
International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.51-84

http://dx.doi.org/10.14257/ijdta.2014.6.5.05

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

An Optimized Splitting Attribute Algorithm for Inconsistent Conflict

in Context Lattice

Zhou Zhong and Junzhong Gu
*

Institute of Computer Application (ICA), East China Normal University

3663 Zhongshan Road N., 20062 Shanghai, China

zhzhong@ica.stc.sh.cn, jzgu@ica.stc.sh.cn

Abstract

With the emergence of Cloud computing and Internet of Things, Context-aware

applications face new challenges. One of them is big data from huge context

application and sources. The main stream of applications have used not only real-

time versions but also history versions of context data. This paper concerned about

optimization techniques of storage and reasoning in the CMS (context management

system). For our storage of context data from different sources, FCA Lattice has been

employed as a kind of storage schema to support modeling and fusion of these

different context data. Further, context conditions about data are essential to logical

reasoning. Under different context conditions, context data can be promoted to be

knowledge, which makes context reasoning readily. In the dynamic environment, to

get reasonable results, reasoning services require their input to keep consistent in the

changeable conditions. The changeable conditions can be represented as context

attributes, intervals and relations etc. To make consistent knowledge available in the

conditions, our pervious works have analyzed incremental cache and check of

consistent intervals, and proposed a context lattice-based distributed optimized

update algorithm. In this paper, based on the algorithm, our problem is to optimize

the split function. The split is needed when current lattice has no condition making

knowledge consistent. The main aim of this paper is to improve time performance of

splitting attributes or intervals or fuzzy relations that could be detailed. We propose a

new parallel split algorithm. This algorithm computes the priorities of candidates. To

reduce time cost, it decreases the split scope by choosing the split candidate with the

highest priority value. To decrease the full lattice update time in the split process, it

generates the sub lattices split by the candidates concurrently and merges them after.

On the theory, we analyze the feasibility of the algorithm. On the test, as a new part of

the whole update algorithm, it is compared with the naïve one, and it shows the better

time performance. What’s more, it makes multi-threads execute on the same lattice to

avoid producing more memory cost caused by copying the lattice for an independent

thread.

Keywords: FCA, Parallel algorithm, Lattice, Time cost saving, Context knowledge

management, Attribute splitting

* corresponding author

mailto:jzgu@ica.stc.sh.cn

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

52 Copyright ⓒ 2014 SERSC

1. Introduction

With the Internet of Things and Big data emerging, context computing has more

requirements of context data process. One of them is context storage. In the early sensor

network period, context data is collected in real time, its history is usually used for analysis

later. When society networks and location based services are prevalent, context data presents

at least four features as following: mass, inconsistent, semantic, and dynamic. First, the

context data increases and accumulates rapidly from the output by large users each day.

Second, the different sources make same data with different context, which might leads to a

large amount of inconsistent cases. In fact, the two latter features, semantic and dynamic, also

result in inconsistency of the environment where semantic and context are changing.

Semantic shows up in the context knowledge extraction, merging and reasoning. It is useful to

assure context sharing in the multiple applications. Each kind of context-aware applications

has often its own data structure and semantic definition. It causes the fusion and generic

classify of structure and semantic, which makes a static structure little flexible for storing

context data aggregated in the sharing process. Dynamic is a classic and important feature of

context from the beginning of context-aware computing. Context is not static from the

perspective of its value facet or its relationship facet, etc. Meanwhile, for recommendation

based on user behavior, as input of context reasoning, context data has to combine both its

real time and history version dynamically at any time. Thus, the persistency structure of

context data should be adapted for these features while the storage module is reading and

writing context according to it.

In our research, FCA lattice can be such a valid storage schema that implements this

adaptive goal to some extent. Many previous works have used FCA lattice as a data mining

tool. In the other words, this means that it supports mass data process well potentially. FCA

could take data as its objects and their context as its attributes and the edges of the FCA

lattice nodes satisfies the generic/concrete/combined relationship that makes semantic fusion

and classify possible. And if context is modeled as a context lattice, the step and navigation

function of this lattice could make dynamic access easier than the plan dimension tables. The

dynamic context query by increasing or decreasing context query scope also could be

supported by this function. As a context lattice is still small, the joint between real time

version and history versions could be seen as different time context points or intervals on a

timestamp or data time dimension. It could be also implemented by the mapping of the real

time lattice and different history lattices as a context set becomes to be larger.

Meanwhile, FCA is useful to context reasoning. It shows that context reasoning is

indispensible in user-based context applications. The important characteristic is that reasoning

output is only valid in the special context scope. The knowledge derived from reasoning

might also be consistent or inconsistent dependent on context scope. So inconsistency

generates if the context scope changes. We could use context intervals as FCA attributes.

These intervals have different scales by designing. These intervals could distinguish

consistent or inconsistent knowledge from different context dimension. If these intervals are

cached or stored, when certain knowledge in them is queried or reasoned again, the

computing time of ascertaining the knowledge’s scopes will be saved.

We have been using distributed context lattices to store knowledge and their consistent

information (consistent or inconsistent intervals). With the context lattice changing, we check

and update these information.

In this paper, the context interval split is analyzed. As the context data is changing in the

dynamic environment, the knowledge could be inconsistent soon in the previous consistent

intervals. When inconsistency happens, the previous information cannot be used for context

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 53

query and reasoning at the real time version. One solution is to split intervals into more small

intervals to keep its consistency information in new intervals. This guarantees the later query

and reasoning could search results in new consistency scopes timely such that the service

makes the response more quickly and some cached results could be returned in advance.

However, in processing the large lattices with more intervals as attributes, using the current

naïve split method is inefficient and delayed. Therefore, we propose two optimization

strategies:

1. Ordering the lattice intervals by their priorities. In a lattice, the influence of each

attribute scope is different. If splitting a big-scope attribute is equal to splitting a small-scope

attribute on the functionality of querying and the small one is chosen, the splitting time could

decrease obviously. In this paper, we analyze and argue that choosing small one cannot

reduce the performance of query or reasoning.

2. Parallel splitting attributes. One attribute should often be split into more layered sub

attributes such that certain assertion is consistent. In some cases, multiple attributes should be

split together. We discover that the split process could be executed in a parallel way. If the

lattice is split into more lattices in a parallel way, the merging of lattices should be executed

after that. We found that the merging is also suitable to the parallel manner.

The two strategies aim at lowering the time cost of splitting. We design a splitting

algorithm combined with these two strategies. The algorithm is designed to execute on the

same lattice and does not need to clone the lattice for parallel running. The experiment shows

that its performance is better than the naïve one from both time cost and memory cost.

In the second section, the related works are introduced. The third section describes the

preliminary part which includes FCA theory, the definition of consistency about our context

lattice and related proofs of this paper’s algorithm. The fourth section presents algorithms.

The fifth section compared the optimized with the naïve from the test log. The conclusion is

discussed in the sixth section.

2. Related Works

As [1] described, Formal Concept Analysis has been developed as a field of applied

mathematics based on a mathematization of concept and concept hierarchy. It thereby allows

us to mathematically represent, analyze and construct conceptual structures. That has been

proven useful in a wide range of application areas such as medicine and psychology,

sociology and linguistics, archaeology and anthropology, biology and chemistry, civil and

electrical engineering, information and library sciences, information technology and software

engineering, computer science and even mathematics itself.

A lot of woks of the conceptual knowledge and text retrieval processing have focused on

using FCA. [2-5] explains the important processes of organizing knowledge management:

identification, acquisition, development, distribution, sharing, using and persisting of

knowledge. [6] An Open-Source Toscanaj is implemented for developing the conceptual

information system.

For its outstanding ability of the conceptual knowledge processing, the context-aware

application area should also employ it for modeling, mapping and merging common context

knowledge. In the previous works, we use it as a modeling and merging tool to analyze the

context in the dynamic environment [7].

And related to the split operation, the previous works have been involved the attribute

scaling algorithm, which is essential to our algorithm, for splitting can be decomposed into

multiple attributes’ add operation.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

54 Copyright ⓒ 2014 SERSC

The paper [8] proposes an ICG, FCA-based methodology to extract generic parts out of the

software models described as UML class diagrams. It summarizes the key elements of

relation Context family. [1] introduces that Conceptual scaling [9] is a FCA technique that

transforms a many-valued context K=(O,A,V,J) into binary one Kd=(O,Ad,Id) by replacing

non-binary attributes from A by a set of binary ones, called scale attributes. Both normal

attributes and object-inter-relations can be seen as the scale attributes. It implements object

inter-relation extension and adds the inter-relations as attributes into the original lattice.

Similarly, the split of attributes in our research can be seen as the scaling of the binary

context, in which attributes can be detailed as the interval-typed attributes. So they could be

split for keeping the objects in the new consistent intervals.

It is obvious that ICG has to invoke the process of adding attributes. What we focus on is

the process of adding attributes, because the split can be transformed to adding attributes. The

adding attribute algorithm used by ICG is a common incremental attribute algorithm. It will

be introduced in the part of the naïve algorithm. The related source code can be found at [10].

In our work, a kind of specific context lattice is designed and implemented for the context

data distributed storage, consistent information update and splitting attributes.

By the additional Concepts as objects, it ensures the steady Concept Bottom Nodes B are

located in the lattice. For the distributed cases, the transition nodes T are defined. The two

kind nodes could make less iteration. And we proved the candidate nodes to be split should

locate between B and T. On these definitions, a distributed optimized update lattice algorithm

was proposed and implemented. It improved the time performance of lattice iteration part

when stepping the distributed lattices with consistent check. It used the add attribute

algorithm of [8] in the splitting part. In this paper, we continue with the previous work and

improve the splitting part, and implement the two optimized strategies.

3. Preliminary

In the subsection 3.1, FCA theory related with this paper is introduced. Then the definition

of previous works involved with this algorithm is given. Section 3.3 describes the concept of

the attribute priority. After that, in the section 3.4, the proofs about this algorithm are

presented.

