
International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.211-226

http://dx.doi.org/10.14257/ijdta.2014.7.5.16

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

An Accurate Identification of Extended XML Tree Pattern for

XQuery Language

Husheng Liao, Xiaoqing Li and Junpeng Chen

Beijing University of Technology, Beijing, China

liaohs@bjut.edu.cn, {li_xiaoqing, chenjp}@emails.bjut.edu.cn

Abstract

In order to utilize high-performance XML tree pattern query (TPQ) for implementing of

XQuery language effectively, it is necessary to analysis the query plan and identify tree

pattern from it. In this paper, we extend the functional intermediate language FXQL, which is

used to implement XQuery language, with an extended XML generalized tree pattern

representation (GTP++). Then, we propose an XML tree pattern identification approach,

which is composed of a suit of query expression rewriting rules for extracting tree pattern

and a GTP++ construction algorithm. Based on this approach, both explicit and implied

propositional logic, various structural constraints and predicates can be extracted across

nested query blocks in XQuery FLWOR expressions. The tree pattern identified by this

approach is more holistic and precisely than previous methods. The approach expands the

application of XML tree pattern query technology in the implementation of XQuery language.

Experiments show its effectiveness and practicability.

Keywords: XML tree pattern, tree pattern identification, XQuery

1. Introduction

XQuery, as W3C standard, is used to query XML data. In related studies of XQuery, one

of the core challenges is how to improve query efficiency. Different from the relational data,

XML data is a kind of semi-structural data. Therefore, XML data query often contains a

variety of structural joins, which can be represented as a tree-shaped query pattern. As main

characteristics of semi-structured data query, the tree-shaped query pattern is considered as

the core operation of XML data query, called XML tree pattern query (TPQ), or twig query.

TAX in [1] first introduced the concept of pattern tree, which is derived from XML query

request. The nodes in the pattern tree are called query node whose label specifies the XML

node label needs to be satisfied. The edges in the pattern specify the type of structural

constraints between XML nodes, including ancestor-descendant relationship (AD) and parent-

child relationship (PC). In such query, the XML nodes conformed to the structural constraints

and name tests in tree pattern will be selected. Then, a number of efficient TPQ algorithms

are proposed in the past ten years.

Structural joins in for clauses in FLWOR expression which are the core of XQuery can be

represented by basic TPQ. Operations described in return clause will be performed on the

TPQ results, such as selection, join and node construction including TPQ in the nested

FLWOR expression. In order to take advantage of efficient TPQ algorithms, many studies

have extended XML tree pattern with different features. For instance, GTP in [2] adds

mandatory/optional relationships on the basis of TAX pattern tree. References [3] and [4]

extend tree pattern with AND, OR, XOR, NOT logical operations and existence count

respectively. However, the current studies on TPQ identification were insufficient to identify

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

212 Copyright ⓒ 2014 SERSC

all TPQs from nested XQuery program. To solve this issue, we extend the intermediate

language FXQL, which is used to descript query plans for XQuery language, with extended

XML generalized tree pattern representation, and develop a holistic and precisely XML tree

pattern identification approach. The contributions of the paper are as follows:

(1). In order to express tree pattern query as a physical form in query plan, we extend the

functional XML query plan description language FXQL with the extended XML generalized

tree pattern representation (GTP++), which extends GTP with AND, OR, NOT and various

predicates. GTP++ fully support propositional logic of structural constraints, and is able to

express the query in nested FLWOR expressions.

(2). Proposes an identification approach for GTP++, which is composed of a suit of query

expression rewriting rules for extracting tree pattern and a GTP++ construction algorithm.

Based on this approach, both explicit and implied propositional logic, various structural

constraints and predicates can be extracted across nested query blocks in XQuery FLWOR

expressions. Compared with existing works, our identification approach is able to extract

holistic and precisely tree patterns which contain more XQuery query semantics than previous

methods

(3). Experiments on two benchmark dataset (DBLP and XMark) demonstrate the

effectiveness and practicability of our approach. The performances of the programs with

nested FLWOR expressions are improved by utilizing our algorithm.

The remainder of this paper is organized as follows. Section II reviews related work

and Section III describes the motivation of the work. The extended GTP++ along with

its language description was introduced in Section IV. In Section V, we present the

GTP++ identification algorithm in detail. The experiment results are reported in Section

VI and Section VII concludes the paper.

2. Related Work

As the core operation of XML data queries, since the notion of TPQ was introduced in [1],

many works have been done to extend the descriptive power of TPQ. Apart from GTP
[2]

, APT
[3]

 (Annotated Pattern Tree) improve the matching precision further through edge annotations.

The edges in APT can be annotated with one of the four matching options: “+“(one to many

matches), “-” (one match only), “*” (zero to many matches), “?” (zero or one match). In

addition, many TPQs have been proposed for particular optimization purposes. For example,

logic operators AND, OR, XOR and NOT are introduced in [4]. G-QPT in [5] supports

ordering via associating pre-order numbers with TPQs. The TPQ proposed in [6] is designed

for XML graphs data. Here, XML documents are considered having a graph structure, due to

the ID references. Reference [7] makes a study on extended XML tree pattern which include

P-C, A-D relationships, negation functions, wildcards and order restriction.

