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Abstract 

With the emergence of Cloud computing and Internet of Things, Context-aware 

applications face new challenges. One of them is big data from huge context 

application and sources. The main stream of applications have used not only real-

time versions but also history versions of context data. This paper concerned about 

optimization techniques of storage and reasoning in the CMS (context management 

system). For our storage of context data from different sources, FCA Lattice has been 

employed as a kind of storage schema to support modeling and fusion of these 

different context data. Further, context conditions about data are essential to logical 

reasoning. Under different context conditions, context data can be promoted to be 

knowledge, which makes context reasoning readily. In the dynamic environment, to 

get reasonable results, reasoning services require their input to keep consistent in the 

changeable conditions. The changeable conditions can be represented as context 

attributes, intervals and relations etc. To make consistent knowledge available in the 

conditions, our pervious works have analyzed incremental cache and check of 

consistent intervals, and proposed a context lattice-based distributed optimized 

update algorithm. In this paper, based on the algorithm, our problem is to optimize 

the split function. The split is needed when current lattice has no condition making 

knowledge consistent. The main aim of this paper is to improve time performance of 

splitting attributes or intervals or fuzzy relations that could be detailed. We propose a 

new parallel split algorithm. This algorithm computes the priorities of candidates. To 

reduce time cost, it decreases the split scope by choosing the split candidate with the 

highest priority value. To decrease the full lattice update time in the split process, it 

generates the sub lattices split by the candidates concurrently and merges them after. 

On the theory, we analyze the feasibility of the algorithm. On the test, as a new part of 

the whole update algorithm, it is compared with the naïve one, and it shows the better 

time performance. What’s more, it makes multi-threads execute on the same lattice to 

avoid producing more memory cost caused by copying the lattice for an independent 

thread. 

Keywords: FCA, Parallel algorithm, Lattice, Time cost saving, Context knowledge 

management, Attribute splitting 
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1. Introduction 

With the Internet of Things and Big data emerging, context computing has more 

requirements of context data process. One of them is context storage. In the early sensor 

network period, context data is collected in real time, its history is usually used for analysis 

later. When society networks and location based services are prevalent, context data presents 

at least four features as following: mass, inconsistent, semantic, and dynamic. First, the 

context data increases and accumulates rapidly from the output by large users each day. 

Second, the different sources make same data with different context, which might leads to a 

large amount of inconsistent cases. In fact, the two latter features, semantic and dynamic, also 

result in inconsistency of the environment where semantic and context are changing. 

Semantic shows up in the context knowledge extraction, merging and reasoning. It is useful to 

assure context sharing in the multiple applications. Each kind of context-aware applications 

has often its own data structure and semantic definition. It causes the fusion and generic 

classify of structure and semantic, which makes a static structure little flexible for storing 

context data aggregated in the sharing process. Dynamic is a classic and important feature of 

context from the beginning of context-aware computing. Context is not static from the 

perspective of its value facet or its relationship facet, etc. Meanwhile, for recommendation 

based on user behavior, as input of context reasoning, context data has to combine both its 

real time and history version dynamically at any time. Thus, the persistency structure of 

context data should be adapted for these features while the storage module is reading and 

writing context according to it. 

In our research, FCA lattice can be such a valid storage schema that implements this 

adaptive goal to some extent. Many previous works have used FCA lattice as a data mining 

tool. In the other words, this means that it supports mass data process well potentially. FCA 

could take data as its objects and their context as its attributes and the edges of the FCA 

lattice nodes satisfies the generic/concrete/combined relationship that makes semantic fusion 

and classify possible. And if context is modeled as a context lattice, the step and navigation 

function of this lattice could make dynamic access easier than the plan dimension tables. The 

dynamic context query by increasing or decreasing context query scope also could be 

supported by this function. As a context lattice is still small, the joint between real time 

version and history versions could be seen as different time context points or intervals on a 

timestamp or data time dimension. It could be also implemented by the mapping of the real 

time lattice and different history lattices as a context set becomes to be larger. 

Meanwhile, FCA is useful to context reasoning. It shows that context reasoning is 

indispensible in user-based context applications. The important characteristic is that reasoning 

output is only valid in the special context scope. The knowledge derived from reasoning 

might also be consistent or inconsistent dependent on context scope. So inconsistency 

generates if the context scope changes. We could use context intervals as FCA attributes. 

These intervals have different scales by designing. These intervals could distinguish 

consistent or inconsistent knowledge from different context dimension. If these intervals are 

cached or stored, when certain knowledge in them is queried or reasoned again, the 

computing time of ascertaining the knowledge’s scopes will be saved. 

We have been using distributed context lattices to store knowledge and their consistent 

information (consistent or inconsistent intervals). With the context lattice changing, we check 

and update these information. 

In this paper, the context interval split is analyzed. As the context data is changing in the 

dynamic environment, the knowledge could be inconsistent soon in the previous consistent 

intervals. When inconsistency happens, the previous information cannot be used for context 
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query and reasoning at the real time version. One solution is to split intervals into more small 

intervals to keep its consistency information in new intervals. This guarantees the later query 

and reasoning could search results in new consistency scopes timely such that the service 

makes the response more quickly and some cached results could be returned in advance. 

However, in processing the large lattices with more intervals as attributes, using the current 

naïve split method is inefficient and delayed. Therefore, we propose two optimization 

strategies:  

1. Ordering the lattice intervals by their priorities. In a lattice, the influence of each 

attribute scope is different. If splitting a big-scope attribute is equal to splitting a small-scope 

attribute on the functionality of querying and the small one is chosen, the splitting time could 

decrease obviously. In this paper, we analyze and argue that choosing small one cannot 

reduce the performance of query or reasoning. 

2. Parallel splitting attributes. One attribute should often be split into more layered sub 

attributes such that certain assertion is consistent. In some cases, multiple attributes should be 

split together. We discover that the split process could be executed in a parallel way. If the 

lattice is split into more lattices in a parallel way, the merging of lattices should be executed 

after that. We found that the merging is also suitable to the parallel manner. 

The two strategies aim at lowering the time cost of splitting. We design a splitting 

algorithm combined with these two strategies. The algorithm is designed to execute on the 

same lattice and does not need to clone the lattice for parallel running. The experiment shows 

that its performance is better than the naïve one from both time cost and memory cost.  

In the second section, the related works are introduced. The third section describes the 

preliminary part which includes FCA theory, the definition of consistency about our context 

lattice and related proofs of this paper’s algorithm. The fourth section presents algorithms. 

The fifth section compared the optimized with the naïve from the test log. The conclusion is 

discussed in the sixth section. 

 

2. Related Works 

As [1] described, Formal Concept Analysis has been developed as a field of applied 

mathematics based on a mathematization of concept and concept hierarchy. It thereby allows 

us to mathematically represent, analyze and construct conceptual structures. That has been 

proven useful in a wide range of application areas such as medicine and psychology, 

sociology and linguistics, archaeology and anthropology, biology and chemistry, civil and 

electrical engineering, information and library sciences, information technology and software 

engineering, computer science and even mathematics itself. 

A lot of woks of the conceptual knowledge and text retrieval processing have focused on 

using FCA. [2-5] explains the important processes of organizing knowledge management: 

identification, acquisition, development, distribution, sharing, using and persisting of 

knowledge. [6] An Open-Source Toscanaj is implemented for developing the conceptual 

information system.  

For its outstanding ability of the conceptual knowledge processing, the context-aware 

application area should also employ it for modeling, mapping and merging common context 

knowledge. In the previous works, we use it as a modeling and merging tool to analyze the 

context in the dynamic environment [7]. 

And related to the split operation, the previous works have been involved the attribute 

scaling algorithm, which is essential to our algorithm, for splitting can be decomposed into 

multiple attributes’ add operation. 
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The paper [8] proposes an ICG, FCA-based methodology to extract generic parts out of the 

software models described as UML class diagrams. It summarizes the key elements of 

relation Context family. [1] introduces that Conceptual scaling [9] is a FCA technique that 

transforms a many-valued context K=(O,A,V,J) into binary one Kd=(O,Ad,Id) by replacing 

non-binary attributes from A by a set of binary ones, called scale attributes. Both normal 

attributes and object-inter-relations can be seen as the scale attributes. It implements object 

inter-relation extension and adds the inter-relations as attributes into the original lattice.  

Similarly, the split of attributes in our research can be seen as the scaling of the binary 

context, in which attributes can be detailed as the interval-typed attributes. So they could be 

split for keeping the objects in the new consistent intervals. 

It is obvious that ICG has to invoke the process of adding attributes. What we focus on is 

the process of adding attributes, because the split can be transformed to adding attributes. The 

adding attribute algorithm used by ICG is a common incremental attribute algorithm. It will 

be introduced in the part of the naïve algorithm. The related source code can be found at [10]. 

In our work, a kind of specific context lattice is designed and implemented for the context 

data distributed storage, consistent information update and splitting attributes. 

By the additional Concepts as objects, it ensures the steady Concept Bottom Nodes B are 

located in the lattice. For the distributed cases, the transition nodes T are defined. The two 

kind nodes could make less iteration. And we proved the candidate nodes to be split should 

locate between B and T. On these definitions, a distributed optimized update lattice algorithm 

was proposed and implemented. It improved the time performance of lattice iteration part 

when stepping the distributed lattices with consistent check. It used the add attribute 

algorithm of [8] in the splitting part. In this paper, we continue with the previous work and 

improve the splitting part, and implement the two optimized strategies. 

 

3. Preliminary 

In the subsection 3.1, FCA theory related with this paper is introduced. Then the definition 

of previous works involved with this algorithm is given. Section 3.3 describes the concept of 

the attribute priority. After that, in the section 3.4, the proofs about this algorithm are 

presented. 