3.1. FCA Theory

Formal Concept Analysis (FCA) was introduced by [11] and is completely developed in

[12]. FCA is the process of abstracting conceptual descriptions from a set of objects described

by attributes. The FCA has been used in works related to symbolic data analysis and

knowledge representation [13]. We shall begin by introducing the basic notions defined by

Wille.

Definition 3.1. Formal Context.

A formal context K is defined as a triple of sets, (, ,)G M I , where G is a set of objects, M

is a set of attributes, and I is a binary relation between G and M (i.e. I G M ). (g, m) ∈ I is

read “object g has attribute m”.

A possible confusion might arise from the double use of the word ‘context’ in FCA

and in context model of context-aware applications. This comes from the fact that FCA

and context model are two models for the concept of ‘context’ which arose

independently. In this paper, we weaken the concept of context in context model, for we

use FCA to model and store the data from context model.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 55

Definition 3.2. Extent and Intent.

For A G , we define ' () : { |A o r f A m M  : (,) }g A g m I   and, for B M , we

define ' o r g () : { |B B g G  : (,) }m B g m I   .

A formal concept of a formal context (,)
T

L K  is defined as a pair (,)A B with

,A G B M  , 'A B and 'B A . The sets A and B are called the extent and the intent of the

formal concept (,)A B . On K a partial order relation ≤ can be defined through the following

formula where (,)A B , (', ')A B :K (,)A B
(', ')A B '(')A A B B    . This relation is

a generalization/specialization hierarchy relationship.

Definition 3.3. Concept Lattice ((, ,),)G M I  .

The set of all formal concepts of context K with the partial order ≤ is always a complete

lattice, call the concept lattice (or Galois lattice).

Definition 3.4. closure system and closure operator.

In [14], closure system and closure operators of FCA are introduced. Let 2
M

 denote the

power set of a set M. By a closure operator we mean a mapping : 2 2
M M

C  , which is

extensive, monotone and idempotent, i.e. which satisfies for all A, B M :

) ()

b) () ()

) (()) ()

a A C A

A B C A C B

c C C A C A



  



A set X is closed iff X=C(X). The collection of all closed sets of some closure operator is

called a closure System. 'A and 'B are the two mappings ' : 2 2
G M

A  and ' : 2 2
M G

B  from a

Galois-connection. As an immediate consequence one obtains that the family of all extents

and the family of all intents of (G, M, I) both are closure systems, the corresponding closure

operators are the mapping ''Y Y on M and G, resp.

3.2 Definition of Consistency Check About Lattices

The following definitions are about context consistency check by FCA lattice. We only list

the part related to this paper.

Definition 3.5. Context Interval.

Let c be a concept, given one of its context scale: λ which is a unit to partition c’s context

intervals. And its context interval  is an interval partitioned by λ, it exits a triple<λ,  >, called

one c’s context interval. Context interval set can be labeled with  .

Definition 3.6. GABOX Context.

,
G A

K C A  ,
G G A

M I   where
G

 is the intervals of the full ABOX Context, called

GABOX Context, is the whole Formal Context for the given domain. Its objects contain both

C and A, and attributes contain both M and
G

 .

Definition 3.7. PABOX Context and Lattice.

P A
K  ,

P P
C A  ,

P P A
M I   called

PABOX Context, is a partial Context of the GABOX

Context, where
P

A A ,
P

C C ,
P G

     . Let P in it be
P G

   . P in it is the initial

assigned interval sets derived from the GABOX Context. For each _ ,in it sp lit in it   in P in it ,

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

56 Copyright ⓒ 2014 SERSC

there is a one-to-one correspondence between it and one ContextConcept
i

m M , where

_in it sp lit belongs to _in it sp lit that is an initial scale set for splitting GABOX Context into

PABOX Contexts.

Definition 3.8. Concept Bottom Node.

Given a GABOX Lattice or PABOX Lattice L and a Concept c, a node in the lattice can be

called concept bottom node
C

B , if its own extent contains Concept c from  , which is a meta-

ontology that specifies the constraint relations between entities and contexts in context model

such that entities and contexts are easier to be transformed as the objects and attributes in

FCA context.

Definition 3.9. Transition Node.

Given a PABOX Lattice L and a Concept c, let ()M C be c’s ContextConcepts from  in

this lattice and
C

 be c’s context intervals in L’s initiation version, which has only the

intervals derived from GABOX Lattice but not any own detailed interval. A node in the

lattice is called transition node
C

T , if its intent equals to ()
T

M C  where { , |
T

    

. , .
T C T

        ', ' , ' , '
T

            } .

Definition 3.10. Identifiable object.

Given a PABOX Lattice L and a Concept c, an object o is an identifiable object which

belongs to L definitely, if ()f o in ten t()
C

T .

It implies that an identifiable object o belongs to the extent of successors of
C

T .

Once the Concepts and ContextConcepts about an entity’s assertions are confirmed from

context model to FCA model by , if the entity is as an object in FCA, its related
C

B set and

C
T set will be useful to the step-by-step update with its consistency check in distributed Partial

ABOX lattices.

Definition 3.11. Consistent Node and Inconsistent Node.

Given a Lattice L and an object o, for each node ()n n o d es L , if () (()),o g n e g n o    

!e o , where !o is a negative instance inconsistent with o, then n is called o’s consistent node,

else n is called o’s inconsistent node.

Definition 3.12. Consistent object and Inconsistent object.

Given a GABOX Lattice L and let
i

L p be its PABOX Lattice set of L. An o is called a

consistent object if there is at least one PABOX Lattice
i

L p in which o is an identifiable object

and at least one node n of n o d es()
i

L p is o’s consistent node, or else o is called an inconsistent

object.

Definition 3.13. Divisible attribute.

Let o be an identifiable but inconsistent object of a PABOX Lattice L, a context interval

,   of o, defined by definition 3.5, is called a divisible attribute d of o if  has not been

split completely by  or there exists a finer ' to split  in more detail intervals. This

definition assures candidate attributes are valid.

Definition 3.14. Divisible node.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 57

Let o be an object and n be an inconsistent node where its intent equals to ()f o and

contains a divisible attribute d, it is called a divisible node
d

n of o.

Theorem 3.15. Given an o and a node n, if n is one of o’s consistent nodes, the successor

nodes of n must be o’s consistent node.

3.3. Attribute Priority

If an object o has no consistent node, the split process will be executed to create at least

one consistent node for query later. The split process will choose one divisible node as the

candidate from all the inconsistent nodes where their extent contains o. Generally, we choose

the node having most attributes. This node should have many divisible attributes in its intent.

To each divisible attribute, a consistent node would be produced possibly if it would be split.

But the influence by splitting each divisible attribute on its lattice is different. In this paper,

we consider the update influence that is caused by attribute scope. Every attribute has its

different scope we mean the amount of lattice nodes in which the intent contains this attribute.

This is one of the main factors which influenced the scope of the lattice update by splitting. If

one attribute’s scope is larger, then the size of related nodes is more. So the time cost of a

split is more. If we choose a candidate attribute owning a smaller scope currently, then the

time will be less. Thus, we could sort all divisible attributes by their priorities dynamically

and choose a most suitable one if the split function is invoked.

Here, two problems are inevitable. One is feasibility and the other is weight. The feasibility

problem is whether it is only a little different for query on two result lattices if the process

splits the most optimal attribute instead of others. The weight is how to set the priority for

each attribute.

3.3.1. The Analysis of the Feasibility

Firstly, we present the feasibility analysis of the sorting by priorities.

There are two cases invoking split. The first case is that there is no consistent context

interval that satisfies the context query with specific context scope. The second case is that

there is no consistent context interval for one object when it is added into the related lattice.

The split at the first case facilitates subsequent queries with similar context scopes. The

second case is a split in advance relative to the first case. Though each context query cannot

have its context scope equal to the assigned intervals exactly, every time it only need compute

the intersection and difference of the split intervals’ bounds and avoid iterating the split

intervals’ objects which have been computed. So the first case is mostly equal to the second

case on the query performance after split.

For both the two cases, the attributes of the split are not assured. All the candidate

attributes can make subsequent queries optimized later. So the priority strategy is feasible.

We take an example to make the feasibility intuitive. Given are a context lattice L with

consistent information and an inconsistent node n which is about an object o1 and contains

any an inconsistent object o2 with o1. Assume that there exists a divisible attributes set DA

belonging to n’s intent. Let A and B be any two divisible attributes in DA. We assume that an

attribute forest Ft contains two trees TA and TB corresponding to A and B respectively. TA

has three nodes (A, A1, A2), where A is the root and has two children (A1, A2). TB has three

nodes (B, B1, B2), where B is the root and has two children (B1, B2). The tree node and its

children have “part of” relation which means that A1’s value interval and A2’s value interval

are bounded by A’s value interval. The tree brother nodes have “no intersection of” relation

which means that A1’s value interval and A2’s value interval has no intersection region.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

58 Copyright ⓒ 2014 SERSC

Assume that both A1 and B1 can distinguish o1 from o2. Thus, the split of (A1 A2) can place

o1 within A1 and o2 within A2 separately, and the split of (B1, B2) can place o1 within B1

and place o2 within B2 separately. After splitting, o1 is only included in the extent of the

lattice nodes where their intent could contain A1 or B1 but not contain A2 or B2. This ensures

that o1 belongs to the lattice nodes where their extent does not contain o2.

Assume that LpriorityA and LpriorityB are sub lattices after splitting A first and splitting B first

respectively. LpriorityA and LpriorityB is showed in Figure 1, where each node’s extent only shows

(o1,o2) and its’ intent only shows TA and TB’s attributes. The solid lines show the sub lattices

after first split and the dotted lines show the sub lattices after second split. From Figure 1, we

can find the lattices linked by the dotted lines are same. It means the order of split does not

influence the lattice generating after the second split.

A,B

O1,O2

A,B,A1

O1

A,B,A2

O2

A,B,A1,B1

O1

A,B,A2,B2

O2

A

A1 A2
B

B1 B2

A,B,A1,A2|B1,B2

∅

A,B

O1,O2

A,B,B1

O1

A,B,B2

O2

A,B,A1,B1

O1

A,B,A2,B2

O2

A,B,B1,B2|A1,A2

∅

LpriorityA

Attribute Tree

LpriorityB

Figure 1. The Sample of the Feasibility Analysis

Then we need consider the difference of lattices after the first split. It is obvious that the

two sub lattices by the solid lines are different in the example of Figure 1. What is important

for us is the difference of the function and performance when queries are on these two lattices

after the first split and before the second split.

