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Abstract 

Without multi query optimization, Relational Database Management System for online and 

analytical decision support systems would have been inefficient and hence unpractical. It is 

an expensive process because it relies at a great extent on evaluating the different plans 

(access paths) and choosing an optimal one among them. In Multi Query Optimization, 

queries are executed in batches and there were many different algorithms acted in such way 

that, in case some queries have a common sub-expression such a sub- expression is executed 

once and the output shared. 

We studied the basic  multi query optimization algorithms including Basic Volcano, 

Volcano-SH and Volcano RU, identified their strengths and weaknesses and recommend 

strategies for developing new improved multi query optimization algorithm so as to reduce 

weaknesses and integrate strengths of the different basic multi query algorithms into one 

efficient algorithm.  
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Volcano-SH, Volcano RU, common sub-expressions  

 

1. Introduction  

In multi-query optimization, a query is not optimized one by one; instead, the queries are 

optimized and hence executed in batches. [5, 13 and 8] carried out research on multi- query 

optimization using basically exhaustive algorithms. These algorithms traverse a good number 

of the different options, look for the minimum among the different query plans per query and 

then output the set of optimal plans. Though optimized together, plans of queries whether 

final or intermediate do not intervene or interfere in the generation of other plans. In fact, 

after individual query optimization, the queries compete for computer resources at execution 

[1] advocates for cooperation and do not entirely optimize the individual queries. They aim at 

getting the cheapest way of retrieving all the data so that all the query requests are serviced. 

However, many researches are still going on multi query optimization algorithms of how to 

improve them. Therefore, more better and efficient algorithm can be only developed if the 

weaknesses and strengths of the existing algorithms were identified.        

 

2. Multi-Query Optimization (MQO) 

In MQO, queries are executed in batches.  Some of the MQO techniques act in such a way 

that in case some queries have a common sub-expression such a sub- expression is executed 

once and the output shared. In some cases, the sharing does not necessarily take place on 
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individual optimal plans. According [10] but instead sub-optimal plans are used, decision may 

as well have to be taken whether the common sub- expressions should be pipelined or 

materialized. S`ome multi-query optimization techniques basically aim at having parallel 

optimization of many queries [5]. These queries pass through the different optimization steps 

together and as an output, which is a set of optimal plans for each query generated [10] 

criticized this approach on a basis that further cooperation can be made between the queries 

that make up the batch. If a certain sub-expression is common, then the computer should 

execute it once and share out the results. This is a guiding principle to the Basic Volcano 

algorithm proposed by [4] and the Volcano-SH and Volcano RU optimizer algorithms 

proposed by [10] further put the sharing of the sub-expressions to a great importance that 

even if the sharing takes place on a non-optimal plan of the query, as long as the total 

resource requirement is optimal, it is acceptable.  

A multi-query optimizer is responsible for recognizing the possibilities of shared 

computations and modifying the optimizer search strategy to explicitly account for shared 

computations so as to find a globally optimal plan [9]. This sharing however may not be 

necessarily optimal since:- 

i. The cost of queries  may be too high such that the sum of the independent optimal 

plans will be still the global optimal; 

ii. The shared plan may have a lower resource requirement than the non shared ones but 

when the resources taken to achieve the plan take more resources than the trade off 

hence an efficient query in an inefficient system [2];  

iii. The sharable components may be too few and the ratio of sharable to total 

components is too low. The search for sharable components may produce very little 

sharable components that the saving to be far less than the searching cost. 

The inclusion of sub-optimal plans increases the sample space hence a more efficient 

search technique is required. Sharing in multi-query optimization highly hinges on the 

availability of  the sharable sub-expressions  [2]. The elimination of some plan types, like in 

the way it is done in IBM System R optimizer may not be useful since the eliminated types 

may have sharable components. The elimination may instead depend on the cost of the sub-

expressions in the plan itself since excessively expensive expressions, even if shared, are very 

unlikely to create global optimality.  Elimination of some expression is done so as to reduce 

the search sample space.  