 

3.1. FCA Theory 

Formal Concept Analysis (FCA) was introduced by [11] and is completely developed in 

[12]. FCA is the process of abstracting conceptual descriptions from a set of objects described 

by attributes. The FCA has been used in works related to symbolic data analysis and 

knowledge representation [13]. We shall begin by introducing the basic notions defined by 

Wille. 

 

Definition 3.1. Formal Context. 

A formal context K is defined as a triple of sets, ( , , )G M I , where G is a set of objects, M 

is a set of attributes, and I is a binary relation between G and M (i.e. I G M  ). (g, m) ∈  I is 

read “object g has attribute m”. 

A possible confusion might arise from the double use of the word ‘context’ in FCA 

and in context model of context-aware applications. This comes from the fact that FCA 

and context model are two models for the concept of ‘context’ which arose 

independently. In this paper, we weaken the concept of context in context model, for we 

use FCA to model and store the data from context model. 
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Definition 3.2. Extent and Intent. 

For A G , we define ' ( ) : { |A o r f A m M  : ( , ) }g A g m I   and, for B M , we 

define '  o r g ( ) : { |B B g G   : ( , ) }m B g m I   . 

A formal concept of a formal context ( , )
T

L K  is defined as a pair ( , )A B with 

,A G B M  , 'A B  and 'B A . The sets A and B are called the extent and the intent of the 

formal concept ( , )A B . On K a partial order relation ≤ can be defined through the following 

formula where ( , )A B  , ( ', ')A B  :K  ( , )A B  
( ', ')A B  '( ')A A B B    . This relation is 

a generalization/specialization hierarchy relationship. 

 

Definition 3.3. Concept Lattice (( , , ), )G M I  . 

The set of all formal concepts of context K with the partial order ≤ is always a complete 

lattice, call the concept lattice (or Galois lattice).  

 

Definition 3.4. closure system and closure operator. 

In [14], closure system and closure operators of FCA are introduced. Let 2
M

 denote the 

power set of a set M. By a closure operator we mean a mapping : 2 2
M M

C  , which is 

extensive, monotone and idempotent, i.e. which satisfies for all A, B M : 

) ( )  

b )   ( ) ( )  

)   ( ( ) ) ( )

a A C A

A B C A C B

c C C A C A



  



 

A set X is closed iff X=C(X). The collection of all closed sets of some closure operator is 

called a closure System. 'A and 'B are the two mappings ' : 2 2
G M

A  and ' : 2 2
M G

B  from a 

Galois-connection. As an immediate consequence one obtains that the family of all extents 

and the family of all intents of (G, M, I) both are closure systems, the corresponding closure 

operators are the mapping ''Y Y on M and G, resp. 

 

3.2 Definition of Consistency Check About Lattices 

The following definitions are about context consistency check by FCA lattice. We only list 

the part related to this paper. 

 

Definition 3.5. Context Interval. 

Let c be a concept, given one of its context scale: λ which is a unit to partition c’s context 

intervals. And its context interval  is an interval partitioned by λ, it exits a triple<λ,  >, called 

one c’s context interval. Context interval set can be labeled with  . 
 

Definition 3.6. GABOX Context.  

,
G A

K C A   ,
G G A

M I   where
G

 is the intervals of the full ABOX Context, called 

GABOX Context, is the whole Formal Context for the given domain. Its objects contain both 

C and A, and attributes contain both M and
G

 . 

 

Definition 3.7. PABOX Context and Lattice.  

P A
K  ,

P P
C A  ,

P P A
M I   called

 
PABOX Context, is a partial Context of the GABOX 

Context, where
P

A A ,
P

C C , 
P G

     . Let P in it  be
P G

   . P in it is the initial 

assigned interval sets derived from the GABOX Context. For each _ ,in it sp lit in it   in P in it , 
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there is a one-to-one correspondence between it and one ContextConcept
i

m M , where

_in it sp lit belongs to _in it sp lit that is an initial scale set for splitting GABOX Context into 

PABOX Contexts. 

 

Definition 3.8. Concept Bottom Node.  

Given a GABOX Lattice or PABOX Lattice L and a Concept c, a node in the lattice can be 

called concept bottom node
C

B , if its own extent contains Concept c from  , which is a meta-

ontology that specifies the constraint relations between entities and contexts in context model 

such that entities and contexts are easier to be transformed as the objects and attributes in 

FCA context. 

 

Definition 3.9. Transition Node.  

Given a PABOX Lattice L and a Concept c, let ( )M C be c’s ContextConcepts from   in 

this lattice and
C

 be c’s context intervals in L’s initiation version, which has only the 

intervals derived from GABOX Lattice but not any own detailed interval. A node in the 

lattice is called transition node
C

T , if its intent equals to ( )
T

M C  where { , |
T

      

. , .
T C T

         ', ' , ' , '
T

            } .  

 

Definition 3.10. Identifiable object.  

Given a PABOX Lattice L and a Concept c, an object o is an identifiable object which 

belongs to L definitely, if ( )f o in ten t( )
C

T . 

It implies that an identifiable object o belongs to the extent of successors of 
C

T . 

Once the Concepts and ContextConcepts about an entity’s assertions are confirmed from 

context model to FCA model by , if the entity is as an object in FCA, its related
C

B set and

C
T set will be useful to the step-by-step update with its consistency check in distributed Partial 

ABOX lattices. 

 

Definition 3.11. Consistent Node and Inconsistent Node.  

Given a Lattice L and an object o, for each node ( )n n o d es L , if ( ) ( ( ) ),o g n e g n o      

!e o , where !o is a negative instance inconsistent with o, then n is called o’s consistent node, 

else n is called o’s inconsistent node. 

 

Definition 3.12. Consistent object and Inconsistent object.  

Given a GABOX Lattice L and let 
i

L p be its PABOX Lattice set of L. An o is called a 

consistent object if there is at least one PABOX Lattice
i

L p in which o is an identifiable object 

and at least one node n of n o d es( )
i

L p is o’s consistent node, or else o is called an inconsistent 

object. 

 

Definition 3.13. Divisible attribute.  

Let o be an identifiable but inconsistent object of a PABOX Lattice L, a context interval

,   of o, defined by definition 3.5, is called a divisible attribute d of o if   has not been 

split completely by  or there exists a finer '  to split   in more detail intervals. This 

definition assures candidate attributes are valid. 

 

Definition 3.14. Divisible node.  
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Let o be an object and n be an inconsistent node where its intent equals to ( )f o  and 

contains a divisible attribute d, it is called a divisible node
d

n of o. 

 

Theorem 3.15. Given an o and a node n, if n is one of o’s consistent nodes, the successor 

nodes of n must be o’s consistent node. 

 

3.3. Attribute Priority 

If an object o has no consistent node, the split process will be executed to create at least 

one consistent node for query later. The split process will choose one divisible node as the 

candidate from all the inconsistent nodes where their extent contains o. Generally, we choose 

the node having most attributes. This node should have many divisible attributes in its intent. 

To each divisible attribute, a consistent node would be produced possibly if it would be split. 

But the influence by splitting each divisible attribute on its lattice is different. In this paper, 

we consider the update influence that is caused by attribute scope. Every attribute has its 

different scope we mean the amount of lattice nodes in which the intent contains this attribute. 

This is one of the main factors which influenced the scope of the lattice update by splitting. If 

one attribute’s scope is larger, then the size of related nodes is more. So the time cost of a 

split is more. If we choose a candidate attribute owning a smaller scope currently, then the 

time will be less. Thus, we could sort all divisible attributes by their priorities dynamically 

and choose a most suitable one if the split function is invoked. 

Here, two problems are inevitable. One is feasibility and the other is weight. The feasibility 

problem is whether it is only a little different for query on two result lattices if the process 

splits the most optimal attribute instead of others. The weight is how to set the priority for 

each attribute. 
 

3.3.1. The Analysis of the Feasibility 

Firstly, we present the feasibility analysis of the sorting by priorities. 

There are two cases invoking split. The first case is that there is no consistent context 

interval that satisfies the context query with specific context scope. The second case is that 

there is no consistent context interval for one object when it is added into the related lattice. 

The split at the first case facilitates subsequent queries with similar context scopes. The 

second case is a split in advance relative to the first case. Though each context query cannot 

have its context scope equal to the assigned intervals exactly, every time it only need compute 

the intersection and difference of the split intervals’ bounds and avoid iterating the split 

intervals’ objects which have been computed. So the first case is mostly equal to the second 

case on the query performance after split. 

For both the two cases, the attributes of the split are not assured. All the candidate 

attributes can make subsequent queries optimized later. So the priority strategy is feasible. 

We take an example to make the feasibility intuitive. Given are a context lattice L with 

consistent information and an inconsistent node n which is about an object o1 and contains 

any an inconsistent object o2 with o1. Assume that there exists a divisible attributes set DA 

belonging to n’s intent. Let A and B be any two divisible attributes in DA. We assume that an 

attribute forest Ft contains two trees TA and TB corresponding to A and B respectively. TA 

has three nodes (A, A1, A2), where A is the root and has two children (A1, A2). TB has three 

nodes (B, B1, B2), where B is the root and has two children (B1, B2). The tree node and its 

children have “part of” relation which means that A1’s value interval and A2’s value interval 

are bounded by A’s value interval. The tree brother nodes have “no intersection of” relation 

which means that A1’s value interval and A2’s value interval has no intersection region. 
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Assume that both A1 and B1 can distinguish o1 from o2. Thus, the split of (A1 A2) can place 

o1 within A1 and o2 within A2 separately, and the split of (B1, B2) can place o1 within B1 

and place o2 within B2 separately. After splitting, o1 is only included in the extent of the 

lattice nodes where their intent could contain A1 or B1 but not contain A2 or B2. This ensures 

that o1 belongs to the lattice nodes where their extent does not contain o2. 

