
International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-200

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

An Object-Oriented Design Methodology Based on Object Service Tier

(OST) Middleware in HLA Framework for the Distributed Simulation

System Environment

Usman Sikander

usmansikander@yahoo.com

Abstract

Promising the developers with the facility of distributed collaborative development for

complex simulation applications, HLA (High Level Architecture) provides a baseline supporting

the reuse of capabilities available in different simulations with a significant reduction in cost

and time. Along with improved execution process and reusability, the induction of object

oriented model in the implementation design of HLA also enable to take the advantage of latest

object oriented features making design, implementation and maintainability easier and at each

level of federate development and execution.

The important areas to be addressed for design reconsideration consists of data exchange

model and HLA communication layer. The data exchange model comprises of federates in

federation and between runtime infrastructure and federation. The Federate Object Model

(FOM) architecture is not completely object oriented, the induction of Object Service Tier

(OST) middleware may offer a degree of FOM agility which is the ability of an application to

adjust according to different FOMs (behaviors for Federates). Whereas, in HLA communication

layer, customary HLA systems are based upon bidirectional call/callback interactions between

federate. Several enhancements and changes anticipated in object oriented communication

layer (OOP-COMM) introduced in Object Service Tier (OST) as compared to native

procedures, such as communication mechanisms, data encoding, session handling, distributed

environment and performance analysis.

The motivation behind the use of core object oriented modeling features and proposed Object

Service Tier (OST) middleware is the reuse of legacy systems, features which may further

enhance the integration of distributed simulation systems and extension types. So, this paper

provides a multidimensional analysis of important design aspects of Object Service Tier (OST)

middleware in HLA framework and devises some design constructs of Object Service Tier

(OST) using object oriented model. This paper is intended to propose object-oriented model

providing generalization through the Object Service Tier (OST) middleware in HLA framework

for the distributed simulation system environment.

Keywords: HLA, Middleware, Simulation Middleware Object Classes, Java, FOM, Code

generation, OO-HLA, distributed computer simulations

1. Introduction

1.1 Background and Introduction of HLA Architecture

HLA architecture is extended across a wide range of simulation areas, including education,

training, examination and engineering. Definition of HLA includes major functional elements,

interfaces, design rules, and provides a common framework within which specific system

architectures can be defined. This definition is in accordance with the IEEE definition of

mailto:humma@engineer.com

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

188 Copyright ⓒ 2014 SERSC

architecture for distributed computer simulations. The HLA does not specify an

implementation, and also does not suggest the use of any particular software or programming

language [2].

1.2 HLA Framework Artifact

Important vocabularies defining the basics for HLA Framework [2] are:

Federation: It is set of federates with a common Federation Object Model. The federation

consist of a number of sub-systems that together with a Runtime Infrastructure (RTI) forms

simulation model, i.e., a simulator.

Federate: A federate can be a sub-system of a simulator or a whole simulator in a multi-

simulator Federation.

Runtime Infrastructure (RTI): This is central kernel in the architecture of a simulator. All

Federates communicate through the