
International Journal of Database Theory and Application

Vol.8, No.1 (2015), pp.105-110

http://dx.doi.org/10.14257/ijdta.2015.8.1.12

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2015 SERSC

Scalable Multiple NameNodes Hadoop Cloud Storage System

Kun Bi
1
 and Dezhi Han

1,2

1
College of Information Engineering, Shanghai Maritime University, Shanghai

201306, China
2
School of Computer Science and Engineering, South China University of

Technology, Guangzhou 510632, China

kunbi@shmtu.edu.cn

Abstract

To solve the problem that the total number of files in HDFS is limited by the memory

size of the NameNode, the paper proposed a scalable multiple NameNodes coexisting

scheme for cloud storage. NameNode location service (NLS) was introduced into the

system. NLS communicated with all NameNodes and was responsible for the file location

requests from the clients. Experimental results showed this scheme had good scale-out

scalability and the upper limit of the total number of files that the system was able to store

could be greatly increased by adding a number of NameNodes.

Keywords: Multiple NameNode, Hadoop, HDFS, Cloud Storage System

1. Introduction

Currently, the total amount of data has an explosive growth and mass data storage

becomes a hot research topic. Data is generated from various fields, and the data types

include structured data, semi-structured data and unstructured data. IDC (International

Data Corporation) estimated that in 2020 the total amount of global data would reach

35ZB. A lot of work has been done to solve this problem and several kinds of distributed

storage system were developed, such as Google GFS [1], Hadoop HDFS [2],

OpenStack Swift [3], Amazon Dynamo [4] and Facebook Haystack [5], etc.

In this paper, a distributed file storage system with multiple NameNodes based on

Hadoop HDFS was presented. It had a good scale-out performance by deploying multiple

NameNodes in the system, and solved the problem that the total amount of files stored in

HDFS was limited by the memory volume of single NameNode. This method is

applicable to provide cloud storage service for a large number of users.

2. Related Work

One of the key problems in mass data storage is to efficiently locate and access data [6-

11]. As the data volume continues to grow rapidly, traditional storage systems such as

NAS and SAN have scalability limitations when storing such huge data volume. The use

of inexpensive computers and storage devices to build a distributed storage system is a

good solution. Most of those solutions adopt the methodology of separating the storage

and management of metadata and the file content [1-11]. The metadata management in a

distributed storage system can be divided into two categories, centralized management

and distributed management. Google GFS [1] and Hadoop HDFS [2] adopt centralized

metadata management solution, and OpenStack Swift [3] adopts distributed metadata

management solution.

In GFS, the metadata are all stored in master node and data objects are distributed

stored in chunk servers. The GFS client gets a file’s metadata information from the

master node and then access the chunk server to read or write the file content.

International Journal of Database Theory and Application

Vol. 8, No. 1 (2015)

106 Copyright ⓒ 2015 SERSC

Hadoop HDFS is an open source implementation version of Google GFS. The HDFS

NameNode is similar with GFS master node and HDFS DataNode is similar with

GFS chunk server. OpenStack Swift uses distributed metadata management method

and metadata are distributed stored among all the nodes. Swift uses DHT to organize

all the metadata into a RING structure. Swift does not support multilevel folders,

and all the data objects are stored in containers. It is suitable for storing massive

amounts of <Key, Value> types of data objects and the data object can be located by

searching the corresponding object id in RING. HDFS supports multilevel folders

and all the files’ metadata are stored in HDFS NameNode. It is convenient for file

access according to the directory, but the total number of files that can be stored in

HDFS is restricted by the total memory of NameNode.

HDFS system mainly consists of three parts: the NameNode, DataNode and

Client. NameNode stores all the files’ metadata, file directories organization, data

blocks index and the mapping relations between data blocks and DataNodes.

NameNode also manages DataNode, and responds to the file query, read, write

requests from the clients. DataNode stores the data block content and communicates

with NameNode. When a client wants to read or write a file, it firstly queries

NameNode and gets the file metadata from NameNode; then extracts the data blocks

information from the metatdata; lastly, the client communicates with DataNode to

do read or write operations.

When HDFS is running, all the files’ metadata are stored in the memory space of

the NameNode and each metadata needs about 150 Byte memory space. So, the

memory space of the NameNode restricts the number of files that can be stored in

HDFS file system. For example, if the memory is 4GB, and each file uses only one

data block, each file’s metadata and its corresponding data block’s metadata will

consume about 300 Bytes memory space in total. In this case, the NameNode can

store about 4GB/300B≈14,316,557 file metadata and this is the upper bound. If it is

required to further increase the file numbers that a NameNode can manage, the only

way is to increase the memory size of the NameNode. In hadoop 2.x, HDFS

federation was designed implemented to solve this problem. HDFS federation mode

allows multiple NameNodes coexisting and federated in a HDFS system, and this

method partly addressed the above issue, but it requires configuring the mount point

of the NameNode statically before running HDFS and does not scale-out well with

an increasing number of mount points.