Assume that LpriorityA and LpriorityB are sub lattices after splitting A first and splitting B first 

respectively. LpriorityA and LpriorityB is showed in Figure 1, where each node’s extent only shows 

(o1,o2) and its’ intent only shows TA and TB’s attributes. The solid lines show the sub lattices 

after first split and the dotted lines show the sub lattices after second split. From Figure 1, we 

can find the lattices linked by the dotted lines are same. It means the order of split does not 

influence the lattice generating after the second split. 

A,B
---------------

O1,O2

A,B,A1
---------------

O1

A,B,A2
---------------

O2

A,B,A1,B1
---------------

O1

A,B,A2,B2
---------------

O2

A

A1 A2
B

B1 B2

A,B,A1,A2|B1,B2
---------------

∅

A,B
---------------

O1,O2

A,B,B1
---------------

O1

A,B,B2
---------------

O2

A,B,A1,B1
---------------

O1

A,B,A2,B2
---------------

O2

A,B,B1,B2|A1,A2
---------------

∅

LpriorityA

Attribute Tree

LpriorityB

 

Figure 1. The Sample of the Feasibility Analysis 

Then we need consider the difference of lattices after the first split. It is obvious that the 

two sub lattices by the solid lines are different in the example of Figure 1. What is important 

for us is the difference of the function and performance when queries are on these two lattices 

after the first split and before the second split. 

One difference may be the influence on query scope. As mentioned above, the context 

scopes of the queries are changeable. If some conditions of the query scope falls into the 

range of (A, B), it is impossible that the scope’s related condition is just right equal to A1, 

A2, B1 or B2 each time. As a random query condition, whichever it is about A or B, it must 

be split into two or more intervals usually. And for a query about multi-dimensions has more 

conditions in its scope, it is very likely to contain the conditions about both A and B. So 

whatever A or B is to split, the prior choice of A or B facilitates avoiding splitting query 

scope weakly. For optimization, it only need ensure that o1 is located into a smaller consistent 

interval of (A, B), then all the later queries within (A, B) can be benefited from avoiding 

rechecking this consistent interval with its successors according to Theorem 3.15, and it only 

need compute the other intervals that don’t contain any object like o2 but have intersection 

with the difference between the query scope and this interval. 

Another possible difference of choosing A or B is the number of their generating sub 

intervals. If the sub intervals are little or many, the optimized purpose to avoid checking more 

objects doesn’t meet obviously. The query scope will be matched with the sub intervals and 

the unmatched intervals can skip the objects iteration when we determine whether a query 

scope is a consistent scope. In the ultimate cases, except the consistent interval, the number of 

the new intervals is equal to the amount of the inconsistent objects or only one. These two 

cases make the later queries inefficient. However, if we make every candidate for this kind 
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check by the precomputing to avoid ultimate cases before split, the update time will increase. 

Fortunately, these two ultimate cases happen rarely. The first case could be solved by the 

extra new uneven intervals containing these new intervals. And more split operation will 

make the second ultimate case disappear. In the practice, we check this in running time and 

not use it as a priority weight. 

Otherwise, in fact, both A and B will be split many times after these splits. Thus, splitting 

A or B is same for o1’s consistent information maintaining in related sub lattices of L 

basically. 

Let LA and LB be the whole lattices of L by splitting A and B. In fact, LA is the merging of 

L and LpriorityA, and LB is the merging of L and LpriorityB. The difference between LA and LpriorityA 

( or LB and LpriorityB) is that LA (or LB) will generate more nodes through the splits. In LA and 

LB, the split functionality for o1’s update is equivalent. But the updated scopes of LA and LB 

are different. Therefore, we consider it feasible that the process computes the priorities of A 

and B by determining A’s and B’s scopes and then chooses a candidate having the higher 

priority. 

 

3.3.2. The Weight of the Sort 

Scale attribute splitting in FCA can be seen as a special attribute increment, which will 

cause recomputation of the nodes of the related objects. When no node can keep one target 

object o be consistent in their context scope, the candidate nodes containing o are chosen, and 

they will be split with their scales until o falls into a new consistent node. 

Table 1. The Weight Levels of the Sort 

level The attribute with the node 

level 1 The candidate node’s own intent 

level 2 The target object’s own attributes 

level 3 The other attributes 

 

The main levels can divide the attributes into three scopes. The first level’s scope 

influences the lattice minimally. The candidate node’s own intent can only influence itself 

and its own successors. The second level’s scope influences the closure where the nodes’ 

intent belongs to the power set of the intent of the target object’s concept bottom node. The 

third level represents the other attributes. And the sort of attributes within each level is 

according to its influence scope in ascending order. 

 

 

Figure 2. The Initial State and the State by Splitting Own Intent of the Example 
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From Figure 2 and Figure 3, the priority strategy can be illustrated obviously. The left of 

Figure 2 shows the initial state of splitting about a partial ABOXlattice defined by definition 

3.7, at which the zero node is just both  a n d  
C C

T B of C1. The node’s intent is 

{Con:A,Con:B,Con:C,Con:A2(owned by C1), Con:B1,Con:C1,Con:A2:0 (owned by current 

node)}. If ‘Con: A2:0’ is chosen for splitting, two new nodes are created. The updated lattice 

is showed in the right of Figure 2. No more nodes will be changed or created because the 

choice of the node’s own intent won’t influence the other nodes such that only the node is 

split. The red circles denote that the original node and the new nodes. And the light green 

shaded area indicates the different nodes from the initial. 

 

 

Figure 3. The States After the Splitting by the Con:A2 and the Con:B1. 

If we use ‘Con: A2’ owned by C1 independently, the situation of the lattice after splitting 

is displayed in the left of Figure 3. From Figure 3, the number of updated nodes (light green 

shadow) increases, compared with Figure 2. But only the boundary about ‘Con: A2’ is 

influenced, the C2’s objects distribution is no changed. Instead, if ‘Con: B1’, a common scale 

attribute of C1 and C2, is selected, the number of difference is much more than using ‘Con: 

A2’. All related objects in C1 and C2 are influenced so that the updated boundary of the 

lattice is expanded (showed in the right of Figure 3). 

 

3.4. Theory of the Optimized Parallel Split 

After analysis of feasibility, the parallel theory of split is defined. In the following 

description, the function “closure (A)” is to compute the lattice node set which contains all 

nodes owning certain intent A in a lattice.  

 

Theorem 3.16.  

Given a lattice L, suppose that an attribute A should be split into A1…An and if the 

respective objects corresponding to A1…An has no intersection with each other except the 

Concept-typed objects of these objects, then the updates of other nodes respectively by 

updating A1…An can be paralleled after the update of the nodes corresponding to the intent 

closure in which each intent contains any two attributes of A1…An at least. 

Proof. Let any two attributes from A1…An be Ai and Aj, about which the object sets are 

Oseti and Osetj. Assume that the intersection of Oseti and Osetj only contains the Concept-

typed objects C. For Oseti and Osetj should own Ai, Aj respectively and both A, C should 
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have A, Ai and Aj. C’s objects belong to the extents of the related Concept bottom nodes Bs of 

L. So, besides A, Bs’ intersection intent i_C(A) should contain Ai and Aj after splitting. The 

closure (A), in which any node’s intent including i_C(A) at least, will generate or update the 

nodes containing both Ai and Aj. Except this closure, the nodes of L(Ai)- closure (A) and 

L(Aj)-closure(A) contains Oseti-C and Osetj-C, which have no intersection. The merging of 

L(Ai)-closure(A) and L(Aj)-closure (A) cannot generate a new node that contains Ai and Aj in 

its intent or the intersection set of Oseti and Osetj in its extent. The update of L(Ai)- closure 

(A) and L(Aj)- closure (A) can be paralleled. So in the same way, A1…An attributes can be 

also updated in a paralleled way. 

 

 

Figure 4. A Simple Example About Theorem 3.16 

For example in Figure 4, Attribute B1 is split into two attributes: B1:0 and B1:1. From the 

example, the green part g is the sub lattice L (B1:0) after B1:0 update, the orange part o is the 

sub lattice L (B1:1) after B1:1 update, and the shared dark green part d is the intersection of 

L(B1:0) and L(B1:1). The d part’s nodes are composed of the Bottom Nodes B(C1) and B(C2), in 

which the intersection of their intent contains both B1:0 and B1:1. In this example, the nodes 

owning this intersection are only B(C1) and B(C2) exactly in the closure. The closure could be 

updated by B1:0 and B1:1 firstly. Then the original nodes to the g-d part and the o-d part are 

updated as the two new parts concurrently, by B1:0 and B1:1 respectively. Then they are 

merged together. In fact, the merging only considers the link update at most for there is no 

intersection between the g-d part and the o-d part. 

 

Theorem 3.17 

Given a Lattice L, let o be an object to be checked, n be a candidate node of it and k be a 

candidate attribute of n. Assume that k is divided into multiple layers to keep o fall into a new 

candidate node, and let Tk be a pre-divided attribute tree of k that consists of k, k0…kn, where 

k is the root of Tk, and k0…kn are the successors of k. Let ki be any one nonleaf node of Tk 

and ki1…kin be its children and kp be its parent. Suppose that update of L(kp) have been 

completed. Assume that f (nset, a) is the function of adding a new attribute into a lattice, 

where nset is the nodes of an input lattice and a is a given attribute. The split on L(kp) by ki, 

ki1…kin can be expressed as ( (... ( ( ( ( ( ), ), 1), 2 ), 3), ...), 1), )f f f f f f L kp ki k i k i k i k in k in . 