One difference may be the influence on query scope. As mentioned above, the context

scopes of the queries are changeable. If some conditions of the query scope falls into the

range of (A, B), it is impossible that the scope’s related condition is just right equal to A1,

A2, B1 or B2 each time. As a random query condition, whichever it is about A or B, it must

be split into two or more intervals usually. And for a query about multi-dimensions has more

conditions in its scope, it is very likely to contain the conditions about both A and B. So

whatever A or B is to split, the prior choice of A or B facilitates avoiding splitting query

scope weakly. For optimization, it only need ensure that o1 is located into a smaller consistent

interval of (A, B), then all the later queries within (A, B) can be benefited from avoiding

rechecking this consistent interval with its successors according to Theorem 3.15, and it only

need compute the other intervals that don’t contain any object like o2 but have intersection

with the difference between the query scope and this interval.

Another possible difference of choosing A or B is the number of their generating sub

intervals. If the sub intervals are little or many, the optimized purpose to avoid checking more

objects doesn’t meet obviously. The query scope will be matched with the sub intervals and

the unmatched intervals can skip the objects iteration when we determine whether a query

scope is a consistent scope. In the ultimate cases, except the consistent interval, the number of

the new intervals is equal to the amount of the inconsistent objects or only one. These two

cases make the later queries inefficient. However, if we make every candidate for this kind

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 59

check by the precomputing to avoid ultimate cases before split, the update time will increase.

Fortunately, these two ultimate cases happen rarely. The first case could be solved by the

extra new uneven intervals containing these new intervals. And more split operation will

make the second ultimate case disappear. In the practice, we check this in running time and

not use it as a priority weight.

Otherwise, in fact, both A and B will be split many times after these splits. Thus, splitting

A or B is same for o1’s consistent information maintaining in related sub lattices of L

basically.

Let LA and LB be the whole lattices of L by splitting A and B. In fact, LA is the merging of

L and LpriorityA, and LB is the merging of L and LpriorityB. The difference between LA and LpriorityA

(or LB and LpriorityB) is that LA (or LB) will generate more nodes through the splits. In LA and

LB, the split functionality for o1’s update is equivalent. But the updated scopes of LA and LB

are different. Therefore, we consider it feasible that the process computes the priorities of A

and B by determining A’s and B’s scopes and then chooses a candidate having the higher

priority.

3.3.2. The Weight of the Sort

Scale attribute splitting in FCA can be seen as a special attribute increment, which will

cause recomputation of the nodes of the related objects. When no node can keep one target

object o be consistent in their context scope, the candidate nodes containing o are chosen, and

they will be split with their scales until o falls into a new consistent node.

Table 1. The Weight Levels of the Sort

level The attribute with the node

level 1 The candidate node’s own intent

level 2 The target object’s own attributes

level 3 The other attributes

The main levels can divide the attributes into three scopes. The first level’s scope

influences the lattice minimally. The candidate node’s own intent can only influence itself

and its own successors. The second level’s scope influences the closure where the nodes’

intent belongs to the power set of the intent of the target object’s concept bottom node. The

third level represents the other attributes. And the sort of attributes within each level is

according to its influence scope in ascending order.

Figure 2. The Initial State and the State by Splitting Own Intent of the Example

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

60 Copyright ⓒ 2014 SERSC

From Figure 2 and Figure 3, the priority strategy can be illustrated obviously. The left of

Figure 2 shows the initial state of splitting about a partial ABOXlattice defined by definition

3.7, at which the zero node is just both a n d
C C

T B of C1. The node’s intent is

{Con:A,Con:B,Con:C,Con:A2(owned by C1), Con:B1,Con:C1,Con:A2:0 (owned by current

node)}. If ‘Con: A2:0’ is chosen for splitting, two new nodes are created. The updated lattice

is showed in the right of Figure 2. No more nodes will be changed or created because the

choice of the node’s own intent won’t influence the other nodes such that only the node is

split. The red circles denote that the original node and the new nodes. And the light green

shaded area indicates the different nodes from the initial.

Figure 3. The States After the Splitting by the Con:A2 and the Con:B1.

If we use ‘Con: A2’ owned by C1 independently, the situation of the lattice after splitting

is displayed in the left of Figure 3. From Figure 3, the number of updated nodes (light green

shadow) increases, compared with Figure 2. But only the boundary about ‘Con: A2’ is

influenced, the C2’s objects distribution is no changed. Instead, if ‘Con: B1’, a common scale

attribute of C1 and C2, is selected, the number of difference is much more than using ‘Con:

A2’. All related objects in C1 and C2 are influenced so that the updated boundary of the

lattice is expanded (showed in the right of Figure 3).

3.4. Theory of the Optimized Parallel Split

After analysis of feasibility, the parallel theory of split is defined. In the following

description, the function “closure (A)” is to compute the lattice node set which contains all

nodes owning certain intent A in a lattice.

Theorem 3.16.

Given a lattice L, suppose that an attribute A should be split into A1…An and if the

respective objects corresponding to A1…An has no intersection with each other except the

Concept-typed objects of these objects, then the updates of other nodes respectively by

updating A1…An can be paralleled after the update of the nodes corresponding to the intent

closure in which each intent contains any two attributes of A1…An at least.

Proof. Let any two attributes from A1…An be Ai and Aj, about which the object sets are

Oseti and Osetj. Assume that the intersection of Oseti and Osetj only contains the Concept-

typed objects C. For Oseti and Osetj should own Ai, Aj respectively and both A, C should

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 61

have A, Ai and Aj. C’s objects belong to the extents of the related Concept bottom nodes Bs of

L. So, besides A, Bs’ intersection intent i_C(A) should contain Ai and Aj after splitting. The

closure (A), in which any node’s intent including i_C(A) at least, will generate or update the

nodes containing both Ai and Aj. Except this closure, the nodes of L(Ai)- closure (A) and

L(Aj)-closure(A) contains Oseti-C and Osetj-C, which have no intersection. The merging of

L(Ai)-closure(A) and L(Aj)-closure (A) cannot generate a new node that contains Ai and Aj in

its intent or the intersection set of Oseti and Osetj in its extent. The update of L(Ai)- closure

(A) and L(Aj)- closure (A) can be paralleled. So in the same way, A1…An attributes can be

also updated in a paralleled way.

Figure 4. A Simple Example About Theorem 3.16

For example in Figure 4, Attribute B1 is split into two attributes: B1:0 and B1:1. From the

example, the green part g is the sub lattice L (B1:0) after B1:0 update, the orange part o is the

sub lattice L (B1:1) after B1:1 update, and the shared dark green part d is the intersection of

L(B1:0) and L(B1:1). The d part’s nodes are composed of the Bottom Nodes B(C1) and B(C2), in

which the intersection of their intent contains both B1:0 and B1:1. In this example, the nodes

owning this intersection are only B(C1) and B(C2) exactly in the closure. The closure could be

updated by B1:0 and B1:1 firstly. Then the original nodes to the g-d part and the o-d part are

updated as the two new parts concurrently, by B1:0 and B1:1 respectively. Then they are

merged together. In fact, the merging only considers the link update at most for there is no

intersection between the g-d part and the o-d part.

Theorem 3.17

Given a Lattice L, let o be an object to be checked, n be a candidate node of it and k be a

candidate attribute of n. Assume that k is divided into multiple layers to keep o fall into a new

candidate node, and let Tk be a pre-divided attribute tree of k that consists of k, k0…kn, where

k is the root of Tk, and k0…kn are the successors of k. Let ki be any one nonleaf node of Tk

and ki1…kin be its children and kp be its parent. Suppose that update of L(kp) have been

completed. Assume that f (nset, a) is the function of adding a new attribute into a lattice,

where nset is the nodes of an input lattice and a is a given attribute. The split on L(kp) by ki,

ki1…kin can be expressed as ((... (((((),), 1), 2), 3), ...), 1),)f f f f f f L kp ki k i k i k i k in k in .

Assume that u (l,a) is the function of updating a new attribute for each node’s intent in a

lattice where l is an input lattice and a is a given attribute. And Lki1…Lkin are the sub lattices

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

62 Copyright ⓒ 2014 SERSC

by updating ki1...kin respectively, according to Theorem 3.16. Merging of Lki1…Lkin can be

expressed as
1

n

j
L k ij

 . Then the following expression is true:

((... (((((),), 1), 2), 3), ...), 1),)f f f f f f L kp ki k i k i k i k in k in (1)

= ((... (((((), 1), 2), 3), ...), 1),),)f f f f f f L kp ki k i k i k in k in k i (2)

=
1

()((,)) ,
n

j
f f L k p k ij k i

 (3)

=
1 1 1
((,)) (((,)) (()) ,)

n n n

j j j
u L k ij k i f f L kp k ij L k ij T o p N o d e L k ij k i

  
     (4)

Proof1. (1)-(2)

From the point of the functionality, the sequential adding an attribute first and its sub

attributes second is equal to the execution in reverse. So the expression 1 is equal to the

expression 2.

Proof2. (2)-(3)

According to Theorem 3.16, an immediate result is:

((... ((((), 1), 2), 3), 4), ...), 1),)f f f f f L kp ki k i k i k i k in k in =  
1

(,)
n

j
f L kp k ij

 . In the other

words, the split of ki1…kin can be paralleled. Thus the expression 2 is equal to the expression

3.

Proof3. (3)-(4)

Then,
1

(((,)) ,)
n

j
f f L kp k ij k i


 should be computed. For any one Lkij belongs to

1
()

n

j
L k ij

 ,

if ki will be updated into Lkij, all objects having ki is obtained firstly, called Extent(ki,Lkij).

