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Abstract 

The growth of social website and electronic media contributes vast amount of user 

generated content such as customer reviews, comments and opinions. Sentiment Analysis 

term is referred to the extraction of others (speaker or writer) opinion in given source 

material (text) by using NLP, Linguistic Computation and Text mining. Sentiment 

classification of product and service reviews and comments has emerged as the most useful 

application in the area of sentiment analysis.  

This paper focuses on the comparative study (1997 – 2012) of different sentiment 

classification techniques performed on different data set domain such as web discourse, 

reviews and news articles etc. The most popular approaches are Bag of words and feature 

extraction used by researchers to deal with sentiment analysis of opinion related to movies, 

electronics, cars, music etc. The sentiment analysis is used by manufacturers, politicians, 

news groups, and some organization to know the opinions of customer, people, and social 

website users. 

Keywords: Opinion, Sentiment Analysis, Sentiment Classification, Sentiment Classification 

Techniques, Product Reviews, Social Issues 
 

1. Introduction 

In this scientific era, internet provides huge volume of information. Most of the people 

share their opinions over internet by using social networking sites in form of textual data. 

These textual data are publically available over internet & has a great impact in building 

opinions about a particular entity, object or political activities among the users of social 

media. Shared information is generally in form of reviews, articles, posts, news etc. Today 

most of the people preferred electronic media and internet over printed media. Especially in 

electronics and film sectors, customers used to write their reviews about products or their 

features. Social media user may find others opinion by collecting & analyzing their reviews 

about different features of the product. In this way one can find the best products, one that 

meets their needs by comparing the one products’ features, price, size and quality etc. with 

other products. Moreover companies can find out the strengths, weakness and limitation of 

their products or those of competitors [1]. In this way, manufacturers solved the reported 

problems, valuable for product development, consumer relationship management and 

marketing and use the business intelligence behind the analysis for future investments. 

Traditionally, manufacturers conduct consumer feedback and surveys in manually for this 

purpose. While that was well-designed surveys which where provides quality estimations, but 
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it was costly especially if the size of gathered survey data was in large volume [2].The 

analyzing and summarizing of others opinions, expressed in huge opinionated text data is a 

very interesting new field for researchers. This area of research is called Sentiment Analysis 

or Opinion Mining of others [3]. 

From sentiment and opinion mining perspective, usually there are two kinds of textual 

information facts and opinions. Facts refer to the objective statements about the nature of a 

product, while opinion describes attitude, appraisals and emotions extraction of a product, 

service, topic or an issue [4].The Sentiment Analysis is also called Interdisciplinary field that 

crosses artificial intelligence, natural language processing and text mining. Sentiment analysis 

has emerged as a Subfield of Text Mining because most of opinions are available in the text 

format and its processing is easier than other formats [5]. Sentiment analysis first time 

appeared in the literature in 1990 and then it became a major research topic in 2000. The 

extensive research on automatic text analysis for sentiment, such as sentiment classifiers [6 , 

7, 8, 9,10], affect analysis [11, 12] , automatic survey analysis [13, 8],opinion extraction [14], 

recommender systems [15], subjectivity detection, sentiment prediction, text analysis for 

opinions, extracting product features, extraction of customers opinion.  

As per the technical perspective, there are two main approaches for SA, such as Bag of 

words (BOW) and Feature based Sentiment (FBS) [16]. In the BOW approach, the syntactic 

& semantic information between words are last. This approach is not useful in opinions 

mining of products & their features. While FBS approach is used for analyzing the sentiment 

of products & their features. The main aim of this paper is to show, which sentiment 

classification technique used on what type of data set. Basically machine learning techniques 

were used for FBS and others for BOW. But all these methods classify the sentiment polarity 

of given documents either as positive or negative sentiment. 

 

2. Sentiment Classification  

The Sentiment classification is presented in various formats in different domains. 

Positive/negative, good/bad, like/dislike, buy/don’t buy, recommended/not recommended, 

excellent/boring (film), support/against [5], optimistic/pessimistic [9], favorable/unfavorable 

[17]. Sentiment classification may be done at different levels. In Document level – whole 

document classify either into positive or negative class. Sentence level – classifies sentence 

into positive, negative or neutral class. Aspect or feature level – identifying & extracting 

product features from the source data. 
 

