s influence. Our approach focuses on a node’s local influence in the 

network. Intuitively, if node u  publishes a piece of information, it may spread to node v  

through all possible paths, which is represented as ( , )path u v . All the paths form path set 

( , )PATH u v . The influence of node u  on node v  along ( , )path u v  is represented as 

Pr( ( , ))path u v . Then, the total influence of node u on v  is the sum of Pr( ( , ))path u v  

over all possible paths, i.e., 

 
,

,

( , )

Pr( ( , ))
u v

u v

path u v PATH

path u v


   (3.3) 

Let ( , )d u v  denote the length of ( , )path u v , which equals to the hops from u to v . 

Previous work [11] shows that people’s behaviors in social network are mainly influenced 

by close friends in their ego networks. As ( , )d u v increases, the influences along the path 

reduce fast. Motivated by these ideas, we consider the path whose length is shorter than a 

threshold L , and particularly in this paper, we set the value as 2. That is to say, from 

perspective of influencer node u , we only consider its influence on its neighbors and 

influence on neighbors of its neighbors. Then we have 

 

, , ,

( ) ( ),

, ,,

( ) ( )

,     ( ) 1

,                   ( ) 2

0,                                                 

in out

in out

u v u w w v

w N v N u w v

u w w vu v

w N v N u

p p p if d u,v

p p if d u,v

else



  

 

  



 






  (3.4) 
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We take Figure 1 as an example to describe the computation of ,u v  in Equation (3.4). 

In Figure 1, the path length from u  to a  is 2. Node v  and node w are inbound neighbors 

a  and outbound neighbors ofu , so the influence of u  on a  is 

, , , , , 0.5 0.1 0.3 0.3 0.14u a u v v a u w w ap p p p          . 

So as to the influence of node v  on node a , a  is inbound neighbor of v . Node b  and 

node w are inbound neighbors a  and outbound neighbors of v , so we get 

, , , , , , 0.1 0.5 0.3 0.2 0.3 0.31v a v a v b b a v w w ap p p p p            . 

For the influence of node u  on node d , because the path length from u  to d  is larger 

than 2L  , we set , 0u d  . 

u

v

c d

ab

w

0.3

0.2

0.3
0.10.5

0.4
0.3

0.2

0.5
0.1

0.1

 

Figure 1. A Part of Information Diffusion Graph, with each Edge Assigned 
with a Diffusion Probability  

For a subset S V , assuming the nodes in S  influence node v  independently, then 

we can define its total influence on v   as 

 ,
,

1,                                  

1 (1 ),         S v
w v

w S

if v S

else
 






   


  (3.5) 

Then the total influence of S  in the whole network G can be represented as the sum of 

its influence over all nodes withinG , i.e. 

 ,( )LIM S v

v V

S 


  (3.6) 

Pruning Edges to Reduce Computation Complexity: Note that in Equation (3.4), to 

compute ,u v  we need to scan all the paths from u  to v , which will consume expensive 

runtime, even after we add a restrain to the path length. In order to reduce the 

computation complexity, we develop a pruning method to remove trivial edges whose 

diffusion probabilities are smaller than threshold  . For edge ( , )u v , if diffusion 

probability assigned to it is very small, then its contribution to ,u v  will be very small too, 

according to Equation (3.4). So we can remove it from the network without affecting the 

final results too much. The value of   controls the extent to which we will omit the 

trivial edges when computing ,u v . By removing trivial edges from networkG , we can 

largely reduce the computation cost. 
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3.4. Information Diffusion Maximization 

We now describe the greedy algorithm under our local influence model. The key step 

is to compute the margin gain of ( )LIM S , i.e., ( { }) ( )LIM LIMS u S   . According to 

Equation (3.6), we get 

 { }, ,( { }) ( ) ( )LIM LIM S u v S v

v V

S u S   



     (3.7) 

Incorporating Equation (3.4), we get 

 

{ }, , , ,

{ }

, ,

{ }

, ,

, ,

(1 (1 )) (1 (1 ))

                     (1 ) (1 )

                     (1 )

                     (1 ) 0

S u v S v w v w v

w S u w S

w v w v

w S w S u

u v w v

w S

u v S v

   

 

 

 



  

  



      

   

  

   

 

 


 (3.8) 

So, function ,S v  is monotone. Because 

( { }) ( )LIM LIMS u S   { }, ,( ) 0S u v S v

v V

 



   , then function ( )LIM   is also 

proved monotone.  