The Extents of each node in Lkij should be compared by Extent(ki,Lkij). Assume that any one

node n has its extent e and let E be all nodes’ extents. If e∩Extent(ki,Lkij) !⊆E, a new node

should be generated, or else the node’s extent equal to e∩Extent(ki,Lkij) should be updated.

Because any object containing kij must contain ki, it is true that

Extent(kij,Lkij)⊆Extent(ki,Lkij). It is obvious that for any e ∈ E it is true that e ⊆

Extent(kij,Lkij)⊆Extent(ki,Lkij). So, e∩Extent(ki,Lkij)=e. It does not exist any new node if

(f
1
() ,)

n

j
L k ij k i

 is executed. It only need update Lkij by ki ,i.e., u(Lkij, ki). To every Lkij in

1

n

j
L k ij

 , u(Lkij,ki) can be paralleled. And the generating of Lkij and u(Lkij, ki) can be

executed sequentially in a single thread. So all the generating of Lkij can be expressed as

1
((,))

n

j
u L k ij k i

 . Because ki is a child of kp and has the children: ki1…kin. Let g(a) be the

function that returns all objects having an attribute a. It is true that g(ki) ⊆ g(kp) and

g(ki1)∪…g(kin)⊆g(ki). The nodes’ intent containing ki must contain kp. For each node n in

Lki, n’s intent must contains both ki and kp. It is true that n belongs to Lkp. For each node n’

in Lki1…Lkin, n’’s intent must contains ki. It is true that n’ belongs to Lki. So, according to

definition 3.2, the nodes where the intent contains both ki and kp must be the successors of

the nodes where the intent only contains kp in (ki, kp,ki1…kin). The nodes where the intent

contains only ki and kp in (ki, kp, ki1…kin) must be the predecessors of the nodes of

Lki1…Lkin. So if
1
((,))

n

j
u L k ij k i

 is executed firstly, the scope of
1

(((,)) ,)
n

j
f f L kp k ij k i



can be reduced to:

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 63

1
((,)) (1) ((1))

n

j
f L kp k ij L k i T o p N o d e L k i


   ... () (())L kin T o p N o d e L kin 

,where the TopNodes of L(ki1)...L(kin) are retained to update links with the new nodes

created by the function f. Thus, the expression 3 is equal to the expression 4, where the plus

sign “+” means the parallel execution of its left equation and right equation.

Therefore,

 ((... (((((),), 1), 2), 3), ...), 1),)f f f f f f L kp ki k i k i k i k in k in

=
1 1 1
((,)) (((,)) (()) ,)

n n n

j j j
u L k ij k i f f L kp k ij L k ij T o p N o d e L k ij k i

  
    

Theorem 3.18.

Given a lattice L, assume that there are two pre-split attribute Trees TA and TB. Let Ak be

any nonleaf attribute of TA and Bk be any nonleaf attribute of TB. For any sub brother

attribute Ai, Aj of Ak and any sub attribute Bi of Bk, let L(Ai), L(Aj) and L(Bi) be the sub

lattices after updating Ai, Aj and Bi. After the update of common nodes where their intent

should contain both Ai, Aj and Bi, the merging L(Ai,Bi) of L(Ai) and L(Bi) can be paralleled

with the merging L(Aj,Bi) of L(Aj) and L(Bi), and the merging of L(Ai,Bi) and L(Aj,Bi) only

need be executed by overlay simply.

According to Theorem 3.16, L(Ai) and L(Aj) can be paralleled to be generated and simply

overlaid after the computation of the closure nodes closure(Ai,Aj) where the intent contains Ai

and Aj. L(Ai) and L(Aj) only have the intersection nodes in the closure(Ai,Aj). To all sub

attributes of Ak, the closure(sub(Ak)) should be computed firstly. In the same way, L(Bi) has

its related first computed closure(sub(Bk)). Let common be {sub(Ak,Bk)}
2
-{Am| Am

∈sub(Ak)}-{Bn| Bn ∈sub(Bk)}-{Am,Bn|Am ∈sub(Ak), Bn ∈sub(Bk)}-∅. If the computation

of the closure(common) is executed firstly, L(Ai)-closure(common) and L(Aj)-

closure(common) have no intersection node with each other. L(Bi)- closure(common) has no

intersection node with other L(sub(Bk)-Bi). Therefore, the merging L(Ai,Bi) between L(Ai)-

closure(common) and L(Bi)- closure(common) is singly executed relative to the merging

L(Aj,Bi) between L(Aj)- closure(common) and L(Bi)- closure(common), and the merging

L(Ai,Aj,Bi) of L(Ai, Bi) and L(Aj,Bi) is only the overlay operation.

One problem is that if the closure(common) is executed firstly, it is whether the parallel

execution parts will result in updating the closure(common) again.

The problem has two sub problems. One is whether it exists that any original node is

updated in the closure(common) when the parallel execution is in progress. The other is

whether it exist that any new node is added in the closure(common). For the first problem, it

is obvious that the original nodes in the closure have been updated with all attribute set in

common before the beginning of the parallel parts. And any parallel execution is to adding or

updating some attribute set contained in any element of common, so the original nodes do not

need to be updated again.

For the second problem, after the closure(common) is computed, all the objects owning the

element of common is included in the closure(common). For any parallel execution later, there

does not exist a extra extent that contains some new object o and has a new intersection extent

e with the extents already in the closure(common), where o and e are not already in the

closure(common). Thus, no new node is added in the closure(common) for the parallel

execution later.

We have given the optimized theorems about the parallel execution of the update of single

attribute tree and the merging of multiple trees. One vital problem is that the performance of

the parallel update by attributes and the merging later should be better than the one of

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

64 Copyright ⓒ 2014 SERSC

sequential update by the attribute trees successively. The next theorem is defined for solving

this problem.

Theorem 3.19

Given a lattice L and two pre-split attribute Trees TA and TB, assume that LA and LB is the

sub lattices after L is paralleled split by any two attributes, A and B, which belong to TA and

TB respectively. The merging is only for the two closures, one in LA and the other in LB,

where the object set is equal to the intersection of the objects of LA and the objects of LB. The

merging of the closures is equal to the operation that the closure of LA and the closure of LB

add the complement attributes respectively. Except the closures, LA and LB only needs the

overlay simply.

Proof.

To the original lattice L, L(A) and L(B) increase the related nodes of A and the related

nodes of B respectively. After merging, let L(A,B) be the merging lattice of L(A) and L(B). Let

e be the set of objects having A and B. The extents of all nodes about both A and B are

contained in the power set of e. Let Le(A) and Le(B) be the two node sets where the extent is

sub set of e in L(A) and L(B). Let Lr(A) be the rest of L(A) except Le(A) and Lr(B) be the rest

of L(B) except Le(B). Except Le(A) and Le(B), the merging of Lr(A) and Lr(B) cannot

generate any node that has the intent containing both A and B. It means that Lr(A)’s original

nodes containing A will not be updated and it is same to Lr(B)’s original nodes containing B.

Therefore the merging is executed between Le(A) and Le(B), and the overlay is executed for

Lr(A) and Lr(B).

The complement attribute adding is that adding B with B’s sub attributes into L(A) and

adding A with A’s sub attributes into L(B). According to the naïve algorithm, adding A into

Le(B) is equal to adding a new concept (e, A) into Le(B). Adding B into Le(A) is equal to

adding a new concept (e, B) into Le(A). The naïve algorithm will be introduced in the next

section. The new nodes after adding must contain both A and B. If L is added by the concept

(e,(A,B)) to generate Le(A,B) firstly and then Le(A,B) added by A or B won’t generate new

node. The context of Le(A,B) is equal to the context of Le(A) adding B or the context of Le(B)

adding A. For the same contexts, the lattices of them are same. Therefore the nodes generated

by Le(A) adding B is equal to the nodes generated by Le(B) adding A, i.e. Le(A,B).

If B is added into L(A) to generate L(A,B) and let EB be all the objects about B in L(A), it is

equal to a new concept (EB,B) added into L(A). The adding new node is a process to get new

intersections in the naïve algorithm. Because e is contained in EB and for any extent of Le(A)

e’ ⊆e, the intersection e’ ∩ EB =e’ ∩e, using (EB, B) is equal to using (e, B) when updating

Le(A) in L(A). So Le(A,B) is equal to all the nodes where the intent contains both A and B in

L(A,B). Thus, the merging of the closures is equal to the operation that the closure of LA and

the closure of LB add the complement attributes respectively.

Assume that the update time of the sequential execution of adding A and B into L are OA

and OB, where A is added first and B is added second. The update time of the parallel

execution of adding A and B into L are OAp and OBp. The merging time of L(A) and L(B) is

OmAB. The merging time of Le(A) and Le(B) is OmeAB. The merging time of Lr(A) and

Lr(B) is OmrAB. OmAB=OmeAB+OmrAB. The sum time of the parallel execution is

OmAB+Max(OAp,OBp).

It should assure that it is true that OA+OB>OmAB+Max(OAp,OBp). For A and B is any

two given attributes, assume that OAp>=OBp. For A is added first, OAp is equal to OA. Then

the expression can be presented as OA+OB>OmAB+OA, which can be deduced as

OB>OmAB. Assume that OAp<OBp, then OA+OB>OmAB+OBp. Because B is added second,

it means that B is added into L(A). The amount of L(A)’s nodes is equal to or larger than the

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 65

one of L. Compared with B added into L, L(A) has the nodes to be iterated more than L. As

OB is the time of adding B into L(A) and OBp is the time of adding B into L, OB>=OBp. The

expression is deduced as OA>OmAB.

OmeAB is the update time of adding (e,B) into Le(A) or adding (e,A) into Le(B). OmrAB is

the update time of overlaying Lr(A) and Lr(B). If OA can be seen as the time OeA and the

time OrA of adding (EA, A) into Le(B) and Lr(B),i.e. OA=OeA+OrA, then OeA is equal to or

larger than OmeAB for EA⊇e. OrA is the time of adding (EA,A) into Lr(B), which contains

the iteration of all nodes of Lr(B) to compute new nodes. OrA is larger than OmrAB, because

the overlaying only need compare the common original nodes from Lr(A) and Lr(B) to make

them consistent. This overlay operation doesn’t need to compute the common nodes by

iterating again for they have been kept when updating A into L and B into L is executed

concurrently. So OeA+OrA>OmeAB+OmrAB. The same case is to OB. So, on the theory,

OB>OmAB and OA>OmAB.