To utilize tree pattern query for effectively realization of XQuery, it is inevitable to

analysis the query plan and extract tree pattern from it by query rewriting. There are several

studies on TPQ identification. References [8] and [9] concentrate on XPath, the extracted TPs

only have one return node and do not support optional relationship. The algorithms in [2] and

[3] can identify TPs from XQuery programs, supporting both multiple return nodes and

optional relationship. However, these algorithms cannot work across nested FLOWR

expressions. Reference [10] proposes an extraction algorithm which can span over nested

XQuery blocks but without the ability of identifying the logical constraints in XQuery

programs.

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 213

(a) Xquery query Q1 (b) GTPs corresponding to Q1 in [2]

t2 t3

Compulsory P-C/A-D relationship Query/Return nodes

t1

for $b in doc(“bib.xml”)//book

where count($b/author)>0

return

 <book>

 {$b/title}

 {for $a in $b/author[position<=2]

 where data($b/price)<30

 return ($a/first, $a/last)

 }

 </book>

Optional P-C/A-D relationship// /

V1dot

V2book

V3

author

V4

title

V1dot

V3
author

[position<=2]

V4

first

V5

last

V2price

V1dot

V2book

V3

author

V4

title

V5 V6

price

author

[position<=2]

V7first V8last

(c) GTP corresponding to Q1 in [14]

Figure 1. A Sample XQuery Program and Corresponding Pattern Tree

3. Motivation

With XML becoming a ubiquitous language for data exchange in various domains,

efficiently querying XML data is a critical issue. Since XQuery is a kind of XML data query

language as well as functional programming language. This has lead to the design of

algebraic frameworks based on tree-shaped patterns akin to the tree-structured data model of

XML[11].
On the one hand, almost all of studies on tree pattern queries focus on queries algorithm,

the TPQs are graphical representation as shown in Figure 1. Note that a TPQ that cannot be

expressed in a physical form is usually considered useless [11], such TPQs are only used for

other purpose but querying, such as containment judging, equivalence judging and so on. In

order to expressed tree pattern which contains more XQuery query semantics in a physical

form, this paper embeds the GTP++ proposed in [12] into the intermediate language FXQL,

which is based on query algebra technology for XQuery and compiler technology, and

proposes a framework for XQuery system with XML algebra and tree pattern query. GTP++

extends GTP with AND, OR, AND nodes, wildcard and various predicates to describe richer

FLWOR query semantics.

On the other hand, the identification ability of tree pattern extraction algorithm can

influence the size and number of the tree pattern, which will affect the query performance and

the correctness of the final query results. However, the current studies on TPQ identification

were insufficient to identify all TPQs from various structural constraints in FLWOR

expressions. According to the algorithm in [2], a number of separated GPTs are identified

during processing nested FLWOR expression in XQuery. Consider the sample XQuery

program in Figure 1 (a), which contains a return clause with nested FLWOR expression. The

identification algorithm in [2] will generate the two tree patterns t1 and t2 in Figure 1 (b).

Since the extracted TPQs are too scattered and duplicate query nodes matching exists

between them, it hampers the efficient implementation of the XQuery program. The more

powerful identification algorithm in [10] extracts a tree pattern like t3 in Figure 1 (c). Whereas,

since this algorithm is not able to support the identification of tree pattern which with logical

operators, the derived TPQ cannot accurately describe the query semantics for some cases.

For example, in Q1, there is nested FLWOR in return clause, which applies on the results of

the previous query, but the results of this kind of nested queries can be empty. The nested for-

where clauses use the previous query results, nodes binding to $b, and author child and price

child must exist both at once (mandatory relationship) although they are optional relationship

for previous query. Only the book elements with both author child and price child are used in

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

214 Copyright ⓒ 2014 SERSC

t4

V1dot

V2book

V3author V4

title

V5

V6

AND

author[position<=2]

V8first V9 last

V7

Compulsory P-C/A-D relationship Query/Return/Logic nodesOptional P-C/A-D relationship// / /

price

$b

$a

Figure 2. GTP++ Corresponding to Q1

the execution of the return clause. The tree pattern t3 in Figure 1 (c) fails to represent this

constraint since the logic operators identification is not supported by algorithm in [10]. There

are some other similar situations that up-to-data tree pattern identification method cannot

figure out. To solve this kind of issue, this paper develops a tree pattern identification

approach, which can identify both displayed and implied propositional logic of structural

constraints, to extract holistic and accurate TPQs for XQuery queries.

4. GTP++ With Its Representation

4.1. GTP++ Tree Pattern

GTP++ is an extended generalized tree pattern. It extends GTP with AND, OR, NOT

operations, wildcard and various predicates, which is able to express the query request in

nested FLWOR expressions. There are four kinds of nodes in GTP++: query node, AND node,

OR node and NOT node. Query node can bind to variables, and any query node can be

annotated with predicates. There are four kinds of edges in GTP++: mandatory PC

relationship, mandatory AD relationship, optional PC relationship and optional AD

relationship. Optional relationship indicates that the matching of connected query sub tree is

not essential, but the XML nodes matched will also be returned as query results.

Figure 2 shows the GTP++ corresponding to the XQuery program Q1 in Figure 1 (a). Gray

single circle nodes stand for return nodes, such as V4, V8 and V9; double circle nodes stand

logic node, such as V5; solid edges denote the mandatory relationship, and dotted edges

denote optional relationship; single edges denote PC relationship, double edges denote AD

relationship. For instance, edge <V2, V3> is mandatory AD relationship, and <V2, V4> is

optional PC relationship which means that an book element which contain an author element

commit to this GTP++ even though it does not contain a title element. The nodes in GTP++

can be annotated with predicate constraints, for example, node V7 is required to satisfy the

predicate position() <= 2. This shows that GTP++ t4 is able to precisely represent the query

request of Q1 with the help of AND operation and optional relationship, while the GTP does

not have this capability. Similarly, there may be some situations need logic OR and NOT in

tree pattern to describe XQuery queries.

