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Abstract 

Rough K-means algorithm has shown that it can provides a reasonable set of lower 

and upper bounds for a given dataset. With the conceptions of the lower and upper 

approximate sets, rough k-means clustering and its emerging derivatives become valid 

algorithms in vague information clustering. However, the most available algorithms 

ignore the difference of the distances between data objects and cluster centers when 

computing new mean for each cluster. To solve this issue, an improved algorithm of 

rough k-means clustering based on variable weighted distance measure is presented in 

this article. Comparative experimental results of real world data from UCI demonstrate 

the validity of the proposed algorithm. 
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1. Introduction 

Clustering is a process that can partition data objects into different clusters. It 

requires objects are similar in inner-cluster, and different inter-cluster. Clustering 

process distinguishes data objects with difference measures, such as distance based 

method. Clustering methods can be roughly divided into: partitioning method, 

hierarchical method, density method, grid method and model method. Currently, the 

clustering algorithm have been applied in a number of areas including data mining, 

statistics, machine learning, spatial database technology [1]. 

Traditional k-means clustering partitions a group of objects into a number of 

non-overlapping sets. Pawan Lingras finds that k-means clustering results often 

have a vague, rough distinguish unclear boundary in web data mining [2, 3]. He 

points out that the ‘hard partitioning’ k-means clustering methods are not able to 

meet the needs of vague data clustering. Pawan Lingras combines k-means 

clustering algorithm with rough set theory, each cluster is seen as a rough set, each 

object is either determined to belong to the lower approximation set of one cluster, 

or belong to the upper approximation sets of multiple clusters [2, 3]. 

Rough k-means clustering algorithm improves the accuracy of clustering 

boundary, but its mean formula only considers that the upper and lower 

approximation set of the cluster is non-empty, or just the boundary set is empty. 

And traditional rough k-means algorithm only considers the indiscernibility of 

boundary objects and unified weights of multiple objects, ignoring the differences 

of the objects in the cluster. 

Many improvements to the rough k-means algorithm [4-14, 8-20] are emerging in 

the past ten years. Georg Peters improves rough k-means algorithm center means 

iterative formula [5, 6]. Only when the lower approximation or upper approximation 
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set is empty, rough weights is 1, standing for objects surely belongs to these sets. 

And Georg Peters using the relative distance as a dissimilarity criteria instead of the 

absolute distance which the rough k-means, effectively reduces the influence of 

outliers [5]. Literatures [7, 8] introduced rough fuzzy k-means and fuzzy rough k-

means method. These methods combine characteristics of rough k-means and fuzzy 

k-means, using fuzzy membership to measure the inter-cluster contribution of 

objects and improve accuracy of clustering boundary based on rough k-means 

clustering.  

The improved algorithms can improve the clustering precision, but still there are 

some problems. Especially, the same weight was used for all the data objects in a 

lower or upper approximate set when computing new mean for each cluster . For 

example, in the lower approximation set, the distance from the mean center of each 

object is different, indicating distinction of the closeness.  The same weight value 

will certainly results in a greater mobility of the center mean point, thus affecting 

the clustering precision. To solve this problem, this article proposes a rough k-

means clustering based on variable weighted distance measure. Each object, 

according to the distance from the center, is given different weighted coefficient. 

The closer the object is to the center, the higher weighted coefficient is, and the 

higher the contribution is in the center iteration. 

The subsequent sections of this paper are organized in the following: Section 2 

will introduce some basic theory, including rough set theory, rough k-means 

clustering, as well as some major improvements. Section 3 gives a new rough k-

means clustering based on weighted distance measure and implementation steps. 

Section 4 will simulate with UCI datasets and compare with the current mainstream 

of rough k-means clustering algorithm. Section 5 is conclusions. 

 

2. Related k-means Clustering Algorithms 

In this section, the related work about classic hard k-means, rough k-means and 

the improvements will be briefly discussed.  

 

2.1. Classic Hard k-means Algorithm 

The classic k-means clustering algorithm is one of the best-known and most 

popular clustering algorithms used in a variety of domains. The k-means algorithm 

takes the input parameter, k, and partitions a set of N objects S
N RxxxX  },,,{ 21   

into k clusters. So that the resulting intra-cluster similarity is high but the inter-

cluster similarity is low. The cluster similarity is measured in regard to the mean 

value of the objects in a cluster, which can be viewed as the cluster’s center of 

gravity. Let S

iC R  be the mean vector of cluster Ui. The k-means clustering 

computes its centers iteratively by minimizing the objective function. Typically, the 

square-error criterion is used, defined as: 

2

1 j i

c

j i

i x U

J x C
 

                                                              (1) 

where J is the sum of the square-error for all objects in the data set, and the 

criterion tries to make the resulting c cluster as compact and as separate as possible. 