2.1. Sentiment Classification Techniques 

The sentiment classification techniques are categorized into three categories. They are 

machine learning algorithms, link analysis methods, and score- based approaches. Machine 

learning algorithms are applicable to sentiment analysis mostly belongs to supervised 

classification. In machine learning techniques, there are two sets of data: training set and a 

test set. Training set data/documents are used by automatic classifier to learn the 

differentiating characteristics of documents, while a test set is used to check how well the 

classifier performs [3].A number of machine learning approaches are used to classify the 

reviews. These techniques are Support Vector Machines (SVM), Naïve Bayes (NB), and 

Maximum Entropy (ME). Machine learning approaches starts from collecting training 

dataset, then to train a classifier on the training data. Once a supervised classification 

technique is selected, then an important step: decision to make is feature selection. Then only, 
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supervised classifier tells us how documents are represented [3]. There are some common 

features that are used in sentiment classification. They are given below. 

 Terms and their frequency:  

These include unigram or n-gram and their frequency or presence. Pang et al. (2000) [6] 

claim that unigrams gives better results than the bi-grams in movie review sentiment analysis. 

While Dave et al. (2003) [21] claim that tri-grams and bi-grams give better polarity 

classification results for product- review.  

 POS information : 

In POS tagging, each term in sentence will be assigned a label, which used to represent its 

position/role in the grammatical context. So, with POS tags, we can identify adjective and 

adverbs which are used as sentiment indicators [19]. 

 Negations: 

Negation has potential of reversing a sentiment [46] so, these feature must take into 

account. 

 Opinion words and phrases: 

The opinion word and opinion phrase are used to extract positive / negative sentiments. 

There are   approaches such as lexicon-based or statistical-based, are used to determine the 

semantic orientation of an opinion words and phrases. While Hu and Lui et al. (2004) [29] 

used Word Net to determine the sentiment polarity of extracted adjective as positive or 

negative polarity. 

The most commonly machine learning algorithm used are Support Vector Machine (SVM) 

and Naïve Bayes (NB). Support Vector Machine has been commonly used for sentiment 

analysis of movie reviews [6, 32, 39], while Naïve Bayes used to reviews and web discourse 

[6, 32, 25]. SVM have performed better than NB [6]. Other algorithms are also used in prior 

sentiment classification studies such as Winnow [34] and AdaBoost [40]. 

Link analysis technique for sentiment classification of link-based metrics and features. For 

web-site opinions Efron (2004) [25] used co-citation analysis, But Agarwal, R. et al., (2003) 

[20] used message-send/reply link feature to classify sentiments in USENET newsgroups. 

Score-based methods are generally used to classify message sentiment based on the total 

sum of all positive or negative sentiment polarity. Nasukawa and Yi (2003) [17], Yie et al., 

(2003) [2], Fei at al., (2004) [26] used phrase pattern matching, which requires checking text 

for manually created, polarized phrase tags (positive or negative). +1 value assigned for 

Positive phrase and -1 for Negative phrase. All messages are classified on the basis of 

Positive sum and negative sum value, positive sum value means positive sentiment and 

negative means negative sentiment. 

 

2.2. Sentiment Analysis Features 

In the previous sentiment analysis studies, the sentiment Analysis features are classified 

into four kinds such as syntactic, link-based, semantic, and stylistic features. The syntactic 

attributes are used with semantic features as a set of features for sentiment extraction. 

Syntactic features include part of speech (POS) tags [6, 2, 27], POS tags n-grams [6, 27] and 

punctuation. Also syntactic features include phrase patterns, which were created by using 

POS tag n-gram patterns [21, 2, 26]. The research found that phrase patterns e.g. “n+aj” 
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(noun followed by (+) adjective), so this phrase patterns represent (+) sentiment, but “n+dj” 

(noun followed by (-) adjective), represent (-) sentiment [26]. 

