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Abstract 

To investigate the association of data with other data in reality, the research begins 

with data sets which are divided into different partitions. Because each partition consists 

of granules and owns a level, all the partitions constitute a granulation set whose 

elements are the granules. As a hierarchy system, the granulation set together with the 

inclusion relation gives rise to a structure called a granulation tree. The research on the 

data association establishes a method to describe the associations of the data in a 

granulation tree with the data in another granulation tree. The method involves a 

necessary and sufficient condition used to check the data associations. Because the 

necessary and sufficient condition is bound up with the upper approximation, the study 

also develops a way of investigation into rough sets. As an example, a practical problem 

is modeled by granulation trees, and the associations of the data in a granulation tree 

with the data in another granulation tree can be examined by use of the necessary and 

sufficient condition. Meanwhile, because the study is closely linked to granules and 

alterations of granularity, the process can be viewed as an approach to research on 

granular computing. 
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1. Introduction 

The development of information science and technology accompanies various 

researches into data processing. In the meanwhile, the researches cover further 

investigations on new topics. This vigorously promotes the progress of data research, and 

gives rise to different research directions, such as data mining [1-4], data reasoning [5-8], 

data reduction [9-11], data warehousing [12, 13], as well as big data, and so on which are 

all subjects focused on by researchers and have become academic branches. Many topics 

involved by the directions always inspire the interest of investigators, and are often taken 

as focus issues to be studied by experts. So research achievements are obtained, which 

also bring about new topics and further arouse widespread concern. At the same time, the 

discussion of integrating different topics enhances the research level, and pushes forward 

the development of the academic research. However, in terms of data processing, there 

are still problems which remain to be explored. For example, data association is a 

problem that is rarely concerned by researchers. Here the data association means the 

situation that a common data associates data with other data. So the data association 

mentioned here refers to the association of some data with others, which is done by taking 

a common data as a bridge to link the data. 
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Actually, if we pay attention to observation of real life, we can be conscious of this 

data association that often exists around us. Consider the following examples: 

a) A student leads to the association of his hometown people with his classmates in a 

university. 

b) Joe Smith suggests the association of his family members with his company staff. 

c) Discrete mathematics establishes the association of the computer courses with the 

mathematics courses. 

d) An airliner from airport A to airport B sets up the association of the airliners of 

airport A with the airliners of airport B. 

e) A newlywed brings about the association of one family with another family. 

f) An amphibian builds the association of land animals with marine animals. 

g) A spy causes the association of one side with opposing side. 

These associations have some things in common reflected by the fact that a common 

object associates the data in a class with the data in another class. If we refer to each of 

the associations as the data association, how we can describe the data association will be 

related to the establishment of a mathematical model that is the basis of algorithm design 

and computer programming. Moreover, the automation management and automatic 

information inquiry for the data association also depend on the model. Because the data 

association often exists around us, it deserves to be investigated carefully. What we do in 

the following will focus on it. 

These examples shows that each of them involves a common object. If each common 

object is called an association data, then the student, Joe Smith, discrete mathematics, 

airliner, newlywed, amphibian and spy are association data. Their double role makes it 

possible to associate one data class with another class, thereby generates the data 

associations. 

Because the previous work rarely or never involves the research on the data 

association, the discussion on it will be significant in theory and practice. What we do in 

the following will demonstrate our work that will include the theoretical exploration, as 

well as the description on an actual problem. 

It follows that an association data plays a role in associating a data with another data. 

In the meanwhile, the close degree of the data association is relevant to the classification 

of data sets. The coarse or fine classes that the data sets are divided into are linked with 

the closeness of data association. For instance, in example a), a student can leads to the 

association of a township people with his classmates in a faculty. If the township is 

divided into villages, and the faculty is divided into grades, then the student also 

associates a village with a grade. Obviously, the association of a village with a grade is 

closer than a township with a faculty. Of course, a township and a village, or a faculty and 

a grade are subclasses of the hometown people set, or the university student set that are 

taken as data sets. So the coarse or fine classification of data sets correlates with the close 

degree of the data association. This is linked to some concepts in granular computing [14-

16], such as granules and alterations of granularity. Generally, a granule is regarded as a 

clump of data drawn from a data set by a property. Any change of the property will 

determine the amount of data in the granule, also affects the data’s indistinguishability. 

This is usually viewed as the alteration of granularity.  

Therefore, in order to describe the data association, we are going to create a method 

that is consistent with the data processing mode proposed in granular computing. To do 

this, we need to construct a structure called a granulation tree which will be closely linked 

to granules and their granularity. So our study can also be viewed as a method of research 

on granular computing. For this purpose, we start from a data set. 
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2. Fundamentals 

Let K be a set whose elements are referred to as data. So K is called a data set. In order 

to study the data association, it needs to consider the classification of a data set. 

Definition 1[14] Given a data set K, let E={E1, E2,···, Ek}(k≥1), where Ei⊆K(i=1, 

2,···, k). E is called a partition of K, if it satisfies the following conditions: 

(1) Ei≠(i=1, 2,···, k). 

(2) Ei ∩ Ej=(i≠ j and 1≤ i, j ≤ k). 

(3) E1∪E2∪···∪Ek = K. 

In this case, each Ei (∈E) is called a granule of K.        