Compute new mean for each cluster using: 
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jx U

i

i
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C

U





                                                              (2) 

where |Ui| is the number of objects in cluster Ui. 
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The k-means algorithm proceeds as follows. First, it randomly selects c of the 

objects, each of which initially represents a cluster means or center. For each of the 

remaining objects, an object is assigned to the cluster to which it is the most similar, 

based on the distance between the object and the cluster mean. It then computes the 

new mean for each cluster. This process iterates until the criterion function 

converges. 

 

2.2. Rough k-means Algorithm 

The rough set theory proposed by Pawlak is an important tool to deal with 

imprecise, incomplete and inconsistent data. A rough set X is characterized by its 

lower and upper approximations BX and XB  respectively. 

For given a finite set U of objects, each subset UX   and indiscernibility 

relation B, the lower and upper approximation set can be separately defined as: 

}|/{ XYBUyXB                                                             (3) 

}|/{  XYBUyXB                                                         (4) 

In the Lingras’ rough k-means algorithm, the concept of k-means is extended by 

viewing each cluster as an interval or rough set, with the following properties [2]: 

(1) An object xj can be part of at most one lower approximation. 

(2) If 
jx BX  of cluster X, then simultaneously. 

(3) If xj is not a part of any lower approximation, then it belongs to two or more 

upper approximations. 

In Rough k-means algorithm, computation of the cluster prototypes is modified 

in the rough framework, by incorporating the concepts of upper and lower 

approximations. The centroid Ci of cluster Ui is evaluated as follows [2]: 
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where the parameters wlow and wup correspond to the relative importance of the 

lower approximation and boundary respectively. wlow+ wup = 1 and usually, wlow> 

wup. Here || ii UBUB   is the number of objects in the rough boundary lying between 

the two approximations. It is easy to find that the above formula is a generalization 

of hard k-means. Especially when 0||  ii UBUB , rough k-means will degenerates to 

hard k-means. 

 

2.3. Improvements of Rough k-means Algorithm 

Georg Peters improves center iteration formula of rough k-means algorithm, 

considering the case of empty lower approximation set and non-empty boundary. 

And the center iteration formula removes the weights in both cases. Modified 

formula is as follows [6]: 
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Rough k-means algorithm gives approximate sets and boundary objects the same 

rough weights, while ignoring the difference between the object and the object. 

Membership degree is a powerful tool to distinguish objects. It can reflect the 

association degree of objects by calculating the distance between each object and 

each cluster. The higher the membership degree is, the closer the association degree 

is [7-9]. Membership weights are calculated as follows: 
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Where [0,1]ik   and 1
1

 

c

i
ik  is the membership degree of object j to cluster i.

),1( m  is the fuzzifizer. And dik is the Euclidean distance from xk to center vector 

Ci, which defines the closeness to the center. 

Rough fuzzy k-means clustering integrates fuzzy membership weights into the 

rough k-means clustering and treats it as a dissimilarity criterion. Its center iterative 

formula is as following [7, 9]: 
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Fuzzy rough k-means algorithm [9, 10] make further improvements on rough 

fuzzy k-mean membership formula, who makes membership degree of the lower 

approximate objects equal 1 and considers objects certainly belong to current 

cluster. The center iteration formula of fuzzy rough k-means clustering is as follows: 
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3. Rough k-means Based on Variable Weighted Distance Measure 
 

3.1. Variable Weighted Distance Measure 

Euclidean distance measure is the best way to present the distribution of objects 

in clusters. But the distance difference is very small and has a linear distribution 

after normalizing. It is not ideal to directly use distance with the same weight when 

computing new center in a cluster. This paper introduces a new weighted distance 

measure. The formula is as follows: 

2

2

2 / arctan( || || ) 1

(2 / arctan( || || ) 1)
l i

j i

ij

l i

x U

p x C
M

p x C






    


    
                                                (1) 

| || | ij Cx   is the Euclidean distance from object xj to center Ci, p is the adjustable 

parameter, and the function 2 / arctan( ) 1y p x      is to redistribute the distance 

measure.  

The response curves of the function 2 / arctan( ) 1y p x     with different 

parameter p are shown in Figure 1. 
 

   

Figure 1. The Curve of Weighted Distance Measure Function 

It can be seen from above figure that the smaller the distance between object and 

a cluster, the greater the contribution for a cluster, and the larger the parameter p, 

the faster the weighted value falling with the distance increasing. 