 

3. Multi Query Optimization Algorithms 

All the multi query algorithms do not take into consideration possibilities of sub-

expressions that may be common and save more in overall. These algorithms are Basic 

Volcano, Volcano SH, and Volcano RU algorithms. The algorithms use DAG to represent the 

search space. In some cases however, search space is represented as an AND-OR DAG.  
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Figure 1. Query Representation: Tree, DAG and Extended DAG 

An AND-OR DAG is a DAG whose nodes are divided into two:  the AND nodes and the 

OR nodes. AND nodes have only OR nodes as their children and OR nodes have only AND 

nodes as their children. The AND node in an AND-OR DAG has algebraic operation like 

select (σ), project (π), etc. They are therefore referred to as operational nodes.  The OR node 

of an AND-OR DAG represents a logical expressions that generates the same result set as 

when a child operational node is applied on its children/ child. OR nodes are referred to as 

equivalence nodes. The expanded DAG is used as a representation for modern optimizers 

because they are easily extensible.  

 

3.1 Basic Volcano Algorithm 

Basic Volcano Algorithm was proposed by [4] as a reaction to the previously proposed 

Exodus Optimizer. It uses DAG as a representation of the query plans. It has a problem of 

extensibility since AND-OR DAGs are easier to extend than the DAGs [11].  

The Basic Volcano algorithm materializes all nodes that appear more than once. This 

brings in a problem that not all nodes that appear more than once cause savings when 

materialized. As observed in [9], for some nodes, it is cheaper to recompute than to 

materialize and reuse them. This is because materialization involves writing and reading to 

disk which is costly.  This algorithm determines the cost of the nodes by using a depth first 

traversal of the DAG. The cost of operational and equivalence nodes are given by 

Cost(o) = cost of executing(o)+∑ei ∈ children(o)cost(ei)  

and the cost of an equivalence node is given by 

cost(e)= min(cost(oi)|o∈children(e) 

If the equivalence node has no children, then cost (e) = 0.  In case a certain node has to be 

materialized, then the equation for cost (o) is adjusted to incorporate materialization.  For a 

materialized equivalence node, the minimum between the cost of reusing the node and the 

cost of recomputing the node is used. The equation therefore becomes 

Cost(o) = cost of executing(o)+∑ei ∈ children(o)
cost

(ei)  

whereC(ei) = cost(ei) if ei!∈ M, and = min(cost(ei), reusecost(ei)) ifei∈ M. 

The Basic Volcano lays a foundation for cost- effective reuse but:- 

i. It does not establish the cost effectiveness of the candidate node to materialize before 

choosing it for materialization [5]. 
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ii. Its search is exhaustive therefore the optimizer incurs a high search cost which bring 

a negative impact on the overall cost effectiveness of the query processor [5]. 

iii. The Basic Volcano algorithm therefore incurs a lot of cost in searching for the 

sharable sub expressions which may render it inefficient especially for large (and 

therefore) complex queries [1]. 

 

3.2 Volcano SH Algorithm 

The Volcano-SH is an extension of the Basic Volcano algorithm. It uses the Basic Volcano 

optimal plans as an input. The volcano SH computes the cost of each node and decides 

whether or not it is cost effective to materialize it.  This is done by considering a scenario of 

materialization and reuse against re-computation. If for example we have an equivalence node 

e with the following characteristics: 

Number of times it is to be used = numuses (e)  

Cost of computing the node = cost (e) 

Cost of materializing the node = matcost (e) and 

Cost of reusing the node =reusecost (e). 

A decision has to be made whether to materialize and reuse the node or to recompute the node 

whenever it is needed.  If all the nodes are computed from the database, the cost incurred 

would be 

cost(e) × numuses(e) 

and if the node was computed once, then materialized so that for subsequent times it is just 

reused, the cost incurred would be 

cost(e)+ matcost(e)+ reusecost(e) × (numuses(e) − 1) 

Materialization is cost effective if 

cost(e)+matcost(e)+reusecost(e)×(numuses(e)−1) < cost(e)×numuses(e)  

or more simply 

reusecost(e)  +                                 < cost(e)      

  

Volcano SH algorithms selects whether or not to materialize depending on the cost 

effectiveness of the scheme. The volcano-SH traverses the DAG from the leaves towards the 

root. Since the cost of a node is computed from the children (leaves), the cost of a node can 

be accurately established as the algorithm traverses the DAG. The number of times a node is 

used however depends on the materialization status of the parents. Since a node is reached 

before the parents are reached, it cannot be easily established. [11] uses an under estimate 

numuses−(e) which was obtained by counting the number of parents of a node. The condition 

for materialization is therefore modified to 

or more simply 

   matcost(e) 

(numuses(e) − 1) 
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reusecost(e)  +                                    < cost(e)      

 

the advantage of Volcano SH is that, it eliminates blind materialization hence saving more 

resources [9]. It however has some shortcomings that need to be addressed are as follows:- 

i. Its estimate of the frequency a node appears puts no consideration of other plans in the 

pseudo rooted DAG yet the inter-query sharing makes a lot of savings on resources [1]. 

ii. Its estimate is inaccurate. In fact in some cases the under estimate is higher than the 

actual value which may lead to wrong decisions [5]. 

iii. It does not attempt to exploit the inter-query extents of similarities.  This makes it 

unable to decide on the optimal order in which the queries should be processed [6]. 

iv. It does not trim already catered for nodes hence the search works on a fixed sample 

space leading to non-worthwhile search efforts [6]. 