A partition E={E1, E2,···, Ek} is a set whose elements are subsets of K, each of which 

is called a granule. From definition 1 we know that for Ei∈E and Ej∈E, if Ei∩ Ej≠, 

then Ei = Ej; also if u∈K, then u∈Ei for a granule Ei∈E. These will be used in the 

following discussion.  

Now consider the granules of E. Each granule consists of the data which satisfy the 

same property, or have the common characteristic. Sometimes, the granules of E need to 

be divided into smaller granules. So consider the following definition: 

Definition 2[14] Let E={E1, E2,···, Ek} and F={F1, F2,···, Fr} be two partitions of 

the data set K. For any Fj∈F, if there exists a granule Ei∈E such that Fj⊆Ei, then F is 

called a sub-partition of E.           

When F={F1, F2,···, Fr} is a sub-partition of E={E1, E2,···, Ek}, it follows form 

definitions 1 and 2 that if Ei∈E, then Ei=Fj1∪Fj2∪···∪Fjs for some granules Fj1, 

Fj2,···, Fjs∈F. This means that the granule Ei is divided into the smaller granules Fj1, 

Fj2,···, and Fjs. 

Let E={E1, E2,···, Ek} and F={F1, F2,···, Fr} be two partitions of the data set K. If F 

is a sub-partition of E, then we have the conclusion: 

Conclusion 1  For Ei∈E and Fj∈F, if there is a data x∈K such that x∈Ei and x∈Fj, 

then Fj⊆Ei.          

Also, when G={G1, G2,···, Gt}, E={E1, E2,···, Ek} and F={F1, F2,···, Fr} are 

partitions of the data set K, the following conclusion holds: 

Conclusion 2  If F is a sub-partition of E, and E is a sub-partition of G, then F is a sub-

partition of G.            

Given a partition E={E1, E2,···, Ek} of K, let R={<x, y> | x, y∈K and there is a 

granule Ei∈E such that x, y∈Ei}. Then R is an equivalence relation on K, and is referred 

to as the equivalence relation on K relative to E. Meanwhile R corresponds to the set 

K/R={ [x] | x∈K}, where [x] is the R-equivalence class about x, i.e. [x]={ y | y∈K and 

<x, y>∈R}. In this case, K/R is a partition of K and K/R= E [14]. In fact, K/R and R are 

determined by each other. So if R1 and R2 are equivalence relations on K relative to E and 

F respectively, where E and F are partitions of K, then R1= R2 if and only if K/R1=K/R2, 

if and only if E=F. This means that an equivalence relation on K uniquely corresponds to 

a partition of K, and vice versa [14]. 

Usually, an equivalence relation or a partition is bound up with a property that can 

determine the equivalence relation or the partition. For example, let K be a data set 

consisting of the students in a university. A relation on K, denoted by R, is defined as 

follows: 

For x, y∈K, <x, y>∈R if and only if x and y belong to the same faculty. 

Then R is determined by the property “the students belong to the same faculty”. 

Obviously, R is reflective, symmetric and transitive. Hence R is an equivalence relation 

on K, of course, R corresponds to the partition K/R that is also determined by the property. 
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Thus when we say that E is a partition of K relative to a property, we mean that the 

property determines an equivalence relation R and K/R=E. 

What we discussed in this section can be found in [14]. We review them is aimed 

at the holistic consideration on our discussion. 

 

3. Granulation Tree Based on Data Set 

Given a data set K, if E={K}, it is trivial that E is a partition of K. In addition to this, 

being relative to different properties, different partitions of K can be obtained. If one of 

them is a sub-partition of another, each partition will correspond to a level. All the 

partitions can constitute a hierarchy set consisting of granules, each of which belongs to 

one of the partitions. In order to demonstrate the hierarchy characteristic, we now set up 

an algorithm to show the process of how the hierarchy set is generated. 

Hierarchy Algorithm: 

Step (1) For a data set K, let U={K}, k=0 and Sk={K}. Enter an integer n, proceed to 

Step (2) Given a property, seek a partition E of K relative to the property such that E is 

a sub-partition of Sk, proceed to 

Step (3) Let k =k+1, Sk=E and U=U∪Sk , proceed to 

Step (4) If k =n, output the set U, the algorithm terminates. If k<n, repeat step (2).        

The purpose of entering the integer n in step (1) is to seek n partitions S1, S2,···, and 

Sn of K. This algorithm is aimed at getting the set U=S0∪S1∪S2∪···∪Sn(S0={K}) by 

use of the recursion formula U=U∪Sk. Obviously, U is a granule set because the 

partition Sk(k=0, 1,···, n) consists of granules. The subscript k occurring in Sk(k=0, 1,···, 

n) will defined as the level of Sk . Thus U is constituted by the different level partitions, 

and is a hierarchy set. The property that the partition E is relative to in step (2) means 

E=K/R and R is the equivalence relation determined the property. Of course, n partitions 

involve n different properties, each of which is given when the algorithm loops to step 

(2). Since Sk+1(k=0, 1,···, n-1) is a sub-partition of Sk, it follows from conclusion 2 in 

section 2 that Sk is a sub-partition of Sr if k>r.  