Assume that u (l,a) is the function of updating a new attribute for each node’s intent in a 

lattice where l is an input lattice and a is a given attribute. And Lki1…Lkin are the sub lattices 
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by updating ki1...kin respectively, according to Theorem 3.16. Merging of Lki1…Lkin can be 

expressed as  
1

n

j
L k ij

 . Then the following expression is true: 

( (... ( ( ( ( ( ), ), 1), 2 ), 3), ...), 1), )f f f f f f L kp ki k i k i k i k in k in                                                (1) 

= ( (... ( ( ( ( ( ), 1), 2 ), 3), ...), 1), ), )f f f f f f L kp ki k i k i k in k in k i                                                 (2) 

= 
1

( )( ( , ) ) ,
n

j
f f L k p k ij k i

                                                                                                        (3) 

= 
1 1 1
( ( , )) ( ( ( , )) ( ( )) , )

n n n

j j j
u L k ij k i f f L kp k ij L k ij T o p N o d e L k ij k i

  
                       (4) 

 
Proof1. (1)-(2) 

From the point of the functionality, the sequential adding an attribute first and its sub 

attributes second is equal to the execution in reverse. So the expression 1 is equal to the 

expression 2. 

 

Proof2. (2)-(3) 

According to Theorem 3.16, an immediate result is: 

( (... ( ( ( ( ), 1), 2 ), 3), 4 ), ...), 1), )f f f f f L kp ki k i k i k i k in k in =  
1

( , )
n

j
f L kp k ij

 . In the other 

words, the split of ki1…kin can be paralleled. Thus the expression 2 is equal to the expression 

3.  

 

Proof3. (3)-(4) 

Then,
1

( ( ( , )) , )
n

j
f f L kp k ij k i


  should be computed. For any one Lkij belongs to

1
( )

n

j
L k ij

 , 

if ki will be updated into Lkij, all objects having ki is obtained firstly, called Extent(ki,Lkij). 

The Extents of each node in Lkij should be compared by Extent(ki,Lkij). Assume that any one 

node n has its extent e and let E be all nodes’ extents. If e∩Extent(ki,Lkij) !⊆E, a new node 

should be generated, or else the node’s extent equal to e∩Extent(ki,Lkij) should be updated. 

Because any object containing kij must contain ki, it is true that 

Extent(kij,Lkij)⊆Extent(ki,Lkij). It is obvious that for any e ∈ E it is true that e ⊆ 

Extent(kij,Lkij)⊆Extent(ki,Lkij). So, e∩Extent(ki,Lkij)=e. It does not exist any new node if 

(f
1
( ) , )

n

j
L k ij k i

  is executed. It only need update Lkij by ki ,i.e., u(Lkij, ki). To every Lkij in 

1

n

j
L k ij

 , u(Lkij,ki) can be paralleled. And the generating of Lkij and u(Lkij, ki) can be 

executed sequentially in a single thread. So all the generating of Lkij can be expressed as 

1
( ( , ))

n

j
u L k ij k i

 . Because ki is a child of kp and has the children: ki1…kin. Let g(a) be the 

function that returns all objects having an attribute a. It is true that g(ki) ⊆ g(kp) and 

g(ki1)∪…g(kin)⊆g(ki). The nodes’ intent containing ki must contain kp. For each node n in 

Lki, n’s intent must contains both ki and kp. It is true that n belongs to Lkp. For each node n’ 

in Lki1…Lkin, n’’s intent must contains ki. It is true that n’ belongs to Lki. So, according to 

definition 3.2, the nodes where the intent contains both ki and kp must be the successors of 

the nodes where the intent only contains kp in (ki, kp,ki1…kin). The nodes where the intent 

contains only ki and kp in (ki, kp, ki1…kin) must be the predecessors of the nodes of 

Lki1…Lkin. So if 
1
( ( , ))

n

j
u L k ij k i

  is executed firstly, the scope of
1

( ( ( , )) , )
n

j
f f L kp k ij k i

  

can be reduced to: 
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1
( ( , )) ( 1) ( ( 1))

n

j
f L kp k ij L k i T o p N o d e L k i


   ... ( ) ( ( ))L kin T o p N o d e L kin   

,where the TopNodes of L(ki1)...L(kin) are retained to update links with the new nodes 

created by the function f. Thus, the expression 3 is equal to the expression 4, where the plus 

sign “+” means the parallel execution of its left equation and right equation. 

Therefore, 

   ( (... ( ( ( ( ( ), ), 1), 2 ), 3), ...), 1), )f f f f f f L kp ki k i k i k i k in k in  

= 
1 1 1
( ( , )) ( ( ( , )) ( ( )) , )

n n n

j j j
u L k ij k i f f L kp k ij L k ij T o p N o d e L k ij k i

  
      

 

Theorem 3.18. 

Given a lattice L, assume that there are two pre-split attribute Trees TA and TB. Let Ak be 

any nonleaf attribute of TA and Bk be any nonleaf attribute of TB. For any sub brother 

attribute Ai, Aj of Ak and any sub attribute Bi of Bk, let L(Ai), L(Aj) and L(Bi) be the sub 

lattices after updating Ai, Aj and Bi. After the update of common nodes where their intent 

should contain both Ai, Aj and Bi, the merging L(Ai,Bi) of L(Ai) and L(Bi) can be paralleled 

with the merging L(Aj,Bi) of L(Aj) and L(Bi), and the merging of L(Ai,Bi) and L(Aj,Bi) only 

need be executed by overlay simply. 

According to Theorem 3.16, L(Ai) and L(Aj) can be paralleled to be generated and simply 

overlaid after the computation of the closure nodes closure(Ai,Aj) where the intent contains Ai 

and Aj. L(Ai) and L(Aj) only have the intersection nodes in the closure(Ai,Aj). To all sub 

attributes of Ak, the closure(sub(Ak)) should be computed firstly. In the same way, L(Bi) has 

its related first computed closure(sub(Bk)). Let common be {sub(Ak,Bk)}
2
-{Am| Am 

∈sub(Ak)}-{Bn| Bn ∈sub(Bk)}-{Am,Bn|Am ∈sub(Ak), Bn ∈sub(Bk)}-∅. If the computation 

of the closure(common) is executed firstly, L(Ai)-closure(common) and L(Aj)- 

closure(common) have no intersection node with each other. L(Bi)- closure(common) has no 

intersection node with other L(sub(Bk)-Bi). Therefore, the merging L(Ai,Bi) between L(Ai)- 

closure(common) and L(Bi)- closure(common) is singly executed relative to the merging 

L(Aj,Bi) between L(Aj)- closure(common) and L(Bi)- closure(common), and the merging 

L(Ai,Aj,Bi) of L(Ai, Bi) and L(Aj,Bi) is only the overlay operation. 

One problem is that if the closure(common) is executed firstly, it is whether the parallel 

execution parts will result in updating the closure(common) again. 

The problem has two sub problems. One is whether it exists that any original node is 

updated in the closure(common) when the parallel execution is in progress. The other is 

whether it exist that any new node is added in the closure(common). For the first problem, it 

is obvious that the original nodes in the closure have been updated with all attribute set in 

common before the beginning of the parallel parts. And any parallel execution is to adding or 

updating some attribute set contained in any element of common, so the original nodes do not 

need to be updated again.  

For the second problem, after the closure(common) is computed, all the objects owning the 

element of common is included in the closure(common). For any parallel execution later, there 

does not exist a extra extent that contains some new object o and has a new intersection extent 

e with the extents already in the closure(common), where o and e are not already in the 

closure(common). Thus, no new node is added in the closure(common) for the parallel 

execution later. 

We have given the optimized theorems about the parallel execution of the update of single 

attribute tree and the merging of multiple trees. One vital problem is that the performance of 

the parallel update by attributes and the merging later should be better than the one of 
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sequential update by the attribute trees successively. The next theorem is defined for solving 

this problem. 

 

Theorem 3.19 

Given a lattice L and two pre-split attribute Trees TA and TB, assume that LA and LB is the 

sub lattices after L is paralleled split by any two attributes, A and B, which belong to TA and 

TB respectively. The merging is only for the two closures, one in LA and the other in LB, 

where the object set is equal to the intersection of the objects of LA and the objects of LB. The 

merging of the closures is equal to the operation that the closure of LA and the closure of LB 

add the complement attributes respectively. Except the closures, LA and LB only needs the 

overlay simply. 

Proof. 

To the original lattice L, L(A) and L(B) increase the related nodes of A and the related 

nodes of B respectively. After merging, let L(A,B) be the merging lattice of L(A) and L(B). Let 

e be the set of objects having A and B. The extents of all nodes about both A and B are 

contained in the power set of e. Let Le(A) and Le(B) be the two node sets where the extent is 

sub set of e in L(A) and L(B). Let Lr(A) be the rest of L(A) except Le(A) and Lr(B) be the rest 

of L(B) except Le(B). Except Le(A) and Le(B), the merging of Lr(A) and Lr(B) cannot 

generate any node that has the intent containing both A and B. It means that Lr(A)’s original 

nodes containing A will not be updated and it is same to Lr(B)’s original nodes containing B. 

Therefore the merging is executed between Le(A) and Le(B), and the overlay is executed for 

Lr(A) and Lr(B). 

The complement attribute adding is that adding B with B’s sub attributes into L(A) and 

adding A with A’s sub attributes into L(B). According to the naïve algorithm, adding A into 

Le(B) is equal to adding a new concept (e, A) into Le(B). Adding B into Le(A) is equal to 

adding a new concept (e, B) into Le(A). The naïve algorithm will be introduced in the next 

section. The new nodes after adding must contain both A and B. If L is added by the concept 

(e,(A,B)) to generate Le(A,B) firstly and then Le(A,B) added by A or B won’t generate new 

node. The context of Le(A,B) is equal to the context of Le(A) adding B or the context of Le(B) 

adding A. For the same contexts, the lattices of them are same. Therefore the nodes generated 

by Le(A) adding B is equal to the nodes generated by Le(B) adding A, i.e. Le(A,B).  