 

3.3 Volcano-RU Algorithm 

The Volcano-RU exploits sharing well beyond the optimal plans of the individual queries. 

Though volcano SH algorithm considers sharing, it does it on only individually optimal plans 

therefore some sharable components which are in sub-optimal plans are left out.  Including 

sub-optimal states however implies that the sample space of the nodes has to increase. The 

search algorithm must be able to put it into consideration so that the searching cost is still 

below the extra savings made. The volcano RU algorithm aims at reusing and sharing sub-

expressions which are not necessarily in the individual query optimal plans [9]. 

Volcano-RU is sequential, considering possibilities of reusing expressions of previously 

optimized queries in subsequent queries.  For a set of queries in the same pseudo root, after 

optimizing Qi, the nodes in the plans of Qi are identified. Since at that moment the algorithm 

has no idea of the structure of the subsequent queries, it checks whether it would be optimal if 

a certain node was materialized for reuse one extra time. While optimizing the next query, 

costs saving expressions are considered to be present. The Volcano- SH is then applied to 

further detect and exploit more sharing opportunities [9]. In such a case, a query is able to 

share sub-expressions within itself and materializable plans are all identified. 

 Volcano-RU depends on the order in which queries are optimized.  It can be done in a 

certain sequence, then in reverse order and the cheaper alternative is chosen. Considering 

more orders have a probability of getting a cheaper order but it increases the optimization 

time. 

Unlike the volcano-SH, the volcano-RU does not take in the Basic Volcano outputs and 

neither does it attempt to establish the number of times a node is used.  It optimizes one query 

at ago and any node, (whether it is on the optimal plan or not) that would cause savings if 

reused once is chosen for materialization [6]. The subsequent queries are optimized putting 

into consideration the fact that some nodes are already materialized. Its strength lies in 

exploiting shareability beyond the Basic Volcano optimal plans. Given its approach, the order 

of optimization is of paramount importance since the node to be materialized depends on 

which query has been optimized so far [9]. It however has the following weaknesses:- 

i. It does not go into details of establishing the exact optimal order of optimization. Roy et 

al. (2001) proposed that after optimizing in a specific order, we optimize in the reverse order 

     matcost(e) 

(numuses−(e) − 1) 
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and the cheaper option is chosen. However, since the first order was arbitrary, a more optimal 

order is very likely to exist. Attempting to randomly choosing other orders while searching 

for the optimal order leads to time wasting [5]. 

ii. It also has a problem of excessive materialization since not all nodes that would cause 

saving if reused twice actually exist more than once. The excessive materialization leads to 

further costs incurred at materialization hence a more costly query processor [12]. 

iii. In a DAG, some nodes appear more than twice and cause savings yet they would not 

make the savings if they appeared twice. Such nodes are left out since the criteria only 

consider those which would cause savings when reused once. The materialization therefore 

may be insufficient [8]. 

 

4. Future Work  

Multi-query optimization takes place on many complex queries with many relations, 

however comparing sub-expressions among those queries to find common sub-expressions 

exhaustively leads to too many comparisons hence high comparison cost and time. However, 

the future work should address the extent of sharing without necessarily traversing all the 

nodes. If the queries have no node in common, then there is no need to exploit the similarity 

because it is not there. Therefore, the new multi query optimization algorithm should be 

developed with these functions.   

 

5. Conclusion  

In this work the existing basic  multi query optimization algorithms were studied, how they 

order queries for optimization, how they optimize and how they exploit the geometry of query 

plans representation (Trees, DAGs and AND-OR DAGs) to make the scheme more cost 

effective. The strengths and weaknesses of these algorithms were identified. However, new 

algorithm that will provide an alternative approach to these existing algorithms need to be 

developed, implemented and encoded into the existing optimizer. The algorithm should 

address the identified weaknesses of the existing algorithm and integrate strengths of those 

algorithms into more efficient algorithm. 
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