In Semantic features, polarity addition or strength -related scores to words and phrases are 

assigned by using fully automatic annotation or manual/semi-automatic techniques. In 1997 

Hatzivassiloglou et al. [18] proposed a semantic orientation (SO) method. Later extended by 

Turney, (2002) [19], that automatically computed the SO score for each word/phrase by using 

a mutual information calculation technique. In score computation, we take the mutual 

information between a phrase and the word like word “excellent” and then subtracting the 

mutual information (polarity) between the same phrase and the word like “poor”. Later 

Semantic Orientation approach was analyzed by using latent semantic analysis [51]. 

The sentiment lexicons are generated by manually or semi-automatically [10, 26, and 40] 

Riloff et al., [22] constructs sets of objective nouns, weak subjectivity and strong subjectivity. 

Appraisal groups [39] are another effective method for annotating semantics to 

words/phrases. The lexicons are developed, while based on appraisal theory [52]. Appraisal 

group include polarity of phrase, graduation, orientation and attitude. In 2005 Whitelaw, C. et 

al., [39] was able to find more accuracy on a movie reviews corpus by using appraisal groups, 

several outperforming previous studies [33], the use of syntactic features [6] and the 

automated mutual-information based approach [19]. 

Link-based features include link/citation analysis to extract sentiments of online articles 

and web documents [46]. The Opinion web pages mostly share similar sentiment to each 

other [25]. Since the link-based features are very less used, so it is difficult to know that how 

effective they may be used for sentiment classification. 

Stylistic features used structural and lexica attributes in different previous 

authorship/stylometric studies [53, 54, and 46]. Gamon (2004) [27] used sentence length as a 

lexical features for sentiment analysis of feedback surveys. It was unclear that how stylistic 

features were used as sentiment classifiers for movies/products features review, while style 

markers have been found that commonly used in particular web discourse [54, 46].  

 

2.3. Sentiment Analysis Domains 

Sentiment classification techniques applied on different data set types such as Reviews, 

Web Discourse and News Articles. The reviews include movie reviews, product features 

reviews and music reviews [14, 6, 19].Product features reviews are complex, because a 

review of a single person can have both positive and negative sentiment about a specific 

feature of the product. Sentiment extraction of movie reviews is very interesting, because 

movie reviewers present their opinion in large summaries and use complicated literary 

devices such as rhetoric and sarcasm.  

Web discourse sentiment analysis includes social website, News groups, and comments 

(face book, twitter). This domain usually extracts sentiment of particular issues/topics like 

global warming, gun control and politics [20, 25]. Robinson (2005) [55] evaluated sentiments 

of social issues like World Trade Center Attack on 9/11 in three different organization in the 

United States, Brazil and France. Some authors have performed sentiment analysis on news 

articles [2, 40]. 

 

2.4. Reduction of Features for sentiment classification 

There are different manual and automated approaches have been used to select essential 

attribute feature. Gamon (2004) [27] and Jeonghee Yi et al. (2003) [2] used log likelihood to 
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select important attributes from a large features space. He used this technique to improve 

accuracy and focused on selected subset of sentiment discriminators. 

 

3. Sentiment Analysis Tasks 

Most of the researchers focus on specific tasks: sentiment analysis of words [18], 

subjective expressions [40, 31], subjective sentences [32] and topic [2, 17, 36]. These 

approaches find sentiment at opinion/facts level and used to enhance the effectiveness of a 

sentiment classification Pang & Lee (2004) [32]. Choi et al. (2005) [42] focus on finding the 

sources of opinions (e.g. Finding who play a crucial role the person or organizations in 

influencing other individuals’ opinion) instead of carrying out a sentiment classification. 

There was various types of Data sources where used that include The Multi-Perspective 

Question Answering (MPQA) corpus, user feedback, The Wall Street Journal (WSJ) corpus 

and the Document Understanding Conference (DUC) corpus. 

The following parameters are used for the comparative study of  different existing works in 

Sentiment Analysis. They are – 
 

A. Sentiment Analysis Features 

 

• Syntactic (F1) - Words/POS tag n-grams, Phrase patterns. 

• Semantic (F2) – Positive and Negative tags, appraisal groups, semantic orientation. 

• Link based (F3) – Web links, send/reply patterns, document citations. 

• Stylistic (F4) –Lexical and structure measures of style.  