We proceed to prove that function ( )LIM   is sub modular. Assuming S T V  , then 

we get 

 
, , , ,

, , ,

( ( { }) ( )) ( ( { }) ( ))

( (1 ) (1 ))

( ) 0

LIM LIM LIM LIM

u v S v u v T v

v V

u v T v S v

v V

S u S T u T   

   

  





    

     

   





 (3.9) 

So, the submodularity of ( )LIM   is proved. Therefore, it is straight forward to get the 

following result. 

Theorem 3. Function ,( )LIM S v

v V

S 


  is sub modular and monotone and 

( ) 0LIM   . Therefore, greedy algorithm ( , )LIMGA k   can achieve ( 1 1/ e ) an 

approximation of the optimal result with Local Influence Model. 

The result in Theorem 3 means that we can exploit an approximation algorithm to 

solve the information maximization problem. According Equation (3.9), we can rewrite 

the seed selection step as  

 

\

\ { }, ,

\ ( )

\ , ,

\ ( )

( ( { }) ( ))argmax

  arg max ( )

  arg max (1 )

LIM

LIM

LIM LIMu V S

u V S S u w S w

w V S

u V S u w S w

w V S

S u Sv





 

 

 



 







 

 

  





 (3.10) 
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The greedy algorithm under local influence model is shown in Algorithm 3. 

 

Algorithm 3: Greedy algorithm ( , ( ))LIMGA k    

1

: 
Initialize S   

2

: 

for i=1 to k do 

3

: \ , ,

\ ( )

arg max (1 )
LIM

u V S u w S w

w V S

v


 



    

4

: 
{ }S S v   

5

: 
end for 

 

4. Experimental Evaluation 

In this section, we evaluate our proposed greedy algorithm with LIV model by 

comparing to baseline models like degree-based model, Page Rank [12], and greedy 

algorithm with IC model [4].  

 

4.1. Experiment Setup 

Dataset. We use real world dataset which is crawled from Sina Weibo1, China’s the 

most popular micro blog to evaluate our proposed model. We crawled a subset of users 

and their posts from March of 2013 to March of 2014. The network has 61,605 nodes and 

1,631,228 edges. We extract 10,600 cascades by tracing the spread of special hash tags (in 

form of #meme name#). The average size of these cascades is 32.4. Totally 35,065 unique 

users participate at least one cascade. 

Baselines. Degree-based model tends to select top-k nodes that have the largest 

degrees as seed set. It’s a simple and effective approach in some situations. Page Rank is 

a well known method for identifying authoritative or influential pages in a hyperlink 

network of web pages. This model has a parameter d that controls the probability a surfer 

jumps a page picked uniformly at random [12]. In our experiments, we used a typical 

setting of d =0.15. As for greedy algorithm with IC model (GA-IC in abbreviation), we 

run Monte Carlo simulations using the IC model 10,000 times and take the average. In the 

IC model, the probability p is set to 0.01[1]. For greedy algorithm with LIV model (GA-

LIV in abbreviation), we vary the pruning threshold from 0.01, 0.05, to 0.1, and evaluate 

the performance for each value. 

Metrics. The metric we choose is information spread of seed set S in cascade dataset 

C, which is denoted as IS(S). In a cascade : {( , , , ),..., ( , , , )}c c c c

u v w zc u v t t w z t t , for diffusion 

step ( , , , )c c

u vu v t t , we call v a direct child of u. If there also exists ( , , , )c c

v wv w t t , then w is an 

undirected child of u. Node v and w are called springs of u, which is denoted as SPc(u). 