If B is added into L(A) to generate L(A,B) and let EB be all the objects about B in L(A), it is 

equal to a new concept (EB,B) added into L(A). The adding new node is a process to get new 

intersections in the naïve algorithm. Because e is contained in EB and for any extent of Le(A) 

e’ ⊆e, the intersection e’ ∩ EB =e’ ∩e, using (EB, B) is equal to using (e, B) when updating 

Le(A) in L(A). So Le(A,B) is equal to all the nodes where the intent contains both A and B in 

L(A,B). Thus, the merging of the closures is equal to the operation that the closure of LA and 

the closure of LB add the complement attributes respectively. 

Assume that the update time of the sequential execution of adding A and B into L are OA 

and OB, where A is added first and B is added second. The update time of the parallel 

execution of adding A and B into L are OAp and OBp. The merging time of L(A) and L(B) is 

OmAB. The merging time of Le(A) and Le(B) is OmeAB. The merging time of Lr(A) and 

Lr(B) is OmrAB. OmAB=OmeAB+OmrAB. The sum time of the parallel execution is 

OmAB+Max(OAp,OBp). 

It should assure that it is true that OA+OB>OmAB+Max(OAp,OBp). For A and B is any 

two given attributes, assume that OAp>=OBp. For A is added first, OAp is equal to OA. Then 

the expression can be presented as OA+OB>OmAB+OA, which can be deduced as 

OB>OmAB. Assume that OAp<OBp, then OA+OB>OmAB+OBp. Because B is added second, 

it means that B is added into L(A). The amount of L(A)’s nodes is equal to or larger than the 
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one of L. Compared with B added into L, L(A) has the nodes to be iterated more than L. As 

OB is the time of adding B into L(A) and OBp is the time of adding B into L, OB>=OBp. The 

expression is deduced as OA>OmAB.  

OmeAB is the update time of adding (e,B) into Le(A) or adding (e,A) into Le(B). OmrAB is 

the update time of overlaying Lr(A) and Lr(B). If OA can be seen as the time OeA and the 

time OrA of adding (EA, A) into Le(B) and Lr(B),i.e. OA=OeA+OrA, then OeA is equal to or 

larger than OmeAB for EA⊇e. OrA is the time of adding (EA,A) into Lr(B), which contains 

the iteration of all nodes of Lr(B) to compute new nodes. OrA is larger than OmrAB, because 

the overlaying only need compare the common original nodes from Lr(A) and Lr(B) to make 

them consistent. This overlay operation doesn’t need to compute the common nodes by 

iterating again for they have been kept when updating A into L and B into L is executed 

concurrently. So OeA+OrA>OmeAB+OmrAB. The same case is to OB. So, on the theory, 

OB>OmAB and OA>OmAB. 

Therefore, it could ensure that OA+OB>OmAB+Max(OAp,OBp) on the theory.  

For A or B is any attribute in TA and TB, the theorem is true to any other attribute. So if 

using the optimized parallel execution and merging later, the whole performance should be 

better than using sequential adding by all attributes of TA and TB. 

 

4. Algorithms 

In this section, we describe the naïve algorithm of adding attributes firstly and the 

optimized secondly. The split of an attribute can be seen as the operation of adding more sub 

attributes. The algorithms are described in the java oriented-object style. In practice, the 

coding is a little more complex in java, but this description is enough to present the main 

functions. 

 

4.1. Naïve Algorithm 

The naïve split algorithm is not presented here. It is implemented by using the adding 

attribute algorithm in this subsection more time in special scopes. The function 

addattributeToLattice is the main entry. The input variable {attnode} is about the target 

attribute, the type of which is a TreeNode structure, called AttributeTreeNode defined by us. 

AttributeTree {T} is the related Tree of attnode. Adding the target attribute is equal to add a 

new concept in which its extent equals to all the objects and its intent is equal to this attribute. 

The variable {StartSplitNode} is an extra variable in our version. It is assigned by the first 

node related to T’s root attribute from top to bottom. Its function is recording the first node 

containing the root attribute to reduce the scope about adding {newConcept}, for only the 

nodes containing the pre-split attribute need be updated. The function has the other variables 

as following: {newConcepts, modified, minimal, vSort, and lower}. {newConcepts} records 

each possible new concept derived from adding {newConcept}. {modified} records all the 

original nodes modified. {minimal} is a temp variable that keeps the value of the minimal 

node in each iteration. {vSort} is a TreeMap that lists all the new extents sorted by extent size 

in ascending order. {lower} is a temp variable recording the minimal node’s sub nodes. 

There are two parts of which the main function consists. The first part is about generating 

all new extents and finding their minimal locations in the original lattice. The second part is 

about adding all new concepts corresponding to these new extents and updating new links 

between these concepts and the original lattice. 
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Algorithm 1. AddattributeToLattice 

addattributeToLattice(AttributeTreeNode attnode,AttributTree T) 

main function variable: 

Vector newConcepts = new Vector(); 

Hashtable modified = new Hashtable(); 

ConceptNode minimal; 

TreeMap vSort = new TreeMap(); 

Vector lower = new Vector(); 

Concept newConcept = attnode.c; 

Concept StartSplitNode= T.root.original; 

{part1} 

{part2} 

 

In the first part, the line 1 shows the preprocess (StartSplitNode). It sorts the nodes in the 

splitting scope by intent size in ascending order. The lines 2-26 are an iteration process that 

each node is iterated. And the extents of it’s concept with newConcept are compared. In the 

line 8, the intersection e of the extents is computed. vSort gets the hashtable ht that keeps all 

the extents having the same size of e and their current minimals in the line 11. In the line 12, 

the minimal of e is obtained. Here, we describe the process simply. In fact, if ht has no 

minimal about e, current node n will be set as minimal. If the size of A is equal to the one of e, 

it means that A is a concept to be updated. Then A’s intent includes the newConcept’s intent. 

A is included in the modified. ht removes e since e is the extent that has already been existed 

in the original lattice and won’t generate a new node. If the condition of the line 13 is not true, 

then A is set as current minimal about e and ht records e and its minimal. vSort updates ht in 

the line 24. After this part, all the extents of new concepts are found. 

Algorithm 1. AddattributeToLattice#part1 

1. Iterator iterNode = preProcess(StartSplitNode ); 

2. While(iterNode.hasnext()) 

3. { 

4.   ConceptNode[] N=GetConceptsof_intent_size(iterNode); 

5.   For(ConceptNode n:N) 

6.  { 

7.     Concept A= n.Concept; 

8.     Extent e=Interection_of_Extent (newConcept,A); 

9.     Integer eSize = new Integer(e.size()); 

10.     Hashtable ht; 

11.     ht = (Hashtable) vSort.get(eSize); 

12.     minimal = (ConceptNode) ht.get(e); 

13.     if (A.getExtent().size() == e.size())//   A is a update_concept; 

14.     { 

15.       UnionIntent(A,newConcept); 

16.       modified.add(A); 

17.       ht.remove(e); 

18.      } 

19.     else 

20.    { 

21.      e.setminimal(A); 

22.      ht.put(e, minimal);  

23.     } 

24.     vSort.update(ht); 
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25.   } 

26. } 

 

Part2 is an iteration process for each new extent which need generate a new concept. The 

iteration is executed in the ascending order of extent size. It keeps the small size extent is 

computed firstly. The line 3 shows obtaining a Hashtable ht in which each extent has same 

size. In the line 4-18, it is a process that iterates each extent e in E and generates its concept 

And E is an array of ht’s all value. In the line 6, the minimal of e is got. The line 7 shows the 

union intent of the minimal’s intent and newConcept’s intent. The line 8 shows the generating 

of new concept of e. Then genC is added into the newConcepts in the line 9. Then the 

minimal’s low cover is computed. The minimal’s low cover Can is filtered. The directed 

successors min of genC in the Can is computed. The lines 13-16 present the updating link 

process where the nodes of the min drop links with minimal and add links with genC. In the 

line 17, a new Link is created between genC and minimal. 

 
Algorithm 1. AddattributeToLattice#part2 

1. While(vSort.hasnext()) 

2. { 

3.   Hashtable ht =Gethashtableofextentsize(vSort); 

4.    Foreach(e: ht.E) 

5.   { 

6.     ConceptNode minimal= ht.get(e); 

7.     intent=Union(minimal.intent, newConcept.intent); 

8.     ConceptNode genC=new ConceptNode(e, intent);  

9.     newConcepts.add(genC); 

10.     lower= getLowcover(minimal); 

11.     Can=minCandidate(lower); 

12.     Conceptnode[] min =minClosed(genC, Can); 

13.     Foreach(Conceptnode n:min) 

14.     { 

15.        updatelink(genC,n,minimal);// drop(minimal，n);newlink(genC,n); 

16.     }  

17.     newlink(genC,minimal); 

18.    } 

19. } 
 

4.2. The Optimized Algorithm of Splitting Attributes 

The optimized algorithm also uses adding attribute algorithm with the special scopes. The 

optimized algorithm is composed of the following functions. 

The main entry is a fragment as following:  

 
Main Entry of the Algorithm 

If(Canbedivided(ConceptNode e,Object aunit, ArrayList<Attribute>attrs)) 

 IncrementSplitAttributeLattice (predividedforestgraph); 

 

If the function Canbedivided returns true, the incremental attribute split is executed by the 

function IncrementSplitAttributeLattice with input predividedforestgraph. The 

predividedforestgraph contains the pre-split attribute Tree and related extra information. The 
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function Canbedivided contains the optimized function of priority sorting. The function 

IncrementSplitAttributeLattice contains the optimized paralleled split function. 

 

4.2.1. The First Optimized Functions 

4.2.1.1. Canbedivided 
The Canbedivided function is to judge whether a ConceptNode e is a divisible node that 

could create a consistent node of aunit after split. The variable {attrs} is aunit’s Concept 

attributes. The variable {flag} is a temp variable used to record whether the pre-split succeeds. 

The variable {ownintent} records e’s own intent. The variable {candidateintent} contains the 

candidates. The variable {conceptowns} contains the concept intent of aunit’s concept in e. 