 

B. Sentiment Classification Techniques 

 

• Machine Learning (T1) – Support Vector Machine, Naïve Bayes, Maximum 

Entropy. 

• Link Analysis (T2) - Citation analysis, message send/reply patterns. 

• Similarity score (T3) – Lexicon, Sentiment pattern, sentiment score counts, etc.  

 

C. Sentiment Analysis of Data Set Domains 

 

• Reviews (D1) - product, movie and music reviews. 

• Web discourse (D2) – Social Website (face book, twitter, YouTube). 

• News articles (D3) – Online articles and web pages.  

 

D. Accuracy, Precision and Recall 

 

We can see the formula to compute the accuracy, precision and recall values [57]. 

 

Table 1. Confusion Table [57] 

 

 Machine (Yes) Machine (No) 

Human (Yes) tp Fn 

Human (No) fp tn 
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Precision (P)= tp/(tp +fp) ;  Recall (R)= tp/( tp+fn ); Accuracy (A)= tp+tn / (tp+tn+fp+fn) 

E. Data Size and Data Source 

Data size means the number of sentence/ expression/feedback/review on which techniques 

are applied for sentiment analysis. 

Data source mean that from which place (e.g. website, movie review, web pages, journals, 

customer feedback) data sets have been taken. 

 

Table:-2 Summery of Existing Works in Sentiment Analysis 

Authors Features Red

uce 

Feat

ures 

Techniq

ues 

Domains Accura

cy 

Precis

ion 

Recall Data 

size 

Data 

source 

F

1 

F

2 

F

3 

F4 T

1 

T

2 

T

3 

D1 D2 D

3 

Hatzivassiloglo

u & 

Mckeown,1997 

[18] 

√    No   √  √  78.1-

92.4 

N/A N/A 657 

adj (+) 

679 

adj (-) 

WSJ 

Corpus 

P. Subasic et 

al., 2001[11] 

√ √   No   √   √      

R.M.Tong, 

2001[10] 

√ √   No   √ √        

S. Morinaga et 

al, 2002[14] 

√    Yes   √ √        

Pang ,Lee et al, 

2002[6] 

√    No √   √   77-82.9 N/A N/A 700 

(+) 

700 (-) 

IMDB 

Turney, 2002 

[19] 

√ √   No   √ √   65.8-84 N/A N/A 240 

(+) 

170 (-) 

Movie 

review 

Agrawal ,R. et 

al, 2003[20] 

√  √  No √ √   √       

Dave , K., et al, 

2003 [21] 

√    No √  √ √   88.9 N/A N/A N/A Product 

review 

Nasukawa & 

yi; 2003 [17] 

√ √   No   √   √ 94.3 N/A 28.6 118 

(+) 

58(-) 

Web page 

√   94.5 N/A 24 255 Camera 

review   

Riloff, K.,  et 

al, 2003[22] 

 √  √ No √     √      

Jeonghee Yi et 

al, 2003 [2] 

 

√ √   Yes   √ √   85.6 87 56 735(+) 

4227(-

) 

Digital 

camera 

review 

  √ 90-93 86-91 N/A  Web pages 

Yu & 

Hatzivassilogol

√ √   No  √  √   √      
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0u, 2004[23] 

Bieineke, P.,  et 

al, 2004[24] 

 √   No √  √ √        

Efron, M., et 

al., 2004[25] 

√  √  No √ √   √       

Fei, Z.,  et al, 

2004[26] 

 √   No   √ √        

Gamon, 

2004[27] 

√   √ Yes √   √   77.5 N/A N/A N/A  Customer 

feed back 

Grefenstette et 

al, 2004[28] 

√ √   No   √  √       

Hu & Liu, 

2004 [29] 

 

√ √   No   √ √        

Kanayama et 

al, 2004[30] 

√ √   No   √ √        

Kim & Hovy, 

2004 [31] 

 √   No   √  √  75.6-

77.9 

N/A 79.8 N/A DUC 

Corpus 

Pang & lee, 

2004 

[32] 

√ √   No √  √ √   86.4-

87.2 

N/A N/A 1000(

+) 

1000(-

) 

Movie 

review 

Mullen & 

collier,2004[33

] 

√ √   No √   √        

Nigam & 

Hurst, 2004 

[34] 

√ √   No √    √       

Wiebe et al, 

2004[35] 

√   √ Yes √  √  √ √      

Hiroshi et al, 

2004[36] 

√ √   No   √ √   89-100 N/A 43 200 Camera 

review 

Liu et a.l , 

2005[37] 

√ √   No   √ √        

Mishne , 

2005[38] 

√ √  √ No √    √       

Whitelaw et al, 

2005[39] 

√ √   No √   √        

Wilson et al. 