We introduce this algorithm is to show the different levels of the partitions S0, S1,···, 

and Sn. The algorithm can help us understand the hierarchy characteristic of the set U. 

Our intention is to show the generation process of U, rather than to formulate a program 

according to the steps in the algorithm. Actually, if we formulated a computer program, 

we would consider how to introduce the property in step (2) that is used to seek the 

partition Sk(=E).  

So if we say that U is obtained by use of the Hierarchy Algorithm on K, we mean that 

U=S0∪S1∪S2∪···∪Sn(S0={K}), where Sk(k=0, 1, 2,···, n) is a partition of K, and Sk 

is a sub-partition of Sr(k>r). In this case, U consists of the granules in S0∪S1∪S2∪···

∪Sn.  For Ei∈U, there is a partition Sk (0≤k≤n) such that Ei∈Sk and Ei⊆ K. Thus 

when Ei∈U and Ej∈U, it is possible to have Ei⊆ Ej or Ej⊆Ei. The inclusion relation ⊆ 

is actually a partial order relation on U(=S0∪S1∪S2∪···∪Sn). By use of the set U 

together with the inclusion relation ⊆, we can get a structure denoted by T(K)=(U, ⊆). 

Definition 3 The structure T(K)=(U, ⊆) is called an n-hierarchy granulation tree 

induced by K, or granulation tree for short. It is also linked to the following concepts: 

(1) U(=S0∪S1∪S2∪···∪Sn (S0={K})) is called an n-hierarchy granulation set 

based on K, or granulation set for short. The partition Sk (k=0, 1,···, n) is called the kth-

level partition in T(K), and the subscript k is referred to as the level of Sk. 

(2) If Ei∈U, Ei is called a granule of K. Moreover, when Ei∈Sk (0≤k≤n), Ei is also 

called a granule of the kth-level in T(K), and the subscript k in Sk is referred to as the 

level of the granule Ei. 

(3) For a, b∈K and Ei∈U, a and b are Ei-identical, or Ei-identical in T(K) if a, b∈
Ei, which is also referred to as the (Ei, a, b)-identity, or the (Ei, a, b)-identity in T(K). 
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Moreover, when Ej∈U, the (Ej, a, b)-identity is more proximate than the (Ei, a, b)-

identity if Ej⊆Ei.    

The (Ei, a, b)-identity illustrates that a and b all belong to the granule Ei, i.e. a, b∈Ei. 

In this case, we think that Ei does not distinguish a from b, in other words, a and b are 

considered as the same. Moreover, when a, b∈Ej, it follows that a and b are also Ej-

identical. If Ej⊆Ei and Ej≠Ei, then Ej∈Sk and Ei∈Sr such that k>r. The level of Sk is 

greater than the level of Sr, or Sk is a sub-partition of Sr. The partition that has a greater 

level must be relative to a stronger property. Thus, when the (Ej, a, b)-identity is more 

proximate than the (Ei, a, b)-identity, the (Ej, a, b)-identity means a and b are gathered 

together by a stronger property. 

This definition involves the concept “granule” which originates in granular computing, 

a current research focus. If making an intuitive explanation, researchers generally regard a 

granule as a part of a data set, or a clump of data drawn from the data set. When Ei∈

U(=S0∪S1∪S2∪···∪Sn), we have Ei⊆K, i.e. Ei is a subset of K. Of course Ei is a part 

of K, or a clump of data drawn from K. This is reason why we define Ei as a granule in 

definition 1 and in definition 3(2). This is consistent with the intuitive understanding of a 

granule. 

Since U is obtained by use of the Hierarchy Algorithm on K, the granulation tree 

T(K)=(U, ⊆) also relies on the data set K. The notation T(K) that K occurs in it has 

shown the dependence of T(K) on K. Obviously, T(K)=(U, ⊆) is closely linked to the 

partitions S1, S2,···, and Sn, which have different levels. 

When T(K) is drawn on the plane, it will be displayed as a diagram called a tree. This is 

the reason why we call T(K) a granulation tree. For instance, consider the data set K={a1, 

a2, a3, a4, a5, a6, a7, a8, a9}. Let U=S0∪S1∪S2∪S3(S0={K}) be a 3-hierarchy 

granulation set based on K, where S1= {{a1, a2, a3, a4, a5}, {a6, a7, a8, a9}}, S2 = 

{{a1, a2, a3}, {a4, a5}, {a6, a7, a8, a9}}, S3 = {{a1, a2}, {a3}, {a4, a5}, {a6, a7}, {a8, 

a9}}. Then T (K)=(U, ⊆) is a 3-hierarchy granulation tree induced by K, shown in Figure 

1.  

 

         Figure 1. Granulation Tree T (K) 

Figure 1 shows a structure that is a tree in which there is an arrow from Ei to Ej if and 

only if Ei∈Sk, Ej∈Sk+1(k=0, 1, 2) and Ej⊆Ei. The hierarchy characteristic of the 

granulation tree is reflected by the different levels of S0, S1, S2 and S3. The data set K is 

taken as the root. The kth-level partition Sk(k=0, 1, 2, 3) in T(K) constitutes the kth-level 

of the tree. The granules {a1, a2}, {a3}, {a4, a5}, {a6, a7} and {a8, a9} located in the 

lowest level are leaves. 