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 215

4.2. Query Plan Description Language FXQL

FXQL is a concise functional intermediate language to describe XML query plan for

XQuery which contains query algebraic and TPQ. Its syntax is shown in Table 1. Among

these production rules, Prog is start symbol and denotes an XQuery program; Func stands for

a function definition; Exp is the core language structure which stands for the FXQL

expression; Arg stands for actual argument, the definition shows that actual argument can be

any expression or anonymous function (Farg).

The rules of translating XQuery to FXQL are shown in [13]. Figure 3 shows the FXQL

program corresponding to the XQuery program Q1 in Figure 1 (a). The foreach, filter in

FXQL

are query algebra operators for projection and selection operation respectively, child is axis

operation, other functions are built-in functions. In FXQL, all standard functions in XQuery

and query algebra operators are implemented. Anonymous functions in the form “fun(x) e”

can be used as the actual argument of function call.

Table 1. Syntax of FXQL

NO. Production Instruction

(1) Prog ::= Exp (“where” Func+)? Query body

(2) Func ::= Idn “(” Idn* “)” “(” Exp “}” Function definition

(3) Exp ::= Const | Idn Constant, variable name

(4) Exp ::= Axis “(” Exp, Test (“[”Arg“]”)* “)” Axis operation

(5) Exp ::= Exp “[” Farg “]” Filter expression

(6) Exp ::= “if” Exp “then” Exp (“else” Exp)? Selection expression

(7) Exp ::= Idn “(”Arg* “)” Function Call

(8) Exp ::= Exp “where” (Id “:=” Exp)+ Expression with local definition

(9) Arg ::= Exp | Farg Actual argument

(10) Farg ::= “fun” “(” Idn* “)” Exp Actual anonymous function

Table 2. Extended Syntax of FXQL

NO. Production Instruction

(11) Exp ::= Idn “.” Idn Get tree pattern result according to branch variable

(12) Exp ::= Exp “with” (Id “:=” TBind)+ With expression (with several tree pattern)

(13) TBind ::= Exp “{“ TNode* “}” Root of tree pattern

(14) TNode ::= TStep “?”? “{“ TNode* “}” Query node without binding

(15) TNode ::= Idn “=” TStep “?”? “{“ TNode* “}” Query node with binding

(16) TNode ::= and “?”? (“[“ Exp“]”)? “{“ TNode* “}” Logic AND node

(17) TNode ::= or “?”? (“[“ Exp “]”)? “{“ TNode* “}” Logic OR node

(18) TNode ::= not “?”? (“[“ Exp “]”)? “{“ TNode “}” Logic NOT node

(19) TStep ::= (“/”|”//”)? Test (“[“ Farg “]”)* Element query step (node test + predicates)

(20) TStep ::= (“/@”|”//@”)? Test (“[“ Farg “]”)* Attribute query step (node test + predicates)

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

216 Copyright ⓒ 2014 SERSC

flat(foreach(

 filter(child(doc(“bib.xml”), book), fun($b) gt(count(child($b, author)), 0))，
 fun($b)
 newElement(
 expanded-Qname(“ ”, “book”),
 concat(
 child($b, title),
 flat(foreach(
 filter(child($b, author)[fun(_dot, _ps, _sz)lt(data(child($b, price), 30))],
 fun($a)concat(child($a, first), child($a, last)))))))))

Figure 3. FXQL Program Without Tree Pattern

4.3. The Language Representation of GTP++

GTP++ has the ability to express the query request of nested FLWOR expressions, but the

query results still need to be processed based on the processing logic in FLWOR expressions.

Therefore, TPQ should be integrated into the query plan as a special operator. Since FXQL is

a kind of functional language, each function has only one return value, while GTP++ may has

several return nodes. In order to describe GTP++ and the references to different return nodes,

this paper extends FXQL with with clause and branch variable reference. The extension

syntax for GTP++ to FXQL is shown in Table 2.

Production (11) denotes that branch variable reference is composed of two variables which

are divided by symbol “.”. The former is the bind variable in with clause for a GTP++, while

the latter is name of a tree pattern branch variable. It’s used to get its sub query results from

return nodes which bind to these branch variable names. Production (12) describes that the

structure of with clause is composed of several TBind structures and each of them binds to a

specified variable. Each TBind structure stands for a GTP++, which indicates that the TPQ

will be applied on computation result of the given expression. Result of the TPQ can be

referred with the specified variable. The nodes in GTP++ are represented in TNode, including

query node, AND node, OR node and NOT node. Production (15) denotes return node, where

the binding variable can be used to access the matched XML nodes. Such variables called tree

pattern branch variable. Among various TNode representations, “?” indicates that the

structural constraint is optional, while the match option of the other nodes are mandatory.

TStep in TNode shows the representation of node tests and predicates. Recursive definition of

TNode structure is used to describe the hierarchical relationships of the nodes in GTP++. Any

expression or anonymous function can be used to descript predicates.