Therefore, it could ensure that OA+OB>OmAB+Max(OAp,OBp) on the theory.

For A or B is any attribute in TA and TB, the theorem is true to any other attribute. So if

using the optimized parallel execution and merging later, the whole performance should be

better than using sequential adding by all attributes of TA and TB.

4. Algorithms

In this section, we describe the naïve algorithm of adding attributes firstly and the

optimized secondly. The split of an attribute can be seen as the operation of adding more sub

attributes. The algorithms are described in the java oriented-object style. In practice, the

coding is a little more complex in java, but this description is enough to present the main

functions.

4.1. Naïve Algorithm

The naïve split algorithm is not presented here. It is implemented by using the adding

attribute algorithm in this subsection more time in special scopes. The function

addattributeToLattice is the main entry. The input variable {attnode} is about the target

attribute, the type of which is a TreeNode structure, called AttributeTreeNode defined by us.

AttributeTree {T} is the related Tree of attnode. Adding the target attribute is equal to add a

new concept in which its extent equals to all the objects and its intent is equal to this attribute.

The variable {StartSplitNode} is an extra variable in our version. It is assigned by the first

node related to T’s root attribute from top to bottom. Its function is recording the first node

containing the root attribute to reduce the scope about adding {newConcept}, for only the

nodes containing the pre-split attribute need be updated. The function has the other variables

as following: {newConcepts, modified, minimal, vSort, and lower}. {newConcepts} records

each possible new concept derived from adding {newConcept}. {modified} records all the

original nodes modified. {minimal} is a temp variable that keeps the value of the minimal

node in each iteration. {vSort} is a TreeMap that lists all the new extents sorted by extent size

in ascending order. {lower} is a temp variable recording the minimal node’s sub nodes.

There are two parts of which the main function consists. The first part is about generating

all new extents and finding their minimal locations in the original lattice. The second part is

about adding all new concepts corresponding to these new extents and updating new links

between these concepts and the original lattice.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

66 Copyright ⓒ 2014 SERSC

Algorithm 1. AddattributeToLattice

addattributeToLattice(AttributeTreeNode attnode,AttributTree T)

main function variable:

Vector newConcepts = new Vector();

Hashtable modified = new Hashtable();

ConceptNode minimal;

TreeMap vSort = new TreeMap();

Vector lower = new Vector();

Concept newConcept = attnode.c;

Concept StartSplitNode= T.root.original;

{part1}

{part2}

In the first part, the line 1 shows the preprocess (StartSplitNode). It sorts the nodes in the

splitting scope by intent size in ascending order. The lines 2-26 are an iteration process that

each node is iterated. And the extents of it’s concept with newConcept are compared. In the

line 8, the intersection e of the extents is computed. vSort gets the hashtable ht that keeps all

the extents having the same size of e and their current minimals in the line 11. In the line 12,

the minimal of e is obtained. Here, we describe the process simply. In fact, if ht has no

minimal about e, current node n will be set as minimal. If the size of A is equal to the one of e,

it means that A is a concept to be updated. Then A’s intent includes the newConcept’s intent.

A is included in the modified. ht removes e since e is the extent that has already been existed

in the original lattice and won’t generate a new node. If the condition of the line 13 is not true,

then A is set as current minimal about e and ht records e and its minimal. vSort updates ht in

the line 24. After this part, all the extents of new concepts are found.

Algorithm 1. AddattributeToLattice#part1

1. Iterator iterNode = preProcess(StartSplitNode);

2. While(iterNode.hasnext())

3. {

4. ConceptNode[] N=GetConceptsof_intent_size(iterNode);

5. For(ConceptNode n:N)

6. {

7. Concept A= n.Concept;

8. Extent e=Interection_of_Extent (newConcept,A);

9. Integer eSize = new Integer(e.size());

10. Hashtable ht;

11. ht = (Hashtable) vSort.get(eSize);

12. minimal = (ConceptNode) ht.get(e);

13. if (A.getExtent().size() == e.size())// A is a update_concept;

14. {

15. UnionIntent(A,newConcept);

16. modified.add(A);

17. ht.remove(e);

18. }

19. else

20. {

21. e.setminimal(A);

22. ht.put(e, minimal);

23. }

24. vSort.update(ht);

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 67

25. }

26. }

Part2 is an iteration process for each new extent which need generate a new concept. The

iteration is executed in the ascending order of extent size. It keeps the small size extent is

computed firstly. The line 3 shows obtaining a Hashtable ht in which each extent has same

size. In the line 4-18, it is a process that iterates each extent e in E and generates its concept

And E is an array of ht’s all value. In the line 6, the minimal of e is got. The line 7 shows the

union intent of the minimal’s intent and newConcept’s intent. The line 8 shows the generating

of new concept of e. Then genC is added into the newConcepts in the line 9. Then the

minimal’s low cover is computed. The minimal’s low cover Can is filtered. The directed

successors min of genC in the Can is computed. The lines 13-16 present the updating link

process where the nodes of the min drop links with minimal and add links with genC. In the

line 17, a new Link is created between genC and minimal.

Algorithm 1. AddattributeToLattice#part2

1. While(vSort.hasnext())

2. {

3. Hashtable ht =Gethashtableofextentsize(vSort);

4. Foreach(e: ht.E)

5. {

6. ConceptNode minimal= ht.get(e);

7. intent=Union(minimal.intent, newConcept.intent);

8. ConceptNode genC=new ConceptNode(e, intent);

9. newConcepts.add(genC);

10. lower= getLowcover(minimal);

11. Can=minCandidate(lower);

12. Conceptnode[] min =minClosed(genC, Can);

13. Foreach(Conceptnode n:min)

14. {

15. updatelink(genC,n,minimal);// drop(minimal，n);newlink(genC,n);

16. }

17. newlink(genC,minimal);

18. }

19. }

4.2. The Optimized Algorithm of Splitting Attributes

The optimized algorithm also uses adding attribute algorithm with the special scopes. The

optimized algorithm is composed of the following functions.

The main entry is a fragment as following:

Main Entry of the Algorithm

If(Canbedivided(ConceptNode e,Object aunit, ArrayList<Attribute>attrs))

 IncrementSplitAttributeLattice (predividedforestgraph);

If the function Canbedivided returns true, the incremental attribute split is executed by the

function IncrementSplitAttributeLattice with input predividedforestgraph. The

predividedforestgraph contains the pre-split attribute Tree and related extra information. The

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

68 Copyright ⓒ 2014 SERSC

function Canbedivided contains the optimized function of priority sorting. The function

IncrementSplitAttributeLattice contains the optimized paralleled split function.

4.2.1. The First Optimized Functions

4.2.1.1. Canbedivided
The Canbedivided function is to judge whether a ConceptNode e is a divisible node that

could create a consistent node of aunit after split. The variable {attrs} is aunit’s Concept

attributes. The variable {flag} is a temp variable used to record whether the pre-split succeeds.

The variable {ownintent} records e’s own intent. The variable {candidateintent} contains the

candidates. The variable {conceptowns} contains the concept intent of aunit’s concept in e.

The variable {iterator} is the iterator of the parents of e. The variable {q} is a candidate list

sorted by the priorities. The variable {iteratora} is the iterator of candidateintent. The variable

{predividedforestgraph} contains the pre-split attribute Trees.

Algorithm3 Canbedivided

boolean Canbedivided(ConceptNode e,Object aunit,ArrayList<Attribute>attrs)

main function variable:

boolean flag;

Intent ownintent=(Intent)e.getConcept().getIntent().clone();

Intent candidateintent=(Intent)e.getConcept().getIntent().clone();

ArrayList conceptowns = new ArrayList();

Iterator iterator=e.getParents().iterator();

LinkedList<Attribute> q = new LinkedList<Attribute>();

Iterator iteratora=candidateintent.iterator();

Graph predividedforestgraph =new Graph();

1. while(iterator.hasNext())

2. {

3. ConceptNode p=(ConceptNode)iterator.next();

4. ownintent.removeAll(p.getConcept().getIntent());

5. }

6. while(iteratora.hasNext())

7. {

8. Attribute p=(Attribute)iteratora.next();

9. if(attrs.contains(p))

10. {

11. conceptowns.add(p);

12. }

13. }

14. q =computePriorityList(candidateintent,ownintent,conceptowns);

15. while(!q.isEmpty())

16. {

17. Attribute candidate=q.removeFirst();

18. flag=predivideintervals (candidate,aunit,e.extent-aunit);

19. if(flag)

20. {

21. return true;

22. }

23. }

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 69

The lines 1-5 show the iteration of e’s parents by which the own intent is computed by

removing e’s parents’ intent. The lines 6-13 show computing the concept own intent of e. The

line 14 shows the invoking of the function computePriorityList. The sorted result is assigned

to q. The iteration of q is executed in the lines 15-23. In one loop, the first candidate of q is

fetched. Then the function predevideintervals is executed to judge whether the current

candidate can create a consistent interval after pre-dividing and the result is assigned to flag.

If flag is true, the function is returned. If flag is false, the while clause is continued.

4.2.1.2. Predivideintervals

The function predivideintervals is to compute the sub intervals that ensure current target

falling into a consistent interval. The input variable {candidateinterval} is an argument to

pass current attribute from the function Canbedivided. The variable {target} passes the target

object, which is often an assertion from context knowledge. The variable {objs} passes other

objects. The variable {flag} is a boolean variable as a return parameter. The variable {n} is a

TreeNode-type variable. The corresponding attribute Tree Node of the input candidateinterval

is assigned to it. The variable {targetAttribute} records the pre-split sub attribute of target.

The lines 3-17 show computing the pre-split sub attributes of other objects. If any attribute of

an object is equal to targetAttribute and it is inconsistent with target, flag is set false; the

targetAttribute’s priority is computed and written into q after sorting.