Remark: a granule is allowed to occur in different levels. For instance, the granule 

{a4, a5} belongs to both S2 and S3 in Figure 1. 

 

4. Data Association Based on Granulation Trees 

From the examples in section 1, we can see that the associations of data with other data 

are always related to two data classes. So we consider two data sets K1 and K2 in this 
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section. According to the steps in the Hierarchy Algorithm, we can obtain T(K1)=(U1, 

⊆) and T(K2)= (U2, ⊆), an m-hierarchy granulation tree, and an n-hierarchy granulation 

tree induced by K1 and K2 respectively, where U1=S0∪S1∪S2∪···∪Sm(S0={K1}) and 

U2=T0∪T1∪T2∪···∪Tn(T0 ={K2}). The symbol Tj(j=1, 2,···, n) used by us is to 

distinguish it from Sk (k=1, 2,···, m). Here, we allow m=n, also allow m≠ n. 

 

4. 1. Data Association 

In this section, we always assume K1∩ K2≠. Thus there is a data a such that a∈K1

∩ K2. 

Definition 4 For the data sets K1 and K2, if a∈K1∩ K2, a is called an association 

data of K1 and K2.           

When Ei∈U1 and Fj∈U2, we have Ei∈Sk and Fj∈Tr, where Sk(0≤k≤m) is the kth-

level partition in T(K1) and Tr(0≤r≤n) is the rth-level partition in T(K2). According to 

definition 3(2), Ei is a granule of the kth-level in T(K1), and Fj is a granule of the rth-

level in T(K2). 

Now consider the granulation trees T(K1)=(U1, ⊆) and T(K2)=(U2, ⊆), where 

U1=S0∪S1∪S2∪···∪Sm(S0={K1}) and U2=T0∪T1∪T2∪···∪Tn(T0={K2}). Let Ei 

be a granule of the kth-level in T(K1), i.e. Ei∈Sk, and Fj be a granule of the rth-level in 

T(K2), i.e. Fj∈Tr. For a∈K1∩ K2, b∈K1 and c∈K2, it is possible to have a, b∈Ei and 

a, c∈Fj. In situations like this, the data a and b are Ei-identical in T(K1), meanwhile, the 

data a and c are Fj-identical in T(K2)(see definition 3(3)). 

Definition 5 Let Ei be a granule of the kth-level in T(K1), i.e. Ei∈Sk, and Fj be a 

granule of the rth-level in T(K2), i.e. Fj∈Tr. For a∈K1∩ K2, b∈K1 and c∈K2, the data 

b and c are (a, k, r)-associated if a and b are Ei-identical in T(K1), meanwhile a and c are 

Fj-identical in T(K2). In this case, it is also referred to as the (a, k, r)- association of b 

with c.                  

The (a, k, r)-association of b with c establishes links between the data in T(K1) and the 

data in T(K2). The triple (a, k, r) not only specifies the association data a that associates b 

with c, but also uses the numbers k and r to represent the levels of the granules Ei  and Fj , 

where Ei  is a granule of the kth-level in T(K1) and a, b∈Ei; Fj  is a granule of the rth-

level in T(K2) and a, c∈Fj. Any change of k or r will lead to the change of the level of 

the granule Ei or Fj. This may also change the amount of the data in Ei or in Fj. So, the 

number k or r is connected with the property that determines the kth-level partition in 

T(K1), or the rth-level partition in T(K2). The data belonging to a granule of the kth-level 

or the rth-level must satisfy the property. Thus the numbers k and r are numerical 

representation of the data information. 

Sometimes, we only use “data association” to express the (a, k, r)-association of b 

with c, if we do not have to specify the data a, b and c. 

 

4. 2. Research on Data Association 

How can we conclude that b and c are (a, k, r)-associated is what we are going to 

study. To do this, we will use the upper approximation to examine the data association. 

From rough set theory [17-18] we know that the upper approximation and lower 

approximation form an approach to approximate description of knowledge. In related 

researches, upper and lower approximations are always combined together to carry out 

approximate data processing. They depend on each other, and are considered as dual 

operators. 

In the following, we will use the upper approximation to examine the data association, 

which has nothing to do with the lower approximation. The upper approximation will be 
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taken as operator to check the (a, k, r)-association of b with c, rather than to describe 

knowledge. Therefore the discussion will embody our own ideas.  

Generally, the upper approximation can be defined by use of an equivalence relation. 

Since an equivalence relation is uniquely corresponds to a partition, the upper 

approximation can be also produced by a partition. For the sake of argument, we review 

its definition: 

Let K be a data set, and E={E1, E2,···, Ek} be a partition of K. For a subset X⊆K, if 

E*(X) denotes the E-upper approximation about X, then E*(X) is defined by the following 

expression: 

E*(X)=∪{ Et | Et∈E and Et∩ X≠}[17] 

 

Thus the E-upper approximation about X is equal to the union of the granules such that 

the intersection of each of the granules and X is not empty. By this definition, it is easy to 

know that X⊆E*(X) [17]. Sometimes, we refer to E*(X), the E-upper approximation 

about X, as the upper approximation if we do not emphasize the partition E or the subset 

X. As an operator, the upper approximation can be viewed as a form of granular 

computing [14]. Therefore our discussion will involve an approach to granular 

computing. The approach will connect the upper approximation with the data association. 