Figure 4 shows the FXQL program with with clause, i.e., tree pattern query, which

corresponds to the XQuery program Q1 in Figure 1 (a). Line 11-15 describes the extracted

GTP++. The query result of GTP++ is bound to variable $0. Line 12 corresponds to the node

V2 in t4, which denotes that the book node has to satisfy AD relationship with its parent. In

line 2, the argument “$0.$b” of filter function is a branch variable reference for sub query

results which bind to branch variable $b from the query result $0. The final result contains the

matched book elements and associated sub query result. These results will be delivered to

anonymous functions through variable $b, so that the sub query results can be obtained

through $b.$1, that is, author elements in the query results. The built-in function node is used

to take out XML nodes from various query branch variables, for example, node($b.$1) can be

used to get author nodes bind to branch variable $1 in query result specified by $b.

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 217

1. flat(foreach(
2. filter($0.$b,fun($b)gt(count(node($b.$1)),0)),
3. fun($b)
4. newElement(
5. expanded-Qname(“”,“book”),
6. concat(node($b,$2),
7. concat(
8. flat(foreach(
9. filter($b.$3,lt(data(node($b.$4),30)),
10. fun($a)concat(node($a.$5),node($a.$6)))))))))
11. with $0 = doc(“bib.xml”){
12. $b=/book{$1=/author,$2=?/title,
13. and?(
14. $3=/author[fun(_dot,_pos,_sz)le(_pos,2)]{$5=?/first,$6=?/last}
15. $4=/price) }}

Figure 4. FXQL Program With Tree Pattern

5. Identification Approach of GTP++

The identification approach in this paper is extract GTP++s from the equivalent FXQL

program for XQuery query. In order to identify various TPQs which implicitly exist in query

plan, we need analysis the program structure of FXQL to find out the various structural joins

and transform them to GTP++ represented with with clause.

The structural joins within XQuery program exist in XPath and FLWOR expressions,

which are represented as combined axis operation expressions. In expressions such as

FLWOR, there may are logical computation relationships among various XPath expressions,

which will be represented as AND operators between query operators, like foreach, filter,

cross and so on. Thus, basic TPQs can be obtained from the combination of query operators

and XPath expressions, which contain AD relationship and PC relationship only. Besides, the

scope of TPQ is related to the program module such as function body, if branch and nested

FLWOR body. Between TPQs in different blocks, there may be data dependency. With the

help of optional relationship in GTP++, it is capable of merging TPs with such data

dependence to a single GTP++, so that the number of TPQ is decreased.

The GTP++ identification approach is composed of two steps: First, extract the basic TPQs

from FXQL program and construct the FXQL program with basic TPQs in with clause; After

that, rewriting FXQL program with GTP++ patterns by using optional relationship

mechanism to merge the TPQs in the FXQL program.

5.1. Extraction of Basic Tree Pattern

The basic tree pattern extraction is the process to analyze and rewrite expressions, and each

expression may be transformed into corresponding one with with clause. The query results of

return nodes must be accessed via the branch variables of TPQs. During the extracting, all

AD and PC axis operations will be replaced with TPQs. Thus, for an axis operation, if the

source expression is a branch variable of a TPQ, this current axis operation should be

extended into it; otherwise a new TPQ needs to be constructed. In the same way, the variables

defined by axis expression in where clause also may be represented as branch variables, and

the binding should be delivered to the position where refers it, so that current TPQ can

contains as much axis operations as possible. With respect to this consideration, there are two

possible results of each expression transforming: (1) rewritten expression; (2) a TPQ branch

variable. On the other hand, the processing of any expression needs to take their context

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

218 Copyright ⓒ 2014 SERSC

information into account. The context information contains free variables and variable _dot

which represent the current item. During the rewriting of expression, the free variables may

be replaced with TPQ branch variables, and the current item binding to _dot variable is often

the source of axis expression, and is also treated as TPQ branch variable.

Based on the above approach, the rewriting rule ExtraExp of FXQL expression for

extraction are declared as follows:

ExtraExp: Exp ExEnv* Exp×TBind, where

ExEnv: Idn Var ×TBind

Exp and TBind in this rule stand for FXQL expressions and the TPQ representation in with

clause respectively. ExEnv is the context environment which is used to store binding

relationships between variables and tree pattern branch. The second parameter in rule

ExtraExp is an environment list. Whenever processing a function call, branches of an if-then-

else expression or a let clause, a new environment should be created as the head of the list.

For instance, (e,b)= ExtraExp[exp]w stands for rewriting exp and extracting tree pattern as

with clause in context environment list w. If the extracting result b is nil, e is rewritten

expression, else the result e and b stand for the variable and its tree pattern branch in

environment respectively.

 During the identifying of TPQ, if a variable is used to store the result of AD or PC axis

operation, it will be bound with the tree pattern branch variable representing the result in the

context environment ExEnv. Local variables which do not bind to a tree pattern branch

variable have nothing to do with the tree pattern extraction, so they will not be stored in

ExEnv. The TPQs bound in ExEnv are called external tree patterns. Whenever handling AD

and PC axis operations, query nodes are need to be constructed to extend tree pattern. At this

moment, current TPQ which bind to the variable _dot or a tree pattern branch variable which

bind to a variable may be extended.