Algorithm4 Predivideintervals

boolean predivideintervals (Attribute candidateinterval, Object target,

ArrayList<Object> objs)

main function variable:

boolean flag=true;

TreeNode n= Forestgraph.getAttNode(candidateinterval);

Attribute targetAttribute=computePresplitAttribute(target, n) ;

1. if(targetAttribute==null)

2. return false;

3. For (int k=0;k<objs.size();k++)

4. {

5. Object obj= objs.get(k);

6. tempattr =computePresplitAttribute(obj,n);

7. if(tempattr== targetAttribute &&target.inconsistentwith(obj))

8. {

9. flag=false;

10. }

11. }

12. if(!flag)

13. {

14. Priority p=computePriority(targetAttribute);

15. Sort(q, targetAttribute,p);

16. }

17. return flag;

4.2.1.3. ComputePresplitAttribute

The function computePresplitAttribute is to check a sub interval owned by the input obj. If

q has contained this sub interval, it returns null. If it is null, the sub interval will be created.

The pre-divided forest graph adds it.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

70 Copyright ⓒ 2014 SERSC

Algorithm5 ComputePresplitAttribute

computePresplitAttribute(Object obj, TreeNode n)

main function variable:

Attribute nextattribute

1. nextattribute=checksubInterval(obj,n.childs);

2. if(q.contains(nextattribute))

3. {

4. return null; //used.add(nextattribute);

5. }

6. if(nextattribute==null)

7. {

8. nextattribute =createNewAttributeTreeChild(n, objs);

9. }

10. predividedforestgraph.addandUpdate(n, nextattribute, objs);

11. return nextattribute;

4.2.2. The Second Optimized Functions

4.2.2.1. The Non Clone Characteristic

The second functions are for parallel optimization, which aims at the less time cost. When

splitting and merging is being run in the concurrent way, the simple way is to make multiple

copies to ensure that any thread of splitting or merging does not conflict or disorder each

other such that the final lattice is the right result. However, if the lattice in use is larger, the

clone way is not available. Even if the big memory or disk space is supporting in backend, it

cannot afford to the space cost produced by a mount of concurrent threads. So we chose to

design the algorithm in the non clone way, which means it is executed on the same lattice.

Figure 5 sketched the clone way and non-clone way. At the left of the figure, the clone way

will create two clones of Original lattice in a simple concurrent execution of two splitting

threads. And at the right of the figure, the dashed Split1, Split2 and Merged lattices are virtual

and just the middle states of the updated Original lattice, so there is no extra full copy of the

Original lattice.

Original

lattice

Clone1

lattice
Clone2

lattice

Clone Clone

Split1

lattice

Split2

lattice

Split Split

Merging

Merged

lattice

Merging

Original

lattice

Split1

lattice

Split2

lattice

Split Split

Merging

Merged

lattice

MergingD
if

fe
re

n
t

S
a
m

e

Figure 5 The Clone Way and Non-clone Way of the Algorithm

From Figure 5, it is obvious that the clone lattices occupy different space so that the two

threads can read or write in an isolated lattice at once respectively and not be confused. To

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 71

read or write in the original lattice, our non-clone way is a little more complicated than the

optimized theories defined above. It is involved in the extra implement of synchronization,

isolation and integrity, which we describe in the following algorithms further.

Synchronization is for the threads concurrency don’t influence the next step of the process.

Isolation is for one thread can read or write their data in an isolation manner. Integrity is for

one thread obtains its full and correct input data to compute such that the final result is correct

after parallel running.

4.2.2.2. IncrementSplitAttributeLattice

The variable {aset} is an array that contains all new attributes to split. The variable {NBs}

contains all the original Concept Bottom nodes having aset in their intents. The variable

{commonintent} contains the intersection intent of all NBs. The variable {Conceptclosure} is

an array that contains all nodes owning commonintent. In GetClosureByIntent, the power set

of commonintent is computed. Then it computes all the parallel intent set for the parallel

adding and merging. The power set removes all the parallel intent set and computes the

corresponding nodes, i.e. Conceptclosure. According to Theorem 3.16 and Theorem 3.18, to

avoid too redundant computing of the common nodes, the lines 1-6 show the update

computing of the common Concept closure in advance. The lines 7-17 show starting each

thread for the parallel execution function SplitLatticeBySingleTree of every attribute Tree.

After waiting the Threads stopped, the merging of the new sub lattices is executed

concurrently in the lines 19-20. The lines 18 and 21 are to wait all sub threads stopping for

synchronization.

Algorithm6 IncrementSplitAttributeLattice

void IncrementSplitAttributeLattice (Graph predividedforestgraph)

Attribute[]aset= predividedforestgraph.GetT().allnewattributes();

ConceptNode[]NBs=GetConceptBottomNodeRelatedAttribute(aset);

Intent commonintent=intentIntersection(NBs);

Node[] Conceptclosure=GetClosureByIntent(commonintent);

ConceptNode startNode=computeStartNode(NBs);

1. foreach(Attribute attribute : aset)

2. {

3. Extent extent =getExtent(attribute, Conceptclosure);

4. ConceptNode newconcept=new ConceptNode(extent, attribute);

5. addattributeToLattice (L,newconcept, startNode);

6. }

7. for(int k=0;k<predividedforestgraph.Tree.size();k+=2)

8. {

9. AttributeTree T1=predividedforestgraph.Tree.get(k);

10. Thread n=new Thread(SplitLatticeBySingleTree(predividedforestgraph.Tree.get(k));

11. n.start();

12. If(k+1< predividedforestgraph.Tree.size())

13. {

14. AttributeTree T2=predividedforestgraph.Tree.get(k);

15. Thread n2=new Thread(SplitLatticeBySingleTree(predividedforestgraph.Tree.get(k+1));

16. n2.start();

17. }

18. waitAllsubThreadEnd();//for synchronization

19. If(k+1< predividedforestgraph.Tree.size())

20. mergingTwoSubLattices(T1,T2);

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

72 Copyright ⓒ 2014 SERSC

21. waitAllsubThreadEnd();//for synchronization

22. }

4.2.2.3. SplitLatticeBySingleTree

The function SplitLatticeBySingleTree is adding an attribute Tree concurrently into the

lattice in a single thread. Figure 6 presents the sketch of the process. It computes the first

Concept Node containing T’s root attribute (to be split) from up to bottom. It uses a bottom-

up iterating the Tree to start the Threads of each level of the Tree. For each level, the

attributes of this level is assigned to the ArrayList level. Then the iteration for each element in

level is done. In the second loop, for each attribute, the related objects are fetched from the

predividedforestgraph. A new ConceptNode c is generated and assigned to the variable c of

anode. Then the function splitConcept is executed in a new thread. After all threads of this

level are completed, the Threads of the next level are started. The line 18

waitAllsubThreadEnd is for synchronization. For integrity, the line 19 is to drop all old links

between the nodes in the original lattice after all new nodes are added and linked by threads.

This drop of links at last ensures one thread can always read its original links (without

needless new links and nodes).

Original

lattice

Att3 Split

lattice

AttributeTree

T

Bottom-Up

Create one level Threads

Leaf Attribute

NoLeaf Attribute

Att1 Split

lattice

Att2 Split

lattice

Att1 Split

 Att3 Split
Att2 Split

Figure 6 The Sketch of the Function SplitLatticeBySingleTree

Algorithm7 ComputePresplitAttribute

SplitLatticeBySingleTree(Tree T)

Attribute[] attrnodes;

T.root.original= ComputeFirstNodeOfRoot(T.root);

Iterator<Integer> bottomup=T.levels.descendingKeySet().iterator();

1. for (; bottomup.hasNext();)

2. {

3. ArrayList<AttributeTreeNode> level=levels.get(bottomup.next());

4. ArrayList<Thread> ths=new ArrayList<Thread>();

5. for(AttributeTreeNode anode:level)

6. {

7. ArrayList<Object> temos=predividedforestgraph.getobjects(attrnode);

8. Extent extent=new SetExtent();

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 73

9. extent.addAll(temos);

10. Intent intent=new SetIntent();

11. intent.add(anode.attribute);

12. ConceptNode c=new ConceptNode(extent, intent);

13. anode.c=c;

14. Thread t= new Thread(splitConcept (anode, !anode.isLeaf(),T));

15. ths.add(t);

16. t.start();

17. }

18. waitAllsubThreadEnd(ths);// for synchronization

19. droplinks(allTdroplist);// for integrity

20. }

4.2.2.4. SplitConcept

The function splitConcept is according to Theorem 3.17. It calls the extra functions about

split except for the naïve version of adding attribute. It is presented in the line 1 that the

current formal context adds the input attribute. The line 2 shows that att.c is assigned to the

variable {newConcept}. If the input notleaf is true, the att’s subNodeSetforOneAttribute

includes all nodes within the scope of sub attributes and att’s firstsubnodes adds TopNodes of

all sub attributes according to the expression (4) of Theorem 3.17. Then the function

addConceptfornotleaf is executed. Or else the attribute is added by invoking the

addConceptforleaf. The addConceptfornotleaf and addConceptforleaf are two special versions

of addattributeToLattice for split.

Algorithm8 SplitConcept

splitConcept (AttributeTreeNode att, boolean notleaf, AttributTree T)

main function variable

ConceptNode newConcept;

1. currentContext.addAttribute(att.attribute);

2. newConcept=att.c;

3. if(notleaf)

4. {

5. for (AttributeTreeNode n:att.children())

6. {

7. att.subNodeSetforOneAttribute.addAll(n.subNodeSetforOneAttribute);

8. att.firstsubnodes.add(n.subNodeSetforOneAttribute.getFirst());

9. }

10. addConceptfornotleaf(att,T);

11. }

12. else addConceptforleaf (att,T);

4.2.2.5. MergingTwoSubLattices

The function mergingTwoSubLattices is merging the two sub lattices (showed in Figure 7).