3. Cloud Storage System based on HDFS

3.1. Problem Statement and Key Idea

As discussed above, the total number of files that can be stored in HDFS is constrained

by the memory size of the NameNode. The key problem is how to extend HDFS to

support multiple NameNodes and let each NameNode store a part of files’ metadata. In

this way, the maximum number of files that a HDFS system is able to store can be

linearly increased with the number of NameNodes. In single NameNode model, all

metadata are maintained by one NameNode and the metadata consistency could be easily

guaranteed. When expanded to multiple NameNodes model, the following four main

problems are required to be seriously considered: (1) How to enable multiple NameNodes

coexist and cooperation? (2) How to design the file and directory namespace? (3) How to

locate the given file’s metadata that a client requests to get? (4) How to guarantee the

metadata consistency among all NameNodes?

To solve the above four problems, a new service named “NameNode Location

Service” (NLS in short) was introduced to the system. The key design idea and

principals include the following four parts: (1) The basic HDFS framework remains

International Journal of Database Theory and Application

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 107

unchanged and NameNode still manages a set of DataNodes; (2) Multiple

NameNodes are allowed to coexist with each other, and each NameNode is in

charge of a separate set of DataNodes; (3) NameNode Location Service (NLS) is

used to locate NameNode for clients; (4) When a client wants to read or write a file,

it firstly contacts with NLS and NLS will reply the NameNode information to the

client, and then the client could communicate with the corresponding NameNode

and DataNode. This step remains the same with HDFS file access procedure.

This design methodology could solve the above four problems, because (1) each

NameNode runs separately and does not interact with each other. So, the first and fourth

problems could be solved; (2) NLS is responsible to located the NameNode which really

stores the file’s metadata that a client wants to get. In this way, the second and third

problems could be solved.

3.2. System Architecture Overview

Figure 1. System Architecture

The cloud storage system proposed in this paper was built on an official version of

Hadoop HDFS. The system architecture is illustrated in Figure 1. The NameNode module

and the DataNode module were standard HDFS modules, and remained unchanged in the

system. A NameNode location service (NLS) module was added to the system. It allowed

multiple NameNodes coexisting in the system and each NameNode managed a separate

set of DataNodes. NLS module collected all of the NameNodes’ basic information and

responsed to any client's file location query requests.

This system was designed to provide cloud storage service for a large number of users

and each user had a separate directory to store their own files and subdirectories. The

NLS module only maintained the mapping relationship between the user id and the

corresponding NameNode. All the files and subdirectories belonged to the same user

would be maintained by the same NameNode. This design methodology made the cloud

storage system brief and flexible.

The data flow of the system is illustrated with the case of client reading a file. As

shown in Fig 1, when a client wants to read a file, it sends the file owner’s user id to the

NLS at first; and then, the NLS replies to the client with the information of the

NameNode which stores the metadata of the given file; after that, the client could

communicate with the NameNode and then access the DataNode in a standard HDFS

access manner. The data flow of client writing a file is similar with the reading process.

International Journal of Database Theory and Application

Vol. 8, No. 1 (2015)

108 Copyright ⓒ 2015 SERSC

3.3. NameNode Location Service

NLS is the core module on supporting multiple NameNodes in this system. By using

NLS, different users’ files could be distributed among several NameNodes and the upper

limit of the number of files that the system can manage could be greatly improved.

Multiple NameNodes could work independently and deal with the requests from different

clients in parallel. So, the system throughput could be increased. New NameNode can be

easily added into the system to increase the system storage capacity, which makes the

cloud storage have a good scale-out performance.

NLS module deals with the file location requests from clients and reply to the client

that which NameNode stores the file’s metadata. NLS has to build and maintained a <key,

value> type data structure: the key is the user id and the value is the corresponding

NameNode’s information. NLS does not map file name or file id to the NameNode,

instead, NLS only maintains the map information between user id and the corresponding

NameNode. All files belonged to the same user could be managed by the same

NameNode. The mapping relationship data in NLS should be with high availability and

reliability. NoSQL database such as Redis database is a good choice to store the mapping

data in NLS.

If a user id does not exist in NLS, NLS could choose a NameNode to store the new

user’s files. To balance the work load among all NameNodes, NLS should be aware of the

basic statistical information of all NameNodes. NLS queries and collects all NameNodes’

information in an active way. After that, NLS could be aware of the work load of every

NameNode. The amount of data that NLS needs to maintain is proportional to the number

of users in the system and it would not become the bottleneck of system.

3.4. Performance Optimization and Discussion

To further reduce the overload of NLS, the client could cache the mapping data

between the user id and the corresponding NameNode.

NLS collects information from every NameNode to achieve load balance among all

NameNodes. When a new user directory needs to be created, the NLS could choose a

NameNode with the lightest work load.