Another core issue of tree pattern extraction is to identify all the structural joins within

conjunctive relationships. In FXQL, such relationships occur among the continuous axis

operations as well as the axis operations in predicates. For example, the first argument of the

foreach operator is an anonymous functional, which is applied to each element of the data list

given by the second argument. At this moment, it is likely to extract structural constraints

from the query operators in the second actual argument and this anonymous functional body,

which will be returned as tree pattern branch variables. Therefore, the scope of TPQ

extraction is determined by the conjunctive relationships. However, in FXQL expressions,

each branch of conditional expression and the structural constraints contained in each actual

argument of the functions except the query operators are independent; they do not belong to a

same TPQ. In order to divide the scope of tree pattern extraction clearly, the expression

rewriting rules make use of a environment list. Whenever processing a function call, branches

of an if-then-else expression or a let clause, a new environment should be created as the head

of the list.

Due to space limitations, this paper only introduces the main expression rewriting rules. As

listed in Table 3 (1), the constant const doesn’t need to be extracted, it will be simply

rewritten as the return pair<const,nil> . According to rule (2), the variable idn without binding

in the context environment have no need to be extracted too; if the variable comes from the

head of environment list, then this variable should be replaced with a TPQ branch variable;

otherwise, it must come from the tail of the list, then should call genTBind to construct a new

TPQ. Rule (3) describes the process of if-then-else expression, a new empty environment

should be created for the extraction of each branches. Rule (4) deals with most function calls,

including the built-in functions except comparison operation, user-defined function and

query operator function without functional arguments. Rule (5) processes the common

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 219

comparison operations in predicates. In order to facilitate description, some auxiliary

functions and data structure are used in expression extraction rules. Function genExp

represent generating FXQL expression based on given template in which its arguments are

specified with symbol ‘<’ and ‘>’; genTBind generates tree pattern with representation of with

clause; newVar generate a new variable name.

The expression extraction rule (6) in Table 4 are the core part of tree pattern extraction,

namely the rewriting rule of the axis operation expression. Auxiliary function newTNode

generate query node in tree pattern; addTNode add sub query node along with its binding

variable to the given query node; addPred add predicates to the given query node; genPred

construct a representation of predicates in with clause. var is used to get tree pattern branch

variable; node gets XML nodes in root of the query results instance. For forward axis, which

is used for the axis operations supported by basic tree pattern, such as PC, AD, property and

so on, the source expression exp of axis operation is processed first. If the result is a tree

pattern branch variable (b’≠nil), then extend this tree pattern with new query nodes using

current axis operation; otherwise, a new TBind instance will be constructed and extended with

a new query node n using current axis operation. Subsequently, all predicates are processed to

extend this query node. Other predicates pi except exist predicate are added to this query node.

The new constructed tree pattern will be rewritten with with clause, otherwise, return a new

constructed tree pattern branch variable <v, b#>.

Table 3. Rewriting Rules of Simple Expressions

NO. Expression Rewriting Rule

(1) ExtraExp[const] w = <const, nil>

(2)

ExtraExp[idn]w =
if w(idn) = Ø

if idn exists in ancestor environment of w then <v, genTBind[v=<idn>.<v’>] where v = newVar()
else <idn, nil>

else w(idn)

(3)

ExtraExp[if exp1 then exp2 else exp3]w =
if bi ≠ nil then add bi to w for i=2,3 <genExp[if <e1> then <e2> else <e3>], nil>
where <a1, b1> = ExtraExp[exp1] w

w = u ++ { Ø }
<ai, bi> = ExtraExp[expi] w for i=2,3
e1 = if b1≠nil then genExp[getNode(<var(b1)>.<a1>)] else a1

ei = if bi≠nil then ai else genExp[<ai> with <bi>] for i=2,3

(4)

ExtraExp[idn(arg1, … , argn)]w =
if bi≠ nil then add bi to w for i = 1,…,n

<genExp[idn(a1, … , an)], nil>
where w = υ ++ {Ø}

<ai, bi> = ExtraExp[argi] w for i=1,…,n

(5)

ExtraExp[cmp(arg1, arg2)] w=

<genExp[cmp(<e1>, <e2>)], nil>
where <a1, b1> = ExtraExp[arg1] w

<a2, b2> = ExtraExp[arg2] w

e1 = if b1≠nil then genExp[getNode(<var(b1)>.<a1>)] else a1

e2 = if b2≠nil then genExp[getNode(<var(b2)>.<a2>)] else a2

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

220 Copyright ⓒ 2014 SERSC

In XQuery, most tree patterns are from FLWOR expression, especially the case which

exists multiple for clause and let clause. In FXQL, such query often represents as the

combination of several foreach, cross, filter query operators and where expression. The rule

(7) describe the rewriting rule for extracting tree pattern from projection operation foreach

function which are translated by for clause in FLOWR expression. The rewriting rule for

where expression, which translated from let clause, is shown in rule (8). For all the variables

vi defined in where expression, corresponding expression ai will be constructed after rewriting

the definition expression expi of each variable. However, this where expression may occur in

the combination of computation among query operators, as well as the condition branches or

Table 4. Expression Rewriting Rules of Other Expressions

NO. Expression Extraction Rule

(6)