For x∈K, we have {x}⊆K. So if E={E1, E2,···, Ek} is a partition of K, then the E-

upper approximation about {x}, i. e. E*({x}), exists. We now have a conclusion about 

E*({x}): 

Lemma 1 Let E={E1, E2,···, Ek} be a partition of K, x∈K and Ei∈E. Then 

E*({x})=Ei if and only if x∈Ei. 

Proof Suppose that E*({x})=Ei. Since {x}⊆E*({x}), we have {x}⊆Ei. This means x

∈Ei. 

Conversely, suppose that x∈Ei. Then {x}⊆Ei which derives {x}∩ Ei≠. In this 

case, for any Ej∈E, when Ej≠Ei, {x}∩ Ej=. Hence E*({x})=∪{ Et | Et∈E and Et∩

{x}≠}=Ei.  

Let T(K)=(U, ⊆) be an m-hierarchy granulation tree induced by K, where U=S0∪S1

∪S2∪···∪Sm(S0={K}). Consider Sk(1≤k≤m) and Sr(1≤r≤m) which are the kth-level 

and rth-level partitions in T(K) respectively. If x ∈ K, we can get the upper 

approximations Sk*({x}) and Sr*({x}). The next lemma is linked with them. 

Lemma 2  if k≥r, then Sk*({x})⊆Sr*({x}). 

Proof  If k=r, then Sk=Sr. It is obvious that Sk*({x})=Sr*({x}). Naturally Sk*({x})⊆ 

Sr*({x}).  

Now assume k>r. Since Sk and Sr are partitions of K, for x∈K, there are granules Ej∈

Sk and Ei∈Sr such that x∈Ej and x∈Ei. The fact k>r means Sk is a sub-partition of Sr. 

Since x∈Ej and x∈Ei, it follows from conclusion 1 in section 2 that Ej⊆Ei. Also lemma 

1 indicates that Sk*({x})=Ej and Sr*({x})=Ei. Thus Sk*({x})⊆ Sr*({x}).         

As the key component of the granulation tree T(K)=(U, ⊆), the granulation set U is a 

hierarchy set that is linked to the partitions S0, S1, S2,···, and Sm. Because the partition 

Sk(k =1,···, m) can produce upper approximation, this has provided the condition for 

using the upper approximation to examine the (a, k, r)-association of b with c. 

Now consider two data sets K1 and K2. Then T(K1)= (U1, ⊆) and T(K2)=(U2, ⊆) 

can be obtained, where U1= S0∪S1∪S2∪···∪Sm(S0={K1}) and U2=T0∪T1∪T2∪···

∪Tn(T0= {K2}). They are an m-hierarchy granulation tree and an n-hierarchy granulation 

tree induced by K1 and K2, respectively. For a partition Sk(1≤ k ≤m) in T(K1) and a 

partition Tr(1≤ r ≤n) in T(K2), if b∈K1 and c∈K2, the upper approximations Sk*({b}) 



International Journal of Database Theory and Application 

Vol.8, No.2 (2015) 

 

 

178   Copyright ⓒ 2015 SERSC 

and Tr*({c}) exist. When K1∩ K2≠, for a∈K1∩ K2, we are able to use the upper 

approximations Sk*({b}) and Tr*({c}) to check whether b and c are (a, k, r)-associated. 

Theorem 1  Let a∈K1∩ K2, b∈K1 and c∈K2. Then b and c are (a, k, r)-associated if 

and only if a∈Sk*({b})∩ Tr*({c}), where Sk is the kth-level partition in T(K1), and Tr is 

the rth-level partition in T(K2). 

Proof Suppose that b and c are (a, k, r)-associated. Then a and b are Ei-identical in 

T(K1), meanwhile a and c are Fj-identical in T(K2), where Ei∈Sk and Fj∈Tr, i.e. Ei is a 

granule of the kth-level in T(K1), and Fj is a granule of the rth-level in T(K2). It follows 

from definition 3(3) that a, b∈Ei and a, c∈Fj. Thus b∈Ei, c∈Fj and a∈Ei∩ Fj. By 

lemma 1 we have Sk*({b})= Ei and Tr*({c})=Fj. So Sk*({b})∩ Tr*({c})=Ei∩ Fj. From 

a∈Ei∩ Fj, we know a∈Sk*({b})∩Tr*({c}). 

Conversely, suppose that a∈Sk*({b})∩Tr*({c}). Then a∈Sk*({b}) and a∈Tr*({c}). 

Since Sk is the kth-level partition in T(K1) and b∈K1, as well as Tr is the rth-level 

partition in T(K2) and c∈K2, there exist Ei∈Sk and Fj∈Tr such that b∈Ei and c∈Fj. It 

follows from lemma 1 that Sk*({b})=Ei and Tr*({c})= Fj. This concludes a∈Ei and a∈

Fj from a∈Sk*({b}) and a∈Tr*({c}). It follows that a, b∈Ei and a, c∈Fj, i.e. a and b 

are Ei-identical in T(K1), meanwhile a and c are Fj-identical in T(K2), Notice that Ei is a 

granule of the kth-level, and Fj is a granule of the rth-level in T(K1) and T(K2) 

respectively. Thus b and c are (a, k, r)-associated.             