The variable {iterator} is the iterator of the parents of e. The variable {q} is a candidate list 

sorted by the priorities. The variable {iteratora} is the iterator of candidateintent. The variable 

{predividedforestgraph} contains the pre-split attribute Trees.  

 
Algorithm3  Canbedivided 

boolean Canbedivided(ConceptNode e,Object aunit,ArrayList<Attribute>attrs) 

main function variable: 

boolean flag;  

Intent ownintent=(Intent)e.getConcept().getIntent().clone();   

Intent candidateintent=(Intent)e.getConcept().getIntent().clone();  

ArrayList conceptowns = new ArrayList();   

Iterator iterator=e.getParents().iterator();   

LinkedList<Attribute> q = new LinkedList<Attribute>(); 

Iterator iteratora=candidateintent.iterator(); 

Graph predividedforestgraph =new Graph(); 

1. while(iterator.hasNext()) 

2. { 

3.   ConceptNode p=(ConceptNode)iterator.next(); 

4.   ownintent.removeAll(p.getConcept().getIntent()); 

5. } 

6. while(iteratora.hasNext()) 

7. { 

8.    Attribute p=(Attribute)iteratora.next(); 

9.    if(attrs.contains(p)) 

10.   { 

11.      conceptowns.add(p); 

12.    } 

13. } 

14. q =computePriorityList(candidateintent,ownintent,conceptowns);  

15. while(!q.isEmpty()) 

16. { 

17.    Attribute candidate=q.removeFirst(); 

18.    flag=predivideintervals (candidate,aunit,e.extent-aunit);  

19.    if(flag) 

20.   { 

21.      return true;  

22.    } 

23. } 
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The lines 1-5 show the iteration of e’s parents by which the own intent is computed by 

removing e’s parents’ intent. The lines 6-13 show computing the concept own intent of e. The 

line 14 shows the invoking of the function computePriorityList. The sorted result is assigned 

to q. The iteration of q is executed in the lines 15-23. In one loop, the first candidate of q is 

fetched. Then the function predevideintervals is executed to judge whether the current 

candidate can create a consistent interval after pre-dividing and the result is assigned to flag. 

If flag is true, the function is returned. If flag is false, the while clause is continued. 

 

4.2.1.2. Predivideintervals 

The function predivideintervals is to compute the sub intervals that ensure current target 

falling into a consistent interval. The input variable {candidateinterval} is an argument to 

pass current attribute from the function Canbedivided. The variable {target} passes the target 

object, which is often an assertion from context knowledge. The variable {objs} passes other 

objects. The variable {flag} is a boolean variable as a return parameter. The variable {n} is a 

TreeNode-type variable. The corresponding attribute Tree Node of the input candidateinterval 

is assigned to it. The variable {targetAttribute} records the pre-split sub attribute of target. 

The lines 3-17 show computing the pre-split sub attributes of other objects. If any attribute of 

an object is equal to targetAttribute and it is inconsistent with target, flag is set false; the 

targetAttribute’s priority is computed and written into q after sorting. 

 
Algorithm4  Predivideintervals 

boolean predivideintervals (Attribute candidateinterval, Object target, 

ArrayList<Object> objs) 

main function variable: 

boolean flag=true; 

TreeNode n= Forestgraph.getAttNode(candidateinterval); 

Attribute targetAttribute=computePresplitAttribute(target, n) ; 

1. if(targetAttribute==null)  

2.   return false; 

3. For (int k=0;k<objs.size();k++)  

4. { 

5.    Object obj= objs.get(k); 

6.    tempattr =computePresplitAttribute(obj,n);  

7.    if(tempattr== targetAttribute &&target.inconsistentwith(obj)) 

8.   { 

9.      flag=false; 

10.    } 

11. } 

12. if(!flag)  

13. {  

14.   Priority p=computePriority(targetAttribute); 

15.   Sort(q, targetAttribute,p); 

16. } 

17. return flag; 

 

4.2.1.3. ComputePresplitAttribute 

The function computePresplitAttribute is to check a sub interval owned by the input obj. If 

q has contained this sub interval, it returns null. If it is null, the sub interval will be created. 

The pre-divided forest graph adds it. 
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Algorithm5  ComputePresplitAttribute 

computePresplitAttribute(Object obj, TreeNode n) 

main function variable: 

Attribute nextattribute 

1. nextattribute=checksubInterval(obj,n.childs);  

2. if(q.contains(nextattribute))  

3. { 

4.    return null; //used.add(nextattribute); 

5. } 

6. if(nextattribute==null)  

7. { 

8.    nextattribute =createNewAttributeTreeChild(n, objs);  

9. } 

10. predividedforestgraph.addandUpdate(n, nextattribute, objs);  

11. return nextattribute; 

 

4.2.2. The Second Optimized Functions 

4.2.2.1. The Non Clone Characteristic 

The second functions are for parallel optimization, which aims at the less time cost. When 

splitting and merging is being run in the concurrent way, the simple way is to make multiple 

copies to ensure that any thread of splitting or merging does not conflict or disorder each 

other such that the final lattice is the right result. However, if the lattice in use is larger, the 

clone way is not available. Even if the big memory or disk space is supporting in backend, it 

cannot afford to the space cost produced by a mount of concurrent threads. So we chose to 

design the algorithm in the non clone way, which means it is executed on the same lattice. 

Figure 5 sketched the clone way and non-clone way. At the left of the figure, the clone way 

will create two clones of Original lattice in a simple concurrent execution of two splitting 

threads. And at the right of the figure, the dashed Split1, Split2 and Merged lattices are virtual 

and just the middle states of the updated Original lattice, so there is no extra full copy of the 

Original lattice. 
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Figure 5  The Clone Way and Non-clone Way of the Algorithm 

 

From Figure 5, it is obvious that the clone lattices occupy different space so that the two 

threads can read or write in an isolated lattice at once respectively and not be confused. To 
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read or write in the original lattice, our non-clone way is a little more complicated than the 

optimized theories defined above. It is involved in the extra implement of synchronization, 

isolation and integrity, which we describe in the following algorithms further. 

Synchronization is for the threads concurrency don’t influence the next step of the process. 

Isolation is for one thread can read or write their data in an isolation manner. Integrity is for 

one thread obtains its full and correct input data to compute such that the final result is correct 

after parallel running. 

 
4.2.2.2. IncrementSplitAttributeLattice 

The variable {aset} is an array that contains all new attributes to split. The variable {NBs} 

contains all the original Concept Bottom nodes having aset in their intents. The variable 

{commonintent} contains the intersection intent of all NBs. The variable {Conceptclosure} is 

an array that contains all nodes owning commonintent. In GetClosureByIntent, the power set 

of commonintent is computed. Then it computes all the parallel intent set for the parallel 

adding and merging. The power set removes all the parallel intent set and computes the 

corresponding nodes, i.e. Conceptclosure. According to Theorem 3.16 and Theorem 3.18, to 

avoid too redundant computing of the common nodes, the lines 1-6 show the update 

computing of the common Concept closure in advance. The lines 7-17 show starting each 

thread for the parallel execution function SplitLatticeBySingleTree of every attribute Tree. 

After waiting the Threads stopped, the merging of the new sub lattices is executed 

concurrently in the lines 19-20. The lines 18 and 21 are to wait all sub threads stopping for 

synchronization. 

 

Algorithm6  IncrementSplitAttributeLattice 

void IncrementSplitAttributeLattice (Graph predividedforestgraph) 

Attribute[]aset= predividedforestgraph.GetT().allnewattributes(); 

ConceptNode[]NBs=GetConceptBottomNodeRelatedAttribute(aset); 

Intent commonintent=intentIntersection(NBs); 

Node[] Conceptclosure=GetClosureByIntent( commonintent); 

ConceptNode startNode=computeStartNode(NBs); 

1. foreach(Attribute attribute : aset) 

2. { 

3.   Extent extent =getExtent(attribute, Conceptclosure); 

4.   ConceptNode newconcept=new ConceptNode(extent, attribute); 

5.   addattributeToLattice (L,newconcept, startNode); 

6. } 

7. for(int k=0;k<predividedforestgraph.Tree.size();k+=2)  

8. { 

9.   AttributeTree T1=predividedforestgraph.Tree.get(k); 

10.   Thread n=new Thread(SplitLatticeBySingleTree(predividedforestgraph.Tree.get(k)); 

11.   n.start(); 

12.   If(k+1< predividedforestgraph.Tree.size()) 

13.  { 

14.     AttributeTree T2=predividedforestgraph.Tree.get(k); 

15.     Thread n2=new Thread(SplitLatticeBySingleTree(predividedforestgraph.Tree.get(k+1));  

16.     n2.start(); 

17. } 

18.   waitAllsubThreadEnd();//for synchronization 

19.  If(k+1< predividedforestgraph.Tree.size()) 

20.    mergingTwoSubLattices(T1,T2); 
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21.  waitAllsubThreadEnd();//for synchronization 

22. } 

 

4.2.2.3. SplitLatticeBySingleTree 

The function SplitLatticeBySingleTree is adding an attribute Tree concurrently into the 

lattice in a single thread. Figure 6 presents the sketch of the process. It computes the first 

Concept Node containing T’s root attribute (to be split) from up to bottom. It uses a bottom-

up iterating the Tree to start the Threads of each level of the Tree. For each level, the 

attributes of this level is assigned to the ArrayList level. Then the iteration for each element in 

level is done. In the second loop, for each attribute, the related objects are fetched from the 

predividedforestgraph. A new ConceptNode c is generated and assigned to the variable c of 

anode. Then the function splitConcept is executed in a new thread. After all threads of this 

level are completed, the Threads of the next level are started. The line 18 

waitAllsubThreadEnd is for synchronization. For integrity, the line 19 is to drop all old links 

between the nodes in the original lattice after all new nodes are added and linked by threads. 