ExtraExp[axis(exp, test[fun(_dot,_pos,_sz)exp1]… [fun(_dot,_pos,_sz)expn])] w =

if axis{child, desendent-or-self, attribute} then

 if b’≠ nil then <v, b#> else <genExp[<v> with <b#>], nil>
 where <e0, b’> = ExtraExp[exp] <x, b> w

b”= if b’≠nil then b’ else genTBind[<newVar()>=<e0>]

v = newVar()
 <ei, bi> = ExtraExp[expi] <v, b”> w for i=1,…,n

n = newTNode(v, axis, test)

pi = if bi≠nil then Ø else genPred[ei] for i=1,…,n
n’ = addPred(n, p1…pn)

b# = addTNode(b”, v, n’)

else <a,nil >
where <e0, b’>= ExtraExp[exp]w

e’= if b’≠nil then genExp[<var(b).<e0>] else e0

v = newVar()
b0= newTBind(v, e’)

<ei, bi> =ExtraExp[expi]υfor i=1,…,n

pi=if bi≠nilthen Ø else genPred[fun(_dot,_pos,_sz)ei]
a = genExp[axis(<v>, <test><p1>…<pn>)]

ExtraExp[foreach(exp1,fun(v) exp0)]w =

if b1≠nil then
if b0≠nil then <e0,b0> else <genExp[foreach(<var(b1)>.<e1>, fun(v) e0)], nil>

where u = w ++ <v, <e1,b1>>, <e0, b0> = ExtraExp[exp0] <x, b> u

else
if b0≠nil then <e0, b’> else <genExp[foreach(<e1>, fun(v) e0) with b’], nil>

where v’ = newVar()

b’ = genTBind[<v’>=<e1>]
u = w ++ <v, <v’,b’>>

<e0, b0> = ExtraExp[exp0] <x, b> u

 where <e1, b1> = ExtraExp[exp1] w

ExtraExp[exp0 where v1 = exp1, …, vn = expn]w =

if x=’#’ then

if b0≠nil then <genExp[<var(b0).<e0> with <b0>], nil> else <genExp[<e0> where <defs>], nil>

where vs = getVar(e0, v1…vn), defs = genDefs(vs, v1…vn, a1..an)

else
if b0≠nil then

 if inOutside(b0, b, υ) then <e0, b0> else <genExp[<var(b0)>,<e0> with <b0>], nil>

else <genExp[<e0> where <defs>], nil>
where <ei, bi> = ExtraExp[expi]<x,b> υ for i=1,…,n

ai = if bi=nil then ei

else if inOutside(bi, b, υ) then genExp[<var(bi)>.<ei>] else genExp[<var(bi)>.<ei> with bi]

bdi = if bi≠nil then <vi,<ai,bi>> else Ø for i=1,…,n

u = w ++ bd1 ++ … ++ bdn
<e0, b0> = ExtraExp[exp0] <x, b> u

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 221

Algorithm TPQMerge
Input: tHe context environment list u
Output: the context environment list after being merged

1. logical_merge(u); // merge current environment by AND node
2. p = u;
3. while p is not the top level environment do
4. p = next(u) ; // get the parent environment of u
5. logical_merge(p);
6. p = u;
7. while p is not the top level environment do
8. p = merge(p); // merge the TPQs in p to its parent environment by optional relationship
9. return p;

Procedure logical_merge(u)
10. divide the TPQs in u into groups g1…gn based on the root of TPQ, so that the root of every TPQ in one group bind to a same variable;
11. for each g in (gi…gn)
12. merge the TPQs in g with logical and node;
13. return u;

Procedure merge(u)

14. p = next(u)

15. for each tree pattern tu in u do

16. src = root(tu);

17. if src is variable and p(src) != null

18. extend p(src) with tu via optional relationship;

19. return p;

Figure 5. Example of GTP++ Construction

actual arguments of functions. For the former case, axis operations in where expression

should be extended to tree patterns as much as possible. In the latter case, there may be

internal tree patterns after rewriting of where expression. If x=’#’, it can be sure that external

tree patterns will not involve the internal axis operations, a new where clause should be

constructed (using genDefs). Internal tree patterns will be occurred in the definition of the

new expression. Otherwise, for the where expression used in the combination of query

operators, the tree pattern within the main body expression after rewriting should be

determined is an external tree pattern or internal tree pattern (using inOutside). It returns

directly if it is a branch variable of an external tree pattern, so as to guarantee that the axis

operation in let clause will be merged into tree patterns.

The previous rules have shown the approach for extracting tree pattern which cover FXQL

core expressions. The similar rules can be applied to process other FXQL expressions.

5.2. Construction of GTP++

After the rewriting of basic tree pattern extraction, all extracted basic tree patterns are store

in the environment list. Let us support that t and t’ are two tree patterns extracted by previous

expression rewriting rules. If the root node of t binds to a tree pattern branch variable within

t’, we say that t is depended on t’. GTP++ can be constructed by connecting the directly

related tree patterns using optional relationship, according to the dependent relationships

between different tree patterns.

The algorithm TPQMerge described in Figure 5 merges the basic tree patterns in the

environment list into GTP++. Line1-5 merge the tree patterns within each layer of

environment list, for the tree patterns in the same layer, if the root of these tree patterns refer

to a same variable, then merge them via AND node. The procedure logical_merge is used to

merge the TPs which belong to a same layer of environment; Line 7-9 merge the tree patterns

which belong to different layers, if these are dependency among these tree patterns, then

connect these related tree patterns with optional relationship by procedure merge.