Theorem 1 offers a necessary and sufficient condition for checking the (a, k, r)-

association of b with c. It is bound up with the upper approximation, but not relevant to 

the lower approximation. Also, the condition only takes the upper approximation as an 

operator, rather than use it to describe knowledge. So our discussion differs from the 

previous researches which always combine the upper approximation with the lower 

approximation to make the approximate description about knowledge. 

The subscripts k and r in Sk*({b}) and Tr*({c}) are the levels of the partitions Sk and 

Tr in T(K1) and T(K2) respectively. They represent the properties that determine the 

partitions Sk and Tr, and can be thought of as the numerical representation of the data 

information. 

 

4. 3. Comparison between Data Associations 

When b and c are (a, k, r)-associated, what will it be if the association data a, or the 

numbers k and r change? We now proceed to this problem.  

Consider the granulation trees T(K1)=(U1, ⊆) and T(K2)=(U2, ⊆), where U1=S0∪

S1∪S2∪···∪Sm(S0={K1}) and U2= T0∪T1∪T2∪···∪Tn(T0={K2}).  

First, given two association data a, a’∈K1∩ K2, it is possible to have a∈Sk*({b})∩

Tr*({c}) and a’∈Sk*({b})∩ Tr*({c}), where b∈K1 and c∈K2. If it is so, it follows 

from theorem 1 that b and c are both (a, k, r)-associated and (a’, k, r)-associated. We now 

make a definition show the relationship between the data associations.  

Definition 6   The (a, k, r)-association of b with c is identical to the (a’, k, r)-

association of b with c if b and c are not only (a, k, r)-associated, but also (a’, k, r)-

associated.          

So when the (a, k, r)-association of b with c is identical to the (a’, k, r)-association of b 

with c, the triple (a, k, r) contains the same numbers k and r as those in (a’, k, r), although 

a and a’ may be different. 

Theorem 2 If the (a, k, r)-association of b with c is identical to the (a’, k, r)-

association of b with c, then a and a’ are Ei-identical in T(K1), meanwhile a and a’ are Fj-

identical in T(K2), where Ei∈Sk and Fj∈Tr. 
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Proof   When the (a, k, r)-association of b with c is identical to the (a’, k, r)-association 

of b with c, it follows from definition 6 that b and c are both (a, k, r)-associated and (a’, k, 

r)-associated. So a, b∈Ei and a, c∈Fj, as well as a’, b∈Es and a’, c∈Ft, where Ei and 

Es are granules of the kth-level in T(K1); Fj and Ft are granules of the rth-level in T(K2). 

Thus Ei, Es∈Sk and Fj, Ft∈Tr. Notice b∈Ei∩ Es, i.e. Ei∩ Es≠. We have Ei=Es 

because Ei, Es∈Sk and Sk is a partition. Similarly, Fj=Ft because c∈Fj∩ Ft and Fj, Ft

∈Tr. These illustrate that a, a’∈Ei (=Es), and a, a’∈Fj (=Ft). Hence a and a’ are Ei-

identical in T(K1), meanwhile, a and a’ are Fj-identical in T(K2).          

Therefore, the (Ei, a, a’)-identity in T(K1), as well as the (Fj, a, a’)-identity in T(K2) 

determines the result that the (a, k, r)-association of b with c is identical to the (a’, k, r)-

association of b with c. The identity between the data associations is based on the data 

identity in T(K1) and in T(K2).  

Second, given data a∈K1∩ K2, b∈K1 and c∈K2, if b and c are both (a, k, r)-

associated and (a, s, t)-associated, then by comparing k with s, or r with t, we will be able 

to discuss the relationship between the (a, k, r)-association and the (a, s, t)-association of 

b with c. To this end, we introduce the notations: 

 (s, t)>(k, r) if and only if s>k and t≥r, or s≥k and t>r, where s, t, k and r are natural 

numbers. 

(s, t)≥(k, r) stands for (s, t)>(k, r) or (s, t)=(k, r)(i.e. s=k and t=r). 

Definition 7  (1) Let b and c be both (a, s, t)-associated and (a, k, r)-associated. The (a, 

s, t)-association of b with c is closer than the (a, k, r)-association of b with c if (s, t)>(k, 

r). 

(2) Let b and c be (a, k, r)-associated. The (a, k, r)-association of b with c is maximal if 

b and c are not (a, s, t)-associated for (s, t)  > (k, r).          

The (a, s, t)-association of b with c means a, b∈Ei’ and Ei’∈Ss, as well as a, c∈Fj’ 

and Fj’∈Tt. Also the (a, k, r)-association of b with c means a, b∈Ei and Ei∈Sk, as well 

as a, c∈Fj and Fj∈Tr. When the (a, s, t)-association of b with c is closer than the (a, k, 

r)-association of b with c, we have (s, t)  > (k, r) which means s>k and t≥r, or s≥k and 

t>r. Thus Ss is a sub-partition of Sk, or Tt is a sub-partition of Tr. By conclusion 1 in 

section 1 we have Ei’⊆ Ei or Fj’⊆Fj. Since a, b∈Ei’ and a, b∈Ei, as well as a, c∈Fj’ 

and a, c∈Fj, we also know that the (Ei’, a, b)-identity is more proximate than the (Ei, a, 

b)-identity in T(K1), or the (Fj’, a, c)-identity is more proximate than the (Fj, a, c)-

identity in T(K2)(see definition 3(3)). Hence, the closer data association relies on the data 

identity that is more proximate, and can be examined by comparing (k, r) with (s, t). 