2005 [40] 

√ √   No √     √ 73.6-

75.9  

68.6-

72.2/ 

74.0-

77.7 

45.3-

56.8/8

5.7-

89.9 

13183 

Expres

sion   

MPQA 

Corpus 

Pang & lee 

2005 [41] 

√   √ Yes √   √   66.3 N/A N/A 5006 Movie 

review 

 

Choi et al 2005 

[42] 

 √   No   √   √ N/A 70.2-

82.4 

41.9-

60.6 

N/A MPQA 

corpus 
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Ng, V., et al, 

2006 [43] 

√ √   Yes √   √        

Riloff, E., et al, 

2006 [44] 

√    Yes √   √  √      

Konig & Brill, 

2006 [45] 

√    No √  √ √   >91 N/A N/A 1000(

+) 

1000(-

) 

Movie 

review 

 √  <72 N/A N/A N/A Customer 

Feedback  

Abbasi et al , 

2008 [46] 

√   √  √    √  90-60-

90.80 

95.55  1000 

messa

ge  

 

 

US & 

middle 

Eastern 

Web forum 

postings   

Zhang et al , 

2011[47] 

√ √   No √  √  √  68.7 85.4 82.7  Twitter 

Fang et al , 

2011 [48] 

 

√    No √  √ √   56.2 66.8 N/A 2718 

senten

ce 

Multi 

domain 

sentiment 

Dataset  

Mudinas et al 

2012 [49] 

√    No √  √ √   85.09 82.3 N/A 1056 

Revie

w 

Movie 

Review 

Akshik et al , 

2012 [50] 

√    No   √  √  N/A N/A N/A   

 

4. Discussion & Future Scope 

Since in Table 2, NLP and Pattern based techniques are used for the product review [2, 23, 

36] and performed with 85.6 – 100 accuracy. While in the case of machine learning accuracy 

range varies between 56.2 and 91.0.  So, it is true that NLP and Pattern based techniques 

performed better than the Machine Learning for sentiment analysis of product review. The 

Probabilistic technique [32] has accuracy range between 75.6 and 81.2. In previous works 

related to sentiment analysis are performed over the product and their features data set [19, 

21, 17, 2, 32, 36, 41, 45, 49], while few papers in the field of Social issues [1] has been 

published.  

Hence the recent emerging area of interest is sentiment analysis of social issues. Now a 

day most of the research scholars have been working on Twitter and YouTube comments data 

set. To perform sentiment analysis the most and common source of data set are web pages,  

social web site like face book , twitter, YouTube etc. There is a vast scope for research 

scholars to increase the accuracy level up to some extent by using well designed sentence 

structure. 
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Table 3. Future Directions Over Existing Works (Enhancing the Accuracy)  

Author Domain Accuracy 

(%) 

Technique Objective Future Scope 

 

 

 

Jeonghee Yi 

et al., 2003 

[2] 

 

Web 

Document 

 

 

 

91-93 

 

 

 

 

NLP 

 

Feature 

extraction 

1) Need full parsing to provide 

better sentence structure 

analysis. 

2) Increase the level of 

automation to handle the 

semantics accurately for 

validation of more advanced 

sentiment. 

 

Product 

Review 

 

 

85.6 

 

 

M.Karamibe

kr et al.,2012 

[1] 

 

 

 

Social Issues 

 

 

 

65 

 

 

POS, Pattern 

based 

 

Extraction of 

Verb & 

opinion term 

1) Extract Main verb. 

2) Increase the dictionaries of 

opinion terms & opinion 

verbs. 

3) Use Hybrid Techniques. 

4) Identify the ambiguous 

sentence and reduce them. 
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