3.2. Improved Algorithm of Rough k-means Clustering 

Combining variable weighted distance measure with rough k-means algorithm, 

an improved clustering algorithm is designed in this paper. The steps of the 

algorithm are as follows: 

Step 1. Initialization: N is the number of the data set, k is the number of 

clustering objects, Ci(i=1,…,k) is the i-th original center, wlow is the weight 

of the lower approximation set, wup is the weight of the boundary set,   is 

the similarity threshold of distance, p is the variable parameter; 

Step 2. To object xj(j=1,…,N), calculate the Euclidean distance from each 

center, and divide xj to the upper approximation set iUB  of the nearest center 

Ci of the cluster Ui. 
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Step 3. If there is a center Ci
’
, which makes their difference of distance less than 

  between from xj to Ci
’
 and from xj to Ci, then divide xj to the upper 

approximation set 'iUB  of the cluster Ui
’
; otherwise, divide it to the lower 

approximation set BUi of Ui. 

Step 4. Calculate Mij according to formula (8), and compute new mean for each 

cluster using: 
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             (2) 

Step 5. Repeat steps 2, 3 and 4, until no new data object. 

The algorithm inserts the weighted distance Mij into all three cases of rough k-

means clustering. Actually it is improvement for movement of each iteration step. 

 

4. Simulation and Analysis 

In order to verify that the treatment effect of the algorithm on the boundary of 

the clustering results, we select two UCI data sets, which already have clear 

classification. It will be conducive to the final results of the accuracy analysis. 

Some characteristics of these two data sets are as follow. 

Wine: Wine is about the chemical analysis of Italian wine in the same area. This data 

contains 178 samples, 13 condition attributes and 1 classification attribute. All samples 

are divided into 3 classes. 

Iris: It is one of the most commonly used UCI data sets. This data contains 150 

samples, 4 condition attributes and 1 classification attribute. All samples are divided into 

3 classes. 

To the clustering of the Wine data and Iris data, we use a uniform initial cluster 

centers, the specific values of the initial centers are given in Table 1 and 2. 

Table 1. The Initial Clustering Centers of Wine Data 

The serial 

number 

of cluster 

The serial number of condition attribute 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 12.96 2.51 2.4 19.78 104 2.14 1.62 0.39 1.52 5.66 0.89 2.4 738 

2 13.81 1.89 2.44 16.92 105 2.86 3.02 0.29 1.91 5.76 1.08 3.1 1210 

3 12.52 2.47 2.29 20.8 92.44 2.07 1.77 0.39 1.45 4.11 0.94 2.49 459 

Table 2. The Initial Clustering Centers of Iris Data 

The serial 

number of 

cluster 

The serial number of condition attribute 

1 2 3 4 

1 6.74 3.04 5.61 2.04 

2 5.86 2.75 4.33 1.38 

3 5 3.42 1.48 0.25 
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The classic hard k-means algorithm, rough k-means algorithm [5], rough fuzzy k-

means algorithm [7], and the improved rough k-means clustering introduced in this 

paper are used to analysis the Wine data. 

For easy to compare, the several algorithms use the same rough weight value, i.e. 

the lower approximate weight wlow=0.9, the boundary weight wup=0.1. And the 

accuracy refers to the percentage of correct clustering objects in the total number of 

objects compared with the decision of the original data set. 

Table 3 shows the contrast of the accuracy with several algorithms on Wine data, 

where the parameter p is 1. It can be seen that, after adding weighted distance 

measure, the effect of rough k-means clustering has been greatly improved. 

Obviously, the simulation results of the Wine data show that rough k-means 

algorithm based on weighted distance measure provide optimal rough clustering 

with better boundary. 

Table 3. The Compare of Precision of Different Algorithms to Wine 
Data 

Hard k-means Algorithm 

Clutering number 

K=3 

Distance threshold 

dist=0.01 

Quality function evaluation 

threshold e=0.1 

Accuracy 62.18% 

Rough k-means Algorithm 

Clutering 

number 

K=3 

Distance 

threshold 

dist=0.01 

The lower 

approximation weight 

wlow=0.9 

The boundary 

weight 

wup=0.1 

Quality function 

evaluation 

threshold 

e=0.1 

Accuracy 64.62% 

Rough Fuzzy k-means Algorithm 

Clutering 

number 

K=3 

Fuzzy 

Index 

m=1.5 

Membership 

threshold 

01.0  

The lower 

approximation 

weight 

wlow=0.9 

The 

boundary 

weight 

wup=0.1 

Quality 

function 

evaluation 

threshold e=0.1 

Accuracy 72.11% 

Rough k-means Algorithm Based on weighted distance measure (p=1) 

Clutering 

number 

K=3 

Distance 

threshold 

dist=0.01 

The lower 

approximation weight 

wlow=0.9 

The boundary 

weight 

wup=0.1 

Quality function 

evaluation 

threshold e=0.1 

Accuracy 72.37% 

 

In order to directly observe and analyze the results of above algorithms, the high-

dimension data is mapped into the two-dimensional space with PCA (Principal 

Component Analysis) method. 