Figure 6 illustrates the example of merging several basic tree patterns to the single GTP++

which is corresponds to Q1. Fig. 6 (a) shows the initial state, which contains an environment

list, L0, L1, L2, L3 and L4. Firstly, it process the tree patterns in the same layers of environment.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

222 Copyright ⓒ 2014 SERSC

V1dot

V2book $b

V3author

V2$b

V4title

V2$b

V7

author[_pos<=2]
V6price $a

V7$a

V8first

V2$b

L0

L1

L2

L3

V7$a

V9last

L4

V1dot

V2book $b

V3author

V2$b

V4title

V2$b

V7

author[_pos<=2]
V6price $a

V7$a

V8first

L0

L1

L2

L3

V7$a

V9last

L4

V5 AND

V1dot

V2book $b

V3author

V2$b

V4title

V2$b

V7

author[_pos<=2]
V6price $a

V7$a

V8first

L0

L1

L2

L3

V7$a

V9last

V5 AND

V1dot

V2book $b

V3author

V2$b

V4title

V2$b

V7

author[_pos<=2]
V6price $a

V8first

L0

L1

L2

V9last

V5 AND

V1dot

V2book $b

V3

author

V4

title

V7

author[_pos<=2]

V6price $a

V8

first

L0

V9

last

V5 AND

Figure 6. The Example of Merging TPQs to GTP++

 The tree patterns in L2 whose roots refer to a same variable $b are merged to a single

GTP++ by AND node, the result is shown in (b). Secondly, it will merge the tree patterns

among different layers of environment. Because tree pattern in L4 does not depend on any tree

patterns in L3, it is simply merged into L3, though the roots of tree patterns both refer to $a.

Figure 6 (c) shows the result after merging L4 to L3. Then, the roots of tree patterns which

refers to $a in L3 are depended on tree pattern in L2, so merge them into tree pattern in L2 by

optional relationships, as shown in (d). Now tree patterns in L2 and L1 will be merged

similarly. Figure 6 (e) shows the final result. Eventually, the six initial basic tree patterns are

merged into a single GTP++ via logical node and optional relationship mechanism.

6. Experiments

We have implemented an XQuery engine with FXQL, in which an extend tree pattern

matching algorithm is used to evaluate the GTP++ in an FXQL interpreter. This section

presents experimental study using DBLP (size of 127MB) and XMark (sizeof 111MB) as a

benchmark, which are carried out on a Windows 7 PC with Intel Core i5-2300 2.67Ghz CPU,

2G RAM and the JRE of version 1.6. The XQuery programs used in experiments are shown

in Table 5. We compared our approach with pattern extract approaches [2] and [10] and they

are denoted as myExt, Ext2 and Ext14 in the experiment respectively. Each sample XQuery

programs is translated into FXQL and TPQs are extracted by three approaches. Every FXQL

program with different TPQs is running on the same engine which is developed by our group.

The experiments are divided into three groups: (1) Compare the execution time of each

program with the TPQs which are extracted by three approaches. (2) Compare the size of the

query results of the TPQs which are extracted from each XQuery program in Appendix

except DQ1 and XM1 by myExt and Ext14. (3) Compare the execution time of each program

with the TPQs which are extracted by three approaches in the case of the same query and

different amount of data.

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 223

0

1000

2000

3000

4000

5000

6000

 XQ1 XQ2 XQ3

E
xe

c
u

ti
o

n
 t

ie
(m

s
)

XMark Dataset

Ext2

Ext14

MyExt

0

2000

4000

6000

8000

10000

12000

14000

 DQ1 DQ2 DQ3

E
xe

c
u

ti
o

n
 t

im
e
(m

s
)

DBLP Dataset

Ext2

Ext14

MyExt

Figure 7. The Execution Time of TPQs

The results of the first group are shown in Figure 7. It illustrates that the running speed of

programs with TPQs extracted by Ext2 is obviously slower than the other two, since smaller

TPQs are extracted by [2] so that it has to perform more evaluation of TPQs. Since the

number of TPQs extracted by the other two approaches is same, the execution times for them

are almost same.

On the other hand, the result size of the TPQs extracted by our approach is smaller than

[10], as shown in Table 6. The reason is that our GTP++ contains more logical constraints

like AND, OR and NOT which may filter more useless nodes. Besides, DQ4 is a special case

using of logical operation NOT, which is only supported by our approach.

The third group makes an account on the execution time of XQ1 and XQ2 in the case of

different size of XMark benchmark, Figure 8 shows the trend. The trend indicates that the

distinction between Ext2 and myExt becomes more obvious with the increase of data sets,

Table 5. XQuery Programs Used in Experiments

NO. XQuery Program

DQ1
for $b in doc(“dblp.xml”)//book return <book>{$b//title,

for $a in $b//author return <first>{$a/first}</first>}</book>

DQ2
for $b in doc(“dblp.xml”)//book return <res>{$b//title,

for $e in $b//editor where $b//url return $e}</res>

DQ3
for $b in doc(“dblp.xml”)//article where $b//ee or $b//author
return <res>{$b//title, for $e in $b//author return $e}</res>

DQ4
for $b in doc(“dblp.xml”)//book

where not($b//editor) return $b

XQ1
for $x in doc("XMark.xml")//item[//mail] return <res> { $x/name/text(),
for $y in $x//listitem return <key> { $y//keyword } </key> }</res>

XQ2
for $x in doc("XMark.xml")//open_auction

return <res> { $x//current, for $y in $x//listitem where $x//privacy return $y//keyword }</res>