This drop of links at last ensures one thread can always read its original links (without 

needless new links and nodes). 
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Figure 6  The Sketch of the Function SplitLatticeBySingleTree 

 
Algorithm7  ComputePresplitAttribute 

SplitLatticeBySingleTree(Tree T) 

Attribute[] attrnodes; 

T.root.original= ComputeFirstNodeOfRoot(T.root); 

Iterator<Integer> bottomup=T.levels.descendingKeySet().iterator(); 

1. for (; bottomup.hasNext(); ) 

2. {  

3.    ArrayList<AttributeTreeNode> level=levels.get(bottomup.next()); 

4.    ArrayList<Thread> ths=new ArrayList<Thread>(); 

5.    for(AttributeTreeNode anode:level) 

6.   { 

7.      ArrayList<Object> temos=predividedforestgraph.getobjects(attrnode); 

8.      Extent extent=new SetExtent(); 
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9.      extent.addAll(temos); 

10.      Intent intent=new SetIntent(); 

11.      intent.add(anode.attribute); 

12.      ConceptNode c=new ConceptNode(extent, intent);  

13.      anode.c=c; 

14.      Thread t= new Thread(splitConcept (anode, !anode.isLeaf(),T)); 

15.      ths.add(t); 

16.      t.start();        

17. } 

18. waitAllsubThreadEnd(ths);// for synchronization 

19. droplinks(allTdroplist);// for integrity 

20. } 

 

4.2.2.4. SplitConcept 

The function splitConcept is according to Theorem 3.17. It calls the extra functions about 

split except for the naïve version of adding attribute. It is presented in the line 1 that the 

current formal context adds the input attribute. The line 2 shows that att.c is assigned to the 

variable {newConcept}. If the input notleaf is true, the att’s subNodeSetforOneAttribute 

includes all nodes within the scope of sub attributes and att’s firstsubnodes adds TopNodes of 

all sub attributes according to the expression (4) of Theorem 3.17. Then the function 

addConceptfornotleaf is executed. Or else the attribute is added by invoking the 

addConceptforleaf. The addConceptfornotleaf and addConceptforleaf are two special versions 

of addattributeToLattice for split.  

 

Algorithm8  SplitConcept 

splitConcept (AttributeTreeNode att, boolean notleaf, AttributTree T) 

main function variable 

ConceptNode newConcept; 

1. currentContext.addAttribute(att.attribute);  

2. newConcept=att.c; 

3. if(notleaf) 

4. {  

5.    for (AttributeTreeNode n:att.children())  

6.   { 

7.      att.subNodeSetforOneAttribute.addAll(n.subNodeSetforOneAttribute);  

8.      att.firstsubnodes.add(n.subNodeSetforOneAttribute.getFirst()); 

9.    } 

10.    addConceptfornotleaf(att,T); 

11. } 

12. else addConceptforleaf (att,T); 

 
4.2.2.5. MergingTwoSubLattices 

The function mergingTwoSubLattices is merging the two sub lattices (showed in Figure 7). 

The two Trees, Tree T1 and T2, record Lattice l1’s and Lattice l2’s different attribute Trees 

with each other. The first ‘for’ loop is the iteration of each level of T1. The second ‘for’ loop 

is the iteration of the nodes of the current level of T1 from the first loop. In the second loop, 

the sub lattice of each attribute {a} merges with l2. This process is presented in the lines 8- 19, 

which have two loops of T2 where the first loop iterates each level of T2. In each level of T2, 

each attribute {b} is iterated, and the merging {la-b} between l(b) and l(a) is executed in a 

single thread for {b} according to Theorem 3.18. The line 18 is for synchronization. From 
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Figure 7, we can find that la is a part of l1, lb is a part of l2 and la-b is a part of the final 

merged lattice. 
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Figure 7 The Process of the Function MergingTwoSubLattices 

Algorithm9: MergingTwoSubLattices 

mergingTwoSubLattices(ConceptNode[] l1, ConceptNode[] l2) 

main function variable 

Tree T1=relatedTree(l1); 

Tree T2=relatedTree(l2); 

1.For(int i=T1.level;i<T1.level;i--) 

2.{ 

3.   For(int j=0;j<T1.level[i].nodes.size;j++) 

4.  { 

5.      AttributeTreeNode a=T1.level[i].nodes.get(j); 

6.      If(a.isRoot) 

7.         break; 

8.       For(int m=T2.level;m<T2.level;m--) 

9.       { 

10.         For(int k=0;k<T2.level[m].nodes.size;k++) 

11.         { 

12.           AttributeTreeNode b=T2.level[m].nodes.get(k); 

13.           If(b.isRoot) 

14.         break; 

15.           Thread t=new Thread(mergingbyTwoAttributes(a,b,t1,t2)); 

16.     t.start(); 

17.          } 

18.          waitAllsubThreadEnd(); 

19.      } 

20.    } 

21. } 
 

4.2.2.6. MergingbyTwoAttributes 

According to Theorem 3.19, the function mergingbyTwoAttributes completes the merging 

two sub lattices. Each lattice has one attribute to be considered as the optimized factor.  
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Algorithm10  MergingbyTwoAttributes 

mergingbyTwoAttributes(AttributeTreeNode a, AttributeTreeNode b, AttributTree T, AttributTree T2) 
main function variable 

Extent IntersectionExtent; 

ConceptNode[] lawithb; 

ConceptNode[] lbwitha; 

ConceptNode[] lawithoutb; 

ConceptNode[] lbwithouta; 

List la=a.subNodeSetforOneAttribute; 

List lb=b.subNodeSetforOneAttribute; 

{part1} 

{part2} 

{part3} 

 

In part1, the line 1 shows the intersection IntersectionExtent of the extent of a and the one 

of b. Lines 2-23 shows the part1 computing of the nodes {lawithb} owning the extent 

contained by IntersectionExtent, the nodes {lawithoutb} not owning the extent contained by 

IntersectionExtent and the {lawithb} nodes’ minimal parents in la. Because sometimes the 

lattice does not always have {lawithb} or the links between lawithb, lbwithouta and lawithb’s 

minimal parents should be updated, the line 24 presents that {lawithb} adds all minimal 

parents for overlay function being executed correctly. 

 

Algorithm10  MergingbyTwoAttributes#part1 

1. IntersectionExtent=Intersection (a. Extent, b.Extent); 

2. foreach(ConceptNode e:la) 

3. { 

4.    If(e.Extent⊆IntersectionExtent) 

5.    { 

6.     lawithb.add(e); 

7.    } 

8.    else 

9.    { 

10.     lawithoutb.add(e); 

11.    } 

12.    If(IntersectionExtent⊆ e.Extent) 

13.    { 

14.      if(minparents.size()==0) 

15.     minparents.add(c); 

16.  else 

17.  { 

18.         boolean flag=   checkIsminparents(c,minparents); 

19.    if(flag) 

20.      minparents.add(c); 

21.  } 

22.    } 

23. } 

24. lawithb.addAll(minparents); 

 

In part2, the lines 1-11 show the part2 computing of the nodes {lbwitha} owning the extent 

contained by IntersectionExtent and the nodes {lbwithouta} not owning the extent contained 

by IntersectionExtent in lb.  
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Algorithm10  MergingbyTwoAttributes#part2 

1. foreach(ConceptNode e:lb) 

2. { 

3.    If(e.Extent⊆IntersectionExtent) 

4.    { 

5.     lbwitha.add(e); 

6.    } 

7.   else 

8.   { 

9.     lbwithouta.add(e); 

10.    }  

11. } 

 

In part3, if lawithb’s size>0, the adding new concept (IntersectionExtent,b) into lawithb 

(lawithb =>la-b) are executed by the function {addConceptforMergeforNotclone}, and it 

executes the overlay of {la-b} and {lbwithouta}, which is different from the clone version. In 

the clone version, {lawithoutb} and {lbwithouta} in two different copies are overlaid into one 

of them according to Theorem 3.19. Then {lbwitha}-{lawithb}is removed from current lattice 

by the lines 6 and 8 in the non-clone version. This operation does not exist in the clone 

version for la and lb are in different copies. If lawithb’s size =0, the overlay of {la} with {lb} 

is executed. Figure 8 shows the process of mergingbyTwoAttributes. 

 
Algorithm10  MergingbyTwoAttributes#part3 

1. Intent bintent=b.c.getIntent(); 

2. ConceptImp  newConcept=new ConceptImp(b.c.getExtent(),bintent); 

3. if(lawithb.size()>0) 

4. { 

5.    addConceptforMergeforNotclone(newConcept,lawithb.getFirst(),a, b, T,T2,lawithb); 

6.    lbwitha.removeAll(lawithb);//for nonclone 

7.    overlay(lawithb,lbwithouta,lbwitha); 

8.    remove(lbwitha); //for nonclone 

9. } 

10. else{overlay(la,lbwithouta,lbwitha);} 
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Figure 8 The Process of MergingbyTwoAttributes 
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4.2.2.7. Overlay 

Overlay function in non-clone way only needs updating links for all new nodes are created 

before. The first and second loops are to iterate each node {c} in {lbwithouta} by descending 

order. The third loop is to check every node { c ' } in {lawithb}. The lines 6-7 and lines 11-12 

execute the continue operation if c or c '  is removed in the parallel way. The line 13 shows 

{CheckandUpdateLinks} part, which is the main process of checking links between {c} and 

{ c ' }.  