The two Trees, Tree T1 and T2, record Lattice l1’s and Lattice l2’s different attribute Trees

with each other. The first ‘for’ loop is the iteration of each level of T1. The second ‘for’ loop

is the iteration of the nodes of the current level of T1 from the first loop. In the second loop,

the sub lattice of each attribute {a} merges with l2. This process is presented in the lines 8- 19,

which have two loops of T2 where the first loop iterates each level of T2. In each level of T2,

each attribute {b} is iterated, and the merging {la-b} between l(b) and l(a) is executed in a

single thread for {b} according to Theorem 3.18. The line 18 is for synchronization. From

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

74 Copyright ⓒ 2014 SERSC

Figure 7, we can find that la is a part of l1, lb is a part of l2 and la-b is a part of the final

merged lattice.

Lattice

l1

Lattice

l2

Parallel Merging

Merged

lattice

AttributeTree

T1

a

Bottom-Up

AttributeTree

T2

Bottom-Up

Each node in T1

b

Each level nodes in T2Threads

la lb

la-b
mergingbyTwoAttributes

mergingTwoSubLattices

Figure 7 The Process of the Function MergingTwoSubLattices

Algorithm9: MergingTwoSubLattices

mergingTwoSubLattices(ConceptNode[] l1, ConceptNode[] l2)

main function variable

Tree T1=relatedTree(l1);

Tree T2=relatedTree(l2);

1.For(int i=T1.level;i<T1.level;i--)

2.{

3. For(int j=0;j<T1.level[i].nodes.size;j++)

4. {

5. AttributeTreeNode a=T1.level[i].nodes.get(j);

6. If(a.isRoot)

7. break;

8. For(int m=T2.level;m<T2.level;m--)

9. {

10. For(int k=0;k<T2.level[m].nodes.size;k++)

11. {

12. AttributeTreeNode b=T2.level[m].nodes.get(k);

13. If(b.isRoot)

14. break;

15. Thread t=new Thread(mergingbyTwoAttributes(a,b,t1,t2));

16. t.start();

17. }

18. waitAllsubThreadEnd();

19. }

20. }

21. }

4.2.2.6. MergingbyTwoAttributes

According to Theorem 3.19, the function mergingbyTwoAttributes completes the merging

two sub lattices. Each lattice has one attribute to be considered as the optimized factor.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 75

Algorithm10 MergingbyTwoAttributes

mergingbyTwoAttributes(AttributeTreeNode a, AttributeTreeNode b, AttributTree T, AttributTree T2)
main function variable

Extent IntersectionExtent;

ConceptNode[] lawithb;

ConceptNode[] lbwitha;

ConceptNode[] lawithoutb;

ConceptNode[] lbwithouta;

List la=a.subNodeSetforOneAttribute;

List lb=b.subNodeSetforOneAttribute;

{part1}

{part2}

{part3}

In part1, the line 1 shows the intersection IntersectionExtent of the extent of a and the one

of b. Lines 2-23 shows the part1 computing of the nodes {lawithb} owning the extent

contained by IntersectionExtent, the nodes {lawithoutb} not owning the extent contained by

IntersectionExtent and the {lawithb} nodes’ minimal parents in la. Because sometimes the

lattice does not always have {lawithb} or the links between lawithb, lbwithouta and lawithb’s

minimal parents should be updated, the line 24 presents that {lawithb} adds all minimal

parents for overlay function being executed correctly.

Algorithm10 MergingbyTwoAttributes#part1

1. IntersectionExtent=Intersection (a. Extent, b.Extent);

2. foreach(ConceptNode e:la)

3. {

4. If(e.Extent⊆IntersectionExtent)

5. {

6. lawithb.add(e);

7. }

8. else

9. {

10. lawithoutb.add(e);

11. }

12. If(IntersectionExtent⊆ e.Extent)

13. {

14. if(minparents.size()==0)

15. minparents.add(c);

16. else

17. {

18. boolean flag= checkIsminparents(c,minparents);

19. if(flag)

20. minparents.add(c);

21. }

22. }

23. }

24. lawithb.addAll(minparents);

In part2, the lines 1-11 show the part2 computing of the nodes {lbwitha} owning the extent

contained by IntersectionExtent and the nodes {lbwithouta} not owning the extent contained

by IntersectionExtent in lb.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

76 Copyright ⓒ 2014 SERSC

Algorithm10 MergingbyTwoAttributes#part2

1. foreach(ConceptNode e:lb)

2. {

3. If(e.Extent⊆IntersectionExtent)

4. {

5. lbwitha.add(e);

6. }

7. else

8. {

9. lbwithouta.add(e);

10. }

11. }

In part3, if lawithb’s size>0, the adding new concept (IntersectionExtent,b) into lawithb

(lawithb =>la-b) are executed by the function {addConceptforMergeforNotclone}, and it

executes the overlay of {la-b} and {lbwithouta}, which is different from the clone version. In

the clone version, {lawithoutb} and {lbwithouta} in two different copies are overlaid into one

of them according to Theorem 3.19. Then {lbwitha}-{lawithb}is removed from current lattice

by the lines 6 and 8 in the non-clone version. This operation does not exist in the clone

version for la and lb are in different copies. If lawithb’s size =0, the overlay of {la} with {lb}

is executed. Figure 8 shows the process of mergingbyTwoAttributes.

Algorithm10 MergingbyTwoAttributes#part3

1. Intent bintent=b.c.getIntent();

2. ConceptImp newConcept=new ConceptImp(b.c.getExtent(),bintent);

3. if(lawithb.size()>0)

4. {

5. addConceptforMergeforNotclone(newConcept,lawithb.getFirst(),a, b, T,T2,lawithb);

6. lbwitha.removeAll(lawithb);//for nonclone

7. overlay(lawithb,lbwithouta,lbwitha);

8. remove(lbwitha); //for nonclone

9. }

10. else{overlay(la,lbwithouta,lbwitha);}

lawithb lbwitha

lawithoutb lbwithouta

mergingbyTwoAttributes

la-b

Att b

lattice

Att a

lattice

current

Lattice state

addConceptforMerge

forNotclone

remove

overlay

(1)

(2)

Figure 8 The Process of MergingbyTwoAttributes

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 77

4.2.2.7. Overlay

Overlay function in non-clone way only needs updating links for all new nodes are created

before. The first and second loops are to iterate each node {c} in {lbwithouta} by descending

order. The third loop is to check every node { c ' } in {lawithb}. The lines 6-7 and lines 11-12

execute the continue operation if c or c ' is removed in the parallel way. The line 13 shows

{CheckandUpdateLinks} part, which is the main process of checking links between {c} and

{ c ' }.

Algorithm11 Overlay#loops

overlay (lawithb,lbwithouta,lbwitha)

main function variable ∅
1. for(Integer k:lbwithouta.descendingKeySet())

2. {

3. List<ConceptNode> values=(List<ConceptNode>)lbwithouta.get(k);

4. for(ConceptNode c:values)

5. {

6. if(c.isremoved)

7. continue;

8. List<ConceptNode> Childinla=new List<ConceptNode>();

9. for(ConceptNode c ' :lawithb)

10. {

11. if(c ' .isremoved)

12. continue;

13. {CheckandUpdateLinks}

14. }

15. }

16. }

From the line 2 to the line 6 in the {CheckandUpdateLinks} part, if c.extent ⊇ c ' .extent,

then update of c ' .intent union with c.intent is executed. From the line 7 to the line 11, if c '

.extent⊇c.extent, then update of c.intent union with c ' .intent is executed. The line 12 shows

the condition whether the third loop needs to be continued by the temp variable

needcontinued. If the intents of c and c ' have the inclusion relation, the temp variable

needcontinued is set as true and the loop continues the rest part. If not, the loop is continuing

to the next iteration of it. It is presented in the lines 14-18 that the links of common children

and parents of c and c ' are checked and removed. Figure 9 shows the cases of common

children and parents.

Algorithm11 Overlay# CheckandUpdateLinks
1. boolean needcontinued=false;

2. if(c. Extent⊇ c ' .Extent))

3. {

4. {part1}

5. {part2}

6. }

7. else if(c ' .Extent⊇c.Extent)

8. {

9. needcontinued=true;

10. checkandupdateIntent(c, c ' .Intent);

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

78 Copyright ⓒ 2014 SERSC

11. }

12. if(! needcontinued)

13. continue;

14. if(haslink(c, c '))

15. {

16. checkandRemoveCommonParentLink(c, c ' ,lbwitha);

17. checkandRemoveCommonChildrenLink(c, c ' ,lbwitha);

18. }

Minimal

parents

la-b

common parent

lbwithouta

'c
c

lbwitha

common child

⊆
⊇

Drop

Drop

Drop

Drop

Figure 9 The Cases of Common Children and Parents

In Figure 9, If c.Extent⊇ c ' .Extent, then it drops the links pointed by the deep blue vector

lines. If c ' .Extent⊇c.Extent, then it drops the links pointed by the red vector lines. When it

checks the common children and parents, it does not need to consider lbwitha, which will be

removed after merging if its size>0.

In the {CheckandUpdateLinks#part1}, it first checks whether the intent of c ' contains the

intent of c. If not, the intent of c ' should include the intent of c. Then the conditions for

continuing the loops are checked. Expression 1) and 2) are the continuing condition if there

could exist any middle node between c and c ' (showed in Figure 10).

Algorithm11 Overlay# CheckandUpdateLinks#part1

1. checkandupdateIntent(c ' ,c.Intent);

2. if(c '.g e tP aren ts (), c.E x ten t . E x ten tp a ren t p a ren t  ) 1)

3. continue;

4. if(c.g e tC h ild ren () lb w ith o u ta , . E x ten t c.E x te n tch ild ch ild   ) 2)

5. continue;

6. needcontinued=true;

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 79

Minimal

parents

la-b

'c parent

lbwithouta

'c

c

lbwitha

⊆

c child⊆

continue

Figure 10 The Continuing Conditions of Expression1 and 2

In the {CheckandUpdateLinks} part2, Expression 3) and 6) are to add new link between c

and c ' . Expression 4) and 5) are the conditions to determine whether the current c and c ''

should be linked (showed in Figure 11).