XQ3

for $x in doc("XMark.xml")//open_auction

where $x//privacy or $x//reserve

return <res>{$x//current,for $y in $x//listitem return $y//keyword }</res>

Table 6. Size of Sesults

Query Dataset Ext14 MyExt

DQ2 DBLP 1113 973

DQ3 DBLP 446683 444565

DQ4 DBLP N/A 780

XM2 XMark 75519 34181

XM3 XMark 34106 28609

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

224 Copyright ⓒ 2014 SERSC

26.5KB 1.12MB 11.3MB 56.2MB 111MB

Ext2 13 103 614 2570 3488

Ext14 7 51 267 1240 1923

MyExt 7 53 283 1226 2066

0

1000

2000

3000

4000

E
xe

c
u

ti
o

n
 t

im
e
(m

s
)

XQ2

26.5KB 1.12MB 11.3MB 56.2MB 111MB

Ext2 14 92 552 2416 4833

Ext14 7 52 288 1224 2529

MyExt 7 52 294 1283 2541

0

1000

2000

3000

4000

5000

6000

E
xe

c
u

ti
o

n
 t

im
e
(m

s
)

XQ1

Figure 8. The Trend of Execution Time in Different Size of Dataset

while Ext14 and myExt are very close, since the amount of TP extracted by these two

approach are same, the result is consistent with group 2.

7. Conclusion

In this paper, we extend the functional intermediate language FXQL, which is used to

implement XQuery language, with an extended XML generalized tree pattern representation

(GTP++). Then, we propose an XML tree pattern identification approach, which is composed

of a suit of query expression rewriting rules for extracting tree pattern and a GTP++

construction algorithm. It can identify larger tree patterns than previous works, even in the

case of patterns across nested query blocks. Based on this approach, both displayed and

implied propositional logic, various structural constraints and predicates can be extracted

across nested query blocks in XQuery FLWOR expressions. The tree pattern identified by this

approach is more holistic and precisely than previous methods. The approach expands the

application of XML tree pattern query technology in the implementation of XQuery language.

Experiments show its effectiveness and practicability.

Acknowledgements

This work was both supported in part by the Beijing Nature Science Foundation under

Grant 4122011and the National Science Foundation for Young Scientists of China under

Grant 61202074.

References

[1] G. Ghelli and G. Grahne, “Editors, TAX: A Tree Algebra for XML”, Proceedings of the 8h International

Workshop Database Programming Languages, (2001) September 8-10, Frascati, Italy.

[2] Z. Chen, H. V. Jagadish, L. V. S. Laksh-manan and S. Paparizos, “From tree patterns to generalized tree

patterns: on efficient evaluation of XQuery”, Proceedings of the 29th international conference on Very

large data bases, (2003) September 9-12, Berlin, Germany.

[3] S. Paparizos, Y. Wu, L. V. S. Lakshmanan and H. V. Jagadish, “Tree logical classes for efficient

evaluation of XQuery”, Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, (2004) June 13-18, Paris, France.

[4] S. K. Izadi, T. Harder and M. S. Haghjoo, “Data Knowl”, Eng. vol. 68, (2009), pp. 126.

[5] Y. Chen, “Adv. Knowl. Discovery Data Min.”, vol. 3056, (2004), pp. 559.

[6] Q. Zeng, X. Jiang and Z. Hai, “Adding Logical Operators to Tree Pattern Queries on Graph Structured

Data”, Proceedings of the 38th international conference on Very large data bases, (2012) August 27-31,

Istanbul, Turkey.

[7] J. H. Lu, T. W. Ling, Z. F. Bao and C. Wang, “IEEE Trans. Knowl.”, Data Eng., vol. 23, (2011), pp. 402.

International Journal of Database Theory and Apllication

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 225

[8] P. Michiels, G. A. Mihaila and J. Simeon, “Put a Tree Pattern in Your Algebra”, Proceedings of the 23rd

International Conference on Data Engineering, (2007) April 15-20, Istanbul, Turkey.

[9] K. Beyer, F. Ozcan, S. Saiprasad and B. V. Linden, “DB2/XML: designing for evolution”, Proceedings

of the 2005 ACM SIGMOD international conference on Management of data, (2005) June 13-16,

Baltimore, Maryland, USA.

[10] H. L. Larsen, G. Pasi, D. O. Arroyo, T. Andreasen and H. Christiansen, “Algebra-based identification of

tree patterns in XQuery”, Proceedings of the 7th International Conference on Flexible Query Answering

Systems”, (2006) June 7-10, Milan, Italy.

[11] M. Hachicha and J. Darmont, “IEEE Trans. Knowl. Data Eng.”, vol. 25, (2013), pp. 29.

[12] H. S. Liao and X. Q. Li, “Front. Comput. Sci. and Technol”, vol. 7, (2013), pp. 431, (in Chinese).

[13] X. B. Zhang and H. S. Liao, “Front. Comput. Sci. and Technol.”, vol. 4, (2010), pp. 996, (in Chinese).

Authors

Husheng Liao, was born in Changchun in 1954. He is a professor and

doctoral supervisor at Beijing University of Technology in P.R.China.

His research interests include software automation methods and data

integration technology, etc.

Xiaoqing Li, was born in Tangshan in 1983. She is a Ph.D. candidate

at Beijing University of Technology in P.R.China. Her research interest

is XML database technology.

Junpeng Chen, was born in Wenzhou in 1988. He is a M.S. candidate

at Beijing Universityof Technology in P.R.China. his research interest is

XML database technology.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

226 Copyright ⓒ 2014 SERSC