4. Experimental Result

The experimental setting is described as below. Several virtural machines were built on

ESX server and the cloud storage system was installed into those virtual machines. Every

virtual machine had the same hardware configuration. Each virtual machine had 512MB

memory and 20GB hard disk, running CentOS 5.6 and Java 1.6. The Hadoop version is

1.2. The physical memory that the NameNode service itself could utilize is about 256MB

in practice. Experiment ran 3 times. The number of virtual machines was 4, 8 and 12

respectively in experiment 1, 2 and 3. Each NameNode managed three DataNodes and

there are 1, 2 and 3 NameNodes respectively in experiment 1, 2 and 3. NLS service ran on

a separate virtual machine. Client generated files with size between 1KB and 8KB and

stored into the system. The total number of files that had stored into the system was

recorded when the memory of NameNode had been exhausted.

Experimental results are shown in Figure 2. When there was one NameNode in the

system, the client had written about 230, 000 files into the system in total. After that, the

system response was very slow and request timeout warnings were reported. The system

became saturated. In the second experiment, there were two NameNodes in the system,

and the total number of files that the system had stored was nearly doubled. When there

were three NameNodes in the system, the total number of files that the system had stored

was nearly increased by two times comparing with that of the first experimental result.

Those results showed that the system had good scalability.

International Journal of Database Theory and Application

Vol. 8, No. 1 (2015)

Copyright ⓒ 2015 SERSC 109

Figure 2. Total Number of Files Statistical Graph

5. Conclusions

This paper presented a cloud storage scheme to utilize multiple NameNodes. This

storage system was built on official Hadoop HDFS. NLS module was added into the

system and redirected the client’s file access request to the corresponding NameNode.

Multiple NameNode coexisted and worked separately in the system. Experimental results

showed that this storage scheme had good scale-out capability. It provided a solution to

the problem that the total number of files that could be stored in HDFS wass constrained

by the memory size of the NameNode. It was suitable for providing cloud storage service

for lots of users.

Acknowledgements

This work was partly supported by National Natural Science Foundation of China (No.

61373028 and No. 61070154), Shanghai Universities Young Teacher Training

Foundation (2012), Foundation for University Key Teacher of Shanghai Maritime

University (11th), Science & Technology Program of Shanghai Maritime University

(20130471), Innovation Program of Shanghai Municipal Education Commission

(12ZZ153).

References

[1] S. Ghemawat, H. Gobioff and S. T. Leung, “The Google file system”, Proceedings of the 19th ACM

symposium on Operating systems principles, Bolton Landing, NY, USA, (2003) October 19–22, pp. 29-

43.

[2] Apache™ Hadoop®. Hadoop documentation, http://hadoop.apache.org/, (2014) February 11.

[3] OpenStack, Swift documentation, http://docs.openstack.org/developer/swift/, (2014) June 20.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall and W. Vogels, “Dynamo: amazon's highly available key-value store”, Proceedings of 21st

ACM symposium on Operating systems principles, Stevenson, Washington, USA, (2007) October 14–

17, pp. 205-220.

[5] D. Beaver, S. Kumar, H. C. Li, J. Sobel and P. Vajgel, “Finding a needle in Haystack: facebook's photo

storage”, Proceedings of the 9th USENIX conference on Operating systems design and implementation,

Vancouver, BC, Canada, (2010) October 4–6, pp. 1-8.

[6] J. Cui, T. S. Li and H. X. Lan, “Design and development of the mass data storage platform based on

Hadoop”, Journal of Computer Research and Development, vol. 49, (2012), pp. 12-18.

[7] F. Mu, W. Xue, J. W. Shu and W. M. Zheng, “Metadata management mechanism based on route

directory”, Journal of Tsinghua University (Sci & Tech), vol. 49, no. 8, (2009), pp. 1229-1232.

[8] L. N. Song, H. D. Dai and Y. Ren, “A learning method of hot-spot extent in multi-tiered storage medium

based on huge data storage file system”, Journal of Computer Research and Development, vol. 49,

(2012), pp. 6-11.

[9] L. Ao, D. S. Yu, J. W. Shu and W. Xue, “A tiered storage system for massive data: TH-TS”, Journal of

Computer Research and Development, vol. 48, no. 6, (2011), pp. 1089-1100.

International Journal of Database Theory and Application

Vol. 8, No. 1 (2015)

110 Copyright ⓒ 2015 SERSC

[10] G. G. Zhang, C. Li, Y. Zhang and C. X. Xing, “A kind of cloud storage model research based on

massive information processing”, Journal of Computer Research and Development, vol. 49, (2012), pp.

32-36.

[11] S. Yu, X. L. Gui, R. W. Huang and W. Zhuang, “Improving the storage efficiency of small files in cloud

storage, Journal of Xi'An Jiao Tong University, vol. 45, no. 6, (2011), pp. 59-63.

Authors

Kun Bi received the PhD degree in computer system

architecture from University of Science and Technology of China

in 2008. He is currently a lecture in the College of Information

Engineering at Shanghai Maritime University. His current

research interests include cloud storage, cloud security, network

security and cloud computing.

Dezhi Han received the PhD degree in computer system

architecture from Huazhong University of Science and Technology in

2005. He is currently a professor and master instructor in the College

of Information Engineering at Shanghai Maritime University. His

current research interests include cloud storage, cloud security and

cloud computing.