Theorem 3 For a∈K1∩ K2, b∈K1 and c∈K2, the following conclusions hold: 

(1) When (s, t)>(k, r), if b and c are (a, s, t)-associated, then b and c must be (a, k, r)-

associated. 

(2) If b and c are (a, k, r)-associated, then there exists a (s, t) such that (s, t)≥(k, r), and 

the (a, s, t)-association of b with c is maximal. 

Proof (1) Suppose that b and c are (a, s, t)-associated. It follows from theorem 1 that a

∈Ss*({b}) ∩ Tt*({c}). When (s, t)>(k, r), we have s>k and t≥r, or s≥k and t>r. It 

follows from lemma 2 that Ss*({b})⊆Sk*({b}) and Tt*({c})⊆Tr*({c}). This implies 

Ss*({b})∩ Tt*({c})⊆ Sk*({b})∩ Tr*({c}). Thus a∈Sk*({b})∩ Tr*({c}). From theorem 

1 again, we conclude that b and c are (a, k, r)-associated. 

(2) Suppose that b and c are (a, k, r)-associated. It follows from theorem 1 that a∈

Sk*({b}) ∩ Tr*({c}). Let s and t be the largest subscripts in Ss*({b}) and in Tt*({c}) 

respectively, satisfying a∈Ss*({b}) ∩ Tt*({c}). It is obvious that (s, t)≥(k, r), meanwhile 

theorem 1 indicates that b and c are (a, s, t)-associated. From the values of s and t, we 

conclude that the (a, s, t)-association of b with c is maximal.          
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If (s, t)  > (k, r), the above proof shows that Ss*({b})∩Tt*({c})⊆Sk*({b})∩ Tr*({c}). 

Assume Ss*({b})∩ Tt*({c})≠. Then Sk*({b})∩ Tr*({c})≠. Let a’∈Ss*({b})∩

Tt*({c}) and a∈Sk*({b})∩ Tr*({c}). By theorem 1, b and c are both (a’, s, t)-associated 

and (a, k, r)-associated. Although (s, t)>(k, r), we are not sure that the (a’, s, t)-

association of b with c is closer than the (a, k, r)-association of b with c, because 

definition 7(1) requires that a’  and a are the same data. However, since Ss*({b})∩

Tt*({c})⊆Sk*({b})∩ Tr*({c}) and a’∈Ss*({b})∩ Tt*({c}), we have a’∈Sk*({b})∩

Tr*({c}). So b and c are (a’, k, r)-associated. Because the (a’, k, r)-association of b with c 

is identical to the (a, k, r)-association of b with c(see definition 6), and when (s, t)>(k, r), 

the (a’, s, t)-association of b with c is closer than the (a’, k, r)-association of b with c, we 

may think that the (a’, s, t)-association of b with c is closer than the (a, k, r)-association of 

b with c. 

The (a, k, r)-association of b with c not only bases the data association on the 

association data a, but also relies on the (Ei, a, b)-identity and the (Fj, a, c)-identity, 

where Ei is a granule of the kth-level in T (K1), and Fj is a granule of the rth-level in 

T(K2). Especially, the way of using the upper approximation to check the (a, k, r)-

association of b with c shows an application of rough set theory. The application is 

different from the previous researches in which the upper approximation always combines 

with the lower approximation to make the approximate description about knowledge. So 

our discussion gives a different way of research on rough sets. 

 

5. Description of an Actual Problem 

What we have done can be taken as a mathematical model to deal with problems. It is 

also the basis for algorithm design and computer programming. We now use it to describe 

an actual problem. 

Example 1 Let K1 and K2 be two data sets which are defined as follows: 

K1 consists of the people born in a county. The people live in the county, or leave the 

county for college. 

K2 is a set of students studying at several universities, or graduated from the 

universities in recent 5 years. 

Consider the data set K1, the people set of the county. In China a county is constituted 

by townships. A township contains a number of villages. Each village is generally divided 

into teams. A team consists of men or women. According to these divisions, we can get a 

4-hierarchy granulation tree induced by K1, denoted by T(K1)=(U1, ⊆) in which U1=S0

∪S1∪S2∪S3∪S4(S0= {K1}). Where Si (i=1, 2, 3, 4) is a partition of K1 relative to a 

property, and Sk is a sub-partition of Sr(k>r). Specifically, if K1 is classified into subsets, 

each of which is the set of a township people, then we get the partition S1 in which a 

granule is one of the subsets, corresponding to a township. S2 is sub-partition of S1, a 

granule of S2 consists of the people of a village, in this case, a township, a granule of S1, 

is divided into villages. S3 is a sub-partition of S2 such that each granule in S2 is divided 

into teams which are granules of S3. When a team in S3 is classified into the man set and 

woman set, we can get the partition S4 that is sub-partition of S3. These partitions 

constitute U1(=S0∪S1∪S2∪S3∪S4) that is the major component of the granulation 

tree T(K1)=(U1, ⊆). 