 

Algorithm11  Overlay#loops 

overlay (lawithb,lbwithouta,lbwitha) 

main function variable ∅ 
1. for(Integer k:lbwithouta.descendingKeySet()) 

2. { 

3.     List<ConceptNode> values=( List<ConceptNode>)lbwithouta.get(k); 

4.     for(ConceptNode c:values) 

5.    { 

6.        if(c.isremoved) 

7.          continue; 

8.        List<ConceptNode> Childinla=new List<ConceptNode>(); 

9.        for(ConceptNode c ' :lawithb) 

10.       { 

11.          if( c ' .isremoved) 

12.             continue; 

13.          {CheckandUpdateLinks} 

14.       } 

15.    } 

16. } 
 

From the line 2 to the line 6 in the {CheckandUpdateLinks} part, if c.extent ⊇ c ' .extent, 

then update of c ' .intent union with c.intent is executed. From the line 7 to the line 11, if c '

.extent⊇c.extent, then update of c.intent union with c ' .intent is executed. The line 12 shows 

the condition whether the third loop needs to be continued by the temp variable 

needcontinued. If the intents of c and c '  have the inclusion relation, the temp variable 

needcontinued is set as true and the loop continues the rest part. If not, the loop is continuing 

to the next iteration of it. It is presented in the lines 14-18 that the links of common children 

and parents of c and c '  are checked and removed. Figure 9 shows the cases of common 

children and parents.  

 

Algorithm11  Overlay# CheckandUpdateLinks 
1. boolean needcontinued=false; 

2.  if(c. Extent⊇ c ' .Extent)) 

3.  { 

4.     {part1} 

5.     {part2} 

6.  } 

7.  else if( c ' .Extent⊇c.Extent) 

8.  { 

9.      needcontinued=true; 

10.      checkandupdateIntent(c, c ' .Intent); 
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11.   } 

12.   if(! needcontinued) 

13.     continue; 

14.   if(haslink(c, c ' )) 

15.   { 

16.      checkandRemoveCommonParentLink(c, c ' ,lbwitha); 

17.      checkandRemoveCommonChildrenLink(c, c ' ,lbwitha); 

18.    } 
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Figure 9  The Cases of Common Children and Parents 

In Figure 9, If c.Extent⊇ c ' .Extent, then it drops the links pointed by the deep blue vector 

lines. If c ' .Extent⊇c.Extent, then it drops the links pointed by the red vector lines. When it 

checks the common children and parents, it does not need to consider lbwitha, which will be 

removed after merging if its size>0. 

In the {CheckandUpdateLinks#part1}, it first checks whether the intent of c '  contains the 

intent of c. If not, the intent of c '  should include the intent of c. Then the conditions for 

continuing the loops are checked. Expression 1) and 2) are the continuing condition if there 

could exist any middle node between c and c '  (showed in Figure 10).  

 
Algorithm11  Overlay# CheckandUpdateLinks#part1 

1.            checkandupdateIntent( c ' ,c.Intent); 

2.            if( c '.g e tP aren ts (), c.E x ten t . E x ten tp a ren t p a ren t   )                    1) 

3.              continue; 

4.            if( c.g e tC h ild ren () lb w ith o u ta , . E x ten t c.E x te n tch ild ch ild    )  2) 

5.              continue; 

6.            needcontinued=true; 
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Figure 10  The Continuing Conditions of Expression1 and 2 

In the {CheckandUpdateLinks} part2, Expression 3) and 6) are to add new link between c 

and c ' . Expression 4) and 5) are the conditions to determine whether the current c and c ''  

should be linked (showed in Figure 11).  

 
Algorithm11  Overlay# CheckandUpdateLinks#part2 

1.          if(Childinla.size()==0) 

2.           { 

3.              Childinla.add( c ' ); 

4.              newLink(c, c ' );                                                                               3) 

5.            } 

6.            else 

7.          { 

8.             boolean flag=false; 

9.             Vector<ConceptNode> cr=new Vector<ConceptNode>();
*
 

10.             if( c '' C h ild in la , c ''.E x ten t c.E x ten t)                                            4) 

11.                flag=true; 

12.             if( c '' C h ild in la , c.E x ten t c ''.E x ten t)                                            5) 

13.                cr.add( c '' ); 

14.              if(!flag) 

15.             { 

16.                 Childinla.add( c ' ); 

17.                 newLink(c, c ' );                                                                            6) 

18.                 Childinla.removeAll(cr); 

19.             } 

20.          } 

 

                                                           
*
 //for removing smaller children 
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 ''c

 ⊇

 ⊆

 ''c

 5) new Linked

4) new Linked

Childinla of c

new Link?5):4)

 
Figure 11  The Conditions of Expression 4 and 5 

 

Expression 4) shows the condition that if there has existed any new link between c and c '' , 

where c ''  is a parent of c ' , then the dotted line is not added between c and c ' . Expression 5) 

shows the condition that if there has existed any or no new link between c and c '' , where c ''  

is c '  child, then the dotted line is added between c and c ' . If Expression 5) is true, new link 

is operated by the lines 14-19, in which the links between c and all c '' s should be dropped in 

the line 18 (denoted by the green cross in Figure 11).  

The following other functions are also designed to implement the non-clone parallel way 

(in the Table 2). We use the oriented-object characteristic to override the ConceptNodeImp 

type from the Galicia source code. We add the fields into it: f1) addrootlabels, f2) 

updatelabels, f3) lock, and f4) isremoved.  

 
Table 2  The List of the Other Functions About the Non-clone Parallel Way 

Function Related field in use 

1.addConceptforleaf  f1),f2), f3) 

2.addConceptfornotleaf f1),f2), f3) 

3.addConceptforMergeforNotclone f1),f2), f3) 

4.minClosedforparallel(in 1,2,3)  

5.minCandidateformerging (in 3) f1) 
*
 

6.preProcessForParallel(in 1) f1), 

7.preProcessForParallelforaddnotleaf (in 2) f1),f2),f3) 

8.preProcessForParallelforMergingNotClone(in 3) f1) 

 

For integrity, we use addrootlabels and updaterootlabels. 

When a new node is created, the addrootlabels records all the AttributeTrees’ root nodes of 

the attributes added into the node’s intent and it ensures that the node is created and iterated 

in the isolated state by one single thread of one attribute adding. 

When an original node is updated by multiple threads of attribute adding, the updatelabels 

records all the attributes that are updated into the node. It avoids the single thread of adding 

attribute to update the intent of its new node by using the intent created by the threads of other 

AttributeTrees. 

The lock field is for isolation when a node is updated. When updating Node A’s intent, we 

use lock as following: 

 

while(A.lock) 
                                                           
* uses f1 to remove not related low cover by transferring parameters implicitly 
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{ } 

A.lock=true; 

{A update process} 

A.lock=false; 

 

And in the overlay process, the isremoved field is for avoiding needless iteration of nodes 

removed by the remove function of merging. The isremoved field is referenced by the 

functions: overlay and remove. In addition, the function minClosedforparallel uses extent to 

determine the minClose instead of intent. 
 

5. Performance Evaluation 

For first optimization strategy has obvious advantage compared with the naïve, we tested 

and reported the second parallel strategy in this paper. The three tests are run: 1. The objects 

increasing. 2. The attributes increasing. 3. Both the objects and attributes increasing. We take 

the random contexts by the max size {50×50}. The coding is implemented by java and used 

the Galicia source code “MagaliceAGen.java”, on which we overwrite its “addConcept” 

function and implements the parallel algorithms. The coding has a little difference with the 

expression of algorithms in the paper, for the easier running and debugging programs with 

oriented-object coding style. The current tests are executed on the single Notebook, with Intel 

core Duo CPU, @{1.86GHZ,1.87GHZ}, and java virtual machine with max memory 512 mb. 

And the Tables 3-5 and Figures 5-7 show the time cost of the naïve and the optimized parallel 

algorithm. The three tests show the time cost of the optimized is obviously less than the one 

of the normal. In non-clone way, the optimized does not result in the out of memory heap 

space meanwhile. 

 
Table 3 The Test 1 With Attributes Increasing 

Objects:Attributes 50:10 50:20 50:30 50:40 50:50 

normal(msec) 391 7840 91733 767347 3096120 

optimizal(msec) 1310 2263 4805 10172 22116 

 

Table 4 The Test 2 With Objects Increasing 

Objects:Attributes 10:50 20:50 30:50 40:50 50:50 

normal(msec) 157 5855 79166 548719 3027889 

optimizal(msec) 499 1140 1156 7708 45252 

 

Table 5 The Test 3 With Both Attributes and Objects Increasing 

Objects:Attributes 5:5 10:10 15:15 20:20 25:25 30:30 35:35 40:40 45:45 50:50 

Normal(msec) 24 31 78 359 1482 6630 30810 172979 1174575 2692189 

optimizal(msec) 226 250 234 343 718 1458 1606 4437 13621 32714 
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Figure 12 The Time Comparison 

in Test1 
 

 
Figure 13 The Time Comparison 

in Test2 

 
Figure 14 The Time Comparison in Test3 

 

6. Conclusion 

In this paper, we analyze the lattice-based storage method of inconsistent knowledge in the 

context-aware application. Further, to keep provide the newer context knowledge timely, the 

maintaining of the consistent information about the context knowledge is concerned. The aim 

is that based on context lattice storage, it implements the update of lattice dynamically to keep 

knowledge in the consistent intervals. For the consistent result is changeable in the dynamic 

environment, the split of the intervals is proposed such that the consistent knowledge fall into 

the split intervals to provide the query and reasoning faster. Then the paper focuses on the 

priority sort of the pre-split attributes and the parallel execution of splitting. Based on FCA 

theory, the feasibility of the priority sort is analyzed and the optimized theories of the parallel 

execution are proved. Using two strategies, we propose an optimized split algorithm, which is 

based on the naïve one. It is tested and shows better performance compared with the naïve. 

And the parallel algorithm is in a non-clone way to assure that the memory does not overflow 

owing to the copies of the lattice by multiple threads. 

The future work: 1. Testing on the bigger data set. It is necessary to testing on the real big 

data set (TB level) such that the algorithms could be modified to adapt to the real big data 

environment. 2. Improving the query performance on current lattice storage and 

implementing the reasoning techniques on the context lattices. A better query method is 

needed, and a series of the reasoning techniques about consistency should be specialized on 

the context lattices. 
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