The information spread of seed u in C is ( ) ( )c

c C

IS u SP u


  and the information spread 

of seed set S in C is ( ) ( )
u S

IS S IS u


 . 

4.2. Experiment Results 

First, we show information spread of the 4 methods as we varying seed set size from 5 

to 200 in Figure 2. We can see that degree-based method and Page Rank get similar but 

poor results. Greedy algorithm with IC model gets a better result. Greedy algorithm with 

our proposed LIV model achieves the best information spread, which is about 40% higher 

                                                           
1 http://weibo.com 



International Journal of Database Theory and Application 

Vol.8, No.2 (2015) 

 

 

Copyright ⓒ 2015 SERSC  201 

than GA-IC and 168% higher than degree-based method or Page Rank method. One 

explanation we think is that by exploiting information cascades data, our model can learn 

the information diffusion probabilities of edges more accurately, which plays an 

important role in the following influence computation in greedy algorithm. Note that, here 

the GA-LIV is exerted on a network without pruning method. The results in Figure 2 also 

indicates that by considering the local or semi-local network structure and restraining the 

information spread in a local area, our model can fit the real world information diffusion 

more effectively. 

0

50

100

150

200

250

300

0 50 100 150 200

IS
 ( 

x1
00

0)

Seed set size

Degree-based PageRank

GA-IC GA-LIV

 

Figure 2. Information Spread Achieved by Various Methods 

Then, we consider the information spread achieved by GA-LIV with different pruning 

threshold value as shown in Figure 3. The pruning threshold values chosen are 0.01, 0.05 

and 0.1, and a higher value means a more sparse diffusion network after pruning. From 

Figure 3, we see that when pruning threshold is 0.01 or 0.05, the information spread 

achieved shows only a slight reduction comparing to that with no pruning. But when we 

increase the value to 0.1, the reduction gets broaden largely.  

Thirdly, we show the runtime of various methods in Figure 4. The degree-based 

method and Page Rank consume lowest runtime, followed by greedy algorithm with LIV 

model. Considering their poor performances of degree-based method and Page Rank in 

Figure 2, such advantages in runtime make no sense. The GA-IC shows the worst 

runtime, which is about 75 minutes when seed set size increase to 200. Note that, here we 

don’t add pruning method to the GA-LIV. It is clearly that by exploiting historical 

information spread data, instead of using expensive Monte Carlo simulation; our proposed 

model can effectively reduce the computation cost of greedy algorithm. 

0
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Figure 3. Information Spread Achieved by GA-LIV with Different Pruning 
Threshold Values 
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Figure 4. Runtime Comparison for Various Methods 

Last, Figure 5 demonstrates the runtime of greedy algorithm with LIV model when we 

varying pruning threshold value. It is clearly shown that as we increase the pruning 

threshold value, the runtime is effectively reduced for any seed set size. When the 

threshold value is 0.05, the runtime can reduced 70% comparing to that with no pruning. 

So considering the information spread with different pruning threshold value shown in 

Figure 3, it is wise to choose 0.05 as the pruning threshold value. In such situation, we 

can largely reduce the runtime with only a slightly performance reduction. 
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Figure 5. Runtime of GA-LIV with Different Pruning Threshold Values

5. Conclusions 

In this paper, we attempt harnessing information cascades dataset to maximize 

information spread in social networks. We propose a novel voting algorithm to learn 

diffusion probabilities of edges in social networks using observed cascades dataset. 

Motivated by the social influence locality, we propose to compute node’s influence within 

a local area instead of the whole network, which can effectively reduce the computational 

complexity. The maximization problem under our model is NP-hard and the influence 

function is monotone and sub modular. So we use a greedy algorithm to find an 

approximate optimal solution. Experimental results show that the proposed method 

outperforms state-of-the-art models both in terms of information spread and algorithm 

runtime. 
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