Also, consider the data set K2 consisting of the students studying at the universities or 

graduated from the universities in recent 5 years. The students who get into or graduated 

from the universities in 5 years will involve ten grades. Based on K2, a 6-hierarchy 

granulation set can be obtained, denoted by U2=T0∪ T1∪ T2∪ T3∪ T4∪ T5∪

T6(T0={K2}). Also, U2 together with ⊆ constitutes T(K2)=(U2, ⊆), a 6-hierarchy 

granulation tree induced by K2. As a partition of K2 relative to a property, Ti(i=1, 2, 3, 4, 
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5, 6) is a set of granules, and Tt is sub-partition of Ts(t>s). Specifically, T1 is a partition 

of K2, a granule of T1 is the student set of a university. T2 is sub-partition of T1 such that 

a university is divided into faculties, and the students in a faculty constitute a granule of 

T2. By dividing a faculty into departments, we get the partition T3 in which a granule 

corresponds to a department, clearly, T3 is a sub-partition of T2. Because a department 

involves different grades, a grade taken as a granule leads to the partition T4 that is a sub-

partition of T3. A grade is constituted by a number of classes. So we can get the partition 

T5 that takes each class as a granule, and forms a sub-partition of T4. Since a class 

contains male students and female students, this leads to T6 that is a sub-partition of T5, 

and a granule of T6 is a male student set or female student set. The partitions T1, T2, T3, 

T4, T5 and T6 constitute the 6-hierarchy granulation set U2.  

On such occasions, we get the partitions of K1, as well as the partitions of K2, each of 

which is relative to a property. These give rise to the granulation trees T(K1)=(U1, ⊆) 

and T(K2)= (U2, ⊆), taking U1=S0∪S1∪S2∪S3∪S4(S0= {K1}) and U2=T0∪T1∪T2

∪T3∪T4∪T5∪T6(T0 ={K2}) as their main parts respectively. 

For b∈K1 and c∈K2, examine Sk*({b})∩ Tr*({c}), where 1≤k≤4 and 1≤r≤6. When 

Sk*({b})∩ Tr*({c})≠, there must be an association data a, i.e. a∈K1∩ K2, such that a

∈Sk*({b})∩ Tr*({c}). It follows form theorem 1 that b and c are (a, k, r)-associated. So 

a, b∈Ei and a, c∈Fj, where Ei is a granule of the kth-level in T(K1), and Fj is a granule 

of the rth-level in T(K2). The association data a associates the data of Ei with the data of 

Fj. The numbers k and r representing the levels of Ei and Fj respectively are intimately 

bound up with the close degree of the (a, k, r)-association of b with c.  

We now focus on a specific situation such that k=2 and r=5. In situation like this, the 

data b and c are (a, 2, 5)-associated. For the granules Ei and Fj, we have Ei∈S2 and Fj∈
T5. So Ei represents a village, and Fj corresponds to a class because S2 takes villages as 

granules, and a granule of T5 consists of the students of a class. The association data a in 

(a, 2, 5) can be viewed as a bridge connecting a village with a class. The numbers 2 and 5 

are the numerical representation of the data information.  

In addition, when (s, t)  > (2, 5) or (s, t)<(2, 5), by use of theorems 1, 2 or 3, it is 

entirely possible to determine whether data b and c are (a, s, t)-associated. If (s, t)  > (2, 

5), the (a, s, t)-association of b with c will be closer than the (a, 2, 5)-association. In this 

situation, the numbers s and t will imply much more information. 

Based on the granulation trees T (K1)=(U1, ⊆) and T(K2)=(U2, ⊆), we make an 

approach to associating a local government with the university talents. What we have 

developed can be taken as a mathematical model to describe associations of data with 

data. The model is the basis of the algorithm design. This may make it possible to realize 

computerized management of data associations. The research is the fundamental work of 

computer programming. 

The association of a local government with the universities is relevant to the 

government’s economic development, talent introduction, technical progress, enterprise 

transformation, etc. Meanwhile it is also linked to knowledge transformation of the 

universities, including talent employment, training base, places for practice, technology 

application, and so on. The discussion of the association of data with data offers the 

mathematical basis for algorithm design and computer programming. It is significant in 

theory and practice.         
 

6. Conclusion 

The discussion of the (a, k, r)-association of b with c only relates to the data 

association occurring in two granulation trees. When K1, K2,···, and Kn are n data sets, 

we can obtained n granulation trees T(K1)=(U1, ⊆), T(K2) =(U2, ⊆),···, and 

T(Kn)=(Un, ⊆) induced by the data sets. In this case, the data association connecting 
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with the n granulation trees will become a path, which will bring up a subject of research 

on association paths. An association path will involve multiple data, and lead to multiple 

data associations. This can be taken as a research topic to be investigated in the future. 

If we look at the above discussion, we can see that the work we do is closely connected 

with granules and alterations of granularity. For instance, the (a, k, r)-association of b 

with c is close linked to the granules that determine the identity between a and b in T(K1), 

as well as the identity between a and c in T(K2). Also, the close degree of the data 

association is bound up with alterations of granularity. All of these are based on the 

granulation trees which have close links with granules. Thus, what we have done in this 

paper may suggest a method of research on granular computing. 
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