Figure 2-5 are the distribution diagram of the Wine dataset simulation results 

after dimensionality reduction, where the cluster 1, 2 and 3 are denoted by green 

points, red circles and blue stars respectively, and the mean of each cluster is 

denoted by black cross. Bright blue boxes represent the clustering objects in error. 

Figure 2 is distributed in accordance with the decision attributes of the original 

Wine data. It can be seen that all clustering boundaries are intertwined, confused, 

especially for cluster 2 and 3. 
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Figure 2. The Distribution of          Figure 3. The Clustering Result of 
        Wine Data                                        Wine Data with RKM 

 

 

 

 

 

 

 

 

 

Figure 4. The Clustering Result of       Figure 5. The Clustering Result of  
            Wine Data with RFKM      Wine Data with the Improved Algorithm 

 

The simulation results show that all points affecting the accuracy of clustering 

concentrate on the boundary between the cluster 2 and cluster 3. Figure 3 is the 

result of rough k-means clustering. Black dotted circle reflects some points should 

belong to cluster 3 but were classified to cluster 2. And cluster 3 contains a large 

number of the points that do not belong to the cluster, including from cluster 1 and 

cluster 2. Obviously, unified clustering weight of the clustering object is useless for 

separating cluster 3. The simulation results indicate the number of correct clustering 

points of the whole cluster 3 only reached about 30%. 

It takes some improvement with weighted distance measure shown in Figure 5. 

Contrast to Figure 3, the points ringed out of Figure 4 is reclassified from cluster 3 

back to the cluster 1 and cluster 2. There are also some parts of cluster 2 which are 

draw back to cluster 3. The accuracy of cluster 3 increased about 17%, and cluster 2 

also increased by nearly 9%. It shows that the difference between the clusters can 

effectively make the boundary separated. 

In order to illustrate the influence of variable parameter p on the clustering 

results with the improved algorithm, different values of parameter p are used in the 

simulation with Wine data and Iris data. Table 4 records the clustering results with 

different values of parameter p. 
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Table 4. The Computing Time and Precision with Variable Parameter p 

The value of 

parameter p 

Convergence steps Computing time Precision 

Wine 

data 
Iris data 

Wine 

data 
Iris data 

Wine 

data 
Iris data 

0.2 82 101 1.406 1.329 62.18% 75.33% 

0.6 38 101 0.681 1.339 72.39% 69.33% 
1 32 17 0.562 0.292 72.39% 90.67% 

1.4 31 101 0.553 1.345 72.39% 76% 
1.8 30 101 0.536 1.339 72.39% 79.33% 
2.2 30 101 0.534 1.332 72.39% 85.33% 

2.6 30 101 0.534 1.299 72.39% 79.33% 

3 30 16 0.525 0.255 72.39% 90.67% 

5 29 101 0.502 1.314 72.39% 79.33% 
 

The computing time and precision are also selected especially to evaluate the 

performance of the improved algorithm with different values of parameter p. The 

test results are shown in Figure 6 and 7. 

 

 

Figure 6. The Computing Time with Different Values of Parameter p 

 

Figure 7. The Precision with Different Values of Parameter p 
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It can be seen obviously from Table 4 and above Figures that, for Wine data, the 

larger the parameter p, the faster the clustering convergence with almost the same 

accuracy. When p>1.8, the convergence steps, the computing time and precision 

have little change with the increase of the value of parameter p. For Iris data, the 

monotone decreasing trend of convergence is not presented, but some suitable 

values of parameter p are found for achieving better clustering result. 

 

5. Conclusion 

It is not reasonable for rough k-means clustering algorithm that the same weight 

was used for all the data objects in a lower or upper approximate set when 

computing new mean for each cluster. To solve this problem, a variable weighted 

distance measure method is introduced and an improved algorithm of rough k-

means clustering is proposed in this article. Each object, according to the distance 

from the center, is given different weighted coefficient. The closer the object is to 

the center, the higher weighted coefficient is, and the higher the contribution is in 

the center iteration. The influence of variable parameter on clustering results is also 

analyzed. The simulation results show that the improved algorithm is valid and the 

suitable value of variable parameter is available. 
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