Algorithm11 Overlay# CheckandUpdateLinks#part2

1. if(Childinla.size()==0)

2. {

3. Childinla.add(c ');

4. newLink(c, c '); 3)

5. }

6. else

7. {

8. boolean flag=false;

9. Vector<ConceptNode> cr=new Vector<ConceptNode>();
*

10. if(c '' C h ild in la , c ''.E x ten t c.E x ten t)   4)

11. flag=true;

12. if(c '' C h ild in la , c.E x ten t c ''.E x ten t)   5)

13. cr.add(c '');

14. if(!flag)

15. {

16. Childinla.add(c ');

17. newLink(c, c '); 6)

18. Childinla.removeAll(cr);

19. }

20. }

*
 //for removing smaller children

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

80 Copyright ⓒ 2014 SERSC

Minimal

parents

la-b

lbwithouta

'c

c

lbwitha
 ''c

 ⊇

 ⊆

 ''c

 5) new Linked

4) new Linked

Childinla of c

new Link?5):4)

Figure 11 The Conditions of Expression 4 and 5

Expression 4) shows the condition that if there has existed any new link between c and c '' ,

where c '' is a parent of c ' , then the dotted line is not added between c and c ' . Expression 5)

shows the condition that if there has existed any or no new link between c and c '' , where c ''

is c ' child, then the dotted line is added between c and c ' . If Expression 5) is true, new link

is operated by the lines 14-19, in which the links between c and all c '' s should be dropped in

the line 18 (denoted by the green cross in Figure 11).

The following other functions are also designed to implement the non-clone parallel way

(in the Table 2). We use the oriented-object characteristic to override the ConceptNodeImp

type from the Galicia source code. We add the fields into it: f1) addrootlabels, f2)

updatelabels, f3) lock, and f4) isremoved.

Table 2 The List of the Other Functions About the Non-clone Parallel Way

Function Related field in use

1.addConceptforleaf f1),f2), f3)

2.addConceptfornotleaf f1),f2), f3)

3.addConceptforMergeforNotclone f1),f2), f3)

4.minClosedforparallel(in 1,2,3)

5.minCandidateformerging (in 3) f1)
*

6.preProcessForParallel(in 1) f1),

7.preProcessForParallelforaddnotleaf (in 2) f1),f2),f3)

8.preProcessForParallelforMergingNotClone(in 3) f1)

For integrity, we use addrootlabels and updaterootlabels.

When a new node is created, the addrootlabels records all the AttributeTrees’ root nodes of

the attributes added into the node’s intent and it ensures that the node is created and iterated

in the isolated state by one single thread of one attribute adding.

When an original node is updated by multiple threads of attribute adding, the updatelabels

records all the attributes that are updated into the node. It avoids the single thread of adding

attribute to update the intent of its new node by using the intent created by the threads of other

AttributeTrees.

The lock field is for isolation when a node is updated. When updating Node A’s intent, we

use lock as following:

while(A.lock)

* uses f1 to remove not related low cover by transferring parameters implicitly

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 81

{ }

A.lock=true;

{A update process}

A.lock=false;

And in the overlay process, the isremoved field is for avoiding needless iteration of nodes

removed by the remove function of merging. The isremoved field is referenced by the

functions: overlay and remove. In addition, the function minClosedforparallel uses extent to

determine the minClose instead of intent.

5. Performance Evaluation

For first optimization strategy has obvious advantage compared with the naïve, we tested

and reported the second parallel strategy in this paper. The three tests are run: 1. The objects

increasing. 2. The attributes increasing. 3. Both the objects and attributes increasing. We take

the random contexts by the max size {50×50}. The coding is implemented by java and used

the Galicia source code “MagaliceAGen.java”, on which we overwrite its “addConcept”

function and implements the parallel algorithms. The coding has a little difference with the

expression of algorithms in the paper, for the easier running and debugging programs with

oriented-object coding style. The current tests are executed on the single Notebook, with Intel

core Duo CPU, @{1.86GHZ,1.87GHZ}, and java virtual machine with max memory 512 mb.

And the Tables 3-5 and Figures 5-7 show the time cost of the naïve and the optimized parallel

algorithm. The three tests show the time cost of the optimized is obviously less than the one

of the normal. In non-clone way, the optimized does not result in the out of memory heap

space meanwhile.

Table 3 The Test 1 With Attributes Increasing

Objects:Attributes 50:10 50:20 50:30 50:40 50:50

normal(msec) 391 7840 91733 767347 3096120

optimizal(msec) 1310 2263 4805 10172 22116

Table 4 The Test 2 With Objects Increasing

Objects:Attributes 10:50 20:50 30:50 40:50 50:50

normal(msec) 157 5855 79166 548719 3027889

optimizal(msec) 499 1140 1156 7708 45252

Table 5 The Test 3 With Both Attributes and Objects Increasing

Objects:Attributes 5:5 10:10 15:15 20:20 25:25 30:30 35:35 40:40 45:45 50:50

Normal(msec) 24 31 78 359 1482 6630 30810 172979 1174575 2692189

optimizal(msec) 226 250 234 343 718 1458 1606 4437 13621 32714

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

82 Copyright ⓒ 2014 SERSC

Figure 12 The Time Comparison

in Test1

Figure 13 The Time Comparison

in Test2

Figure 14 The Time Comparison in Test3

6. Conclusion

In this paper, we analyze the lattice-based storage method of inconsistent knowledge in the

context-aware application. Further, to keep provide the newer context knowledge timely, the

maintaining of the consistent information about the context knowledge is concerned. The aim

is that based on context lattice storage, it implements the update of lattice dynamically to keep

knowledge in the consistent intervals. For the consistent result is changeable in the dynamic

environment, the split of the intervals is proposed such that the consistent knowledge fall into

the split intervals to provide the query and reasoning faster. Then the paper focuses on the

priority sort of the pre-split attributes and the parallel execution of splitting. Based on FCA

theory, the feasibility of the priority sort is analyzed and the optimized theories of the parallel

execution are proved. Using two strategies, we propose an optimized split algorithm, which is

based on the naïve one. It is tested and shows better performance compared with the naïve.

And the parallel algorithm is in a non-clone way to assure that the memory does not overflow

owing to the copies of the lattice by multiple threads.

The future work: 1. Testing on the bigger data set. It is necessary to testing on the real big

data set (TB level) such that the algorithms could be modified to adapt to the real big data

environment. 2. Improving the query performance on current lattice storage and

implementing the reasoning techniques on the context lattices. A better query method is

needed, and a series of the reasoning techniques about consistency should be specialized on

the context lattices.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 83

Acknowledgements

This work is supported by Shanghai Scientific Development Foundation under Grant No.

11530700300.

References

[1] B. Ganter, G. Stumme, and R. Wille, Editor, “Formal Concept Analysis Foundations and

Applications, Lecture Notes in Computer Science, Springer, Volume 3626”, (2005).

[2] R. Wille and M. Zickwolff, Begriffliche Wissensverarbeitung. Grundfragen und Aufgaben

[Broschiert].B.I.-Wissenschaftsverlag, (1994).

[3] G. Stumme and R. Wille, Editor, Begriffliche Wissenverarbeitung –methoden und

anwendungen. Springer Heidelberg, (2000).

[4] C. Carpineto and G. Romano, “Concept Data Analysis: Theory and Applications”, John Wiley

\& Sons(2004).

[5] B. Ganter, G. Stumme, and R. Wille, “Formal Concept Analysis”, Springer Berlin Heidelberg,

(2005).
[6] B. Ganter, G. Stumme, and R. Wille, “The ToscanaJ Suite for Implementing Conceptual

Information Systems, Springer Berlin Heidelberg”, (2005).

[7] Z. Zhong, X. Lin, and J. Gu, Dynamic Context Modeling based FCA in Context-aware

Middleware. “The proceedings of 13th International Conference on Enterprise Information

Systems (ICEIS)”, (2011) June 6-8; Beijing, China, pp.103-110.

[8] M. Dao, M. Huchard, M.R. Hacène, C. Roume, et.al, “Improving Generalization Level in

UML Models Iterative Cross Generalization in Practice, in Conceptual Structures at Work”,

(2004), pp. 346-360.

 [9] B.Ganter and R. Wille, Conceptual Scaling, in Applications of combinatorics and graph

theory to the biological and social sciences, “The IMA volumes in Mathematics and its

applications”, New York (1989), Vol. 17, pp.139–167.

[10] P. Valtchev, D. Grosser, C. Roume, and M.R Hacene, “GALICIA: an open platform for

lattices, in Using Conceptual Structures: Contributions to 11th Intl. Conference on Conceptual

Structures (ICCS’03), Aachen (DE), Shaker Verlag”, (2003), pp.241–254.

[11] B. Ganter, G. Stumme, R. Wille, T. Tilley, R. Cole, P. Becker, and P. Eklund, A Survey of

Formal Concept Analysis Support for Software Engineering Activities. “In Formal Concept

Analysis: Springer Berlin Heidelberg”, (2005).

[12] R. Wille, “Restructuring lattice theory: An approach based on hierarchies of concepts, in

Ordered Sets, Reidel, Dordrecht-Boston”, (1982), pp. 225-470.

[13] B. Ganter and R.Wille, “Formal concept analysis: mathematical foundations, Springer”,

(1999).
[14] R. Godin, G. Mineau, R. Missaoui and H. Mili, “Méthodes declasification conceptuelle

basées sur les treillis de galois et applications, Revued’Intelligence Artificielle”, (1995),

Vol. 9(2) pp.105-137.

Authors

Zhou Zhong, Ph.D. Student (2009-2014) in Institute of Computer

Application, East China Normal University, China. His research interests

now include context aware computing, database management, Formal

concept analysis.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

84 Copyright ⓒ 2014 SERSC

Junzhong GU, Professor of Computer Science, Head of Institute

of Computer Application, East China Normal University, China. He

received the M.S. degree in Computer Science from East China

Normal University in 1982. He works at East China Normal

University since 1982. He worked as visit professor at GMD, and

University Mannheim, Germany (1987-1989, and 1991-1993). His

research interests now include context aware computing, distributed

data management, Web searching and multimedia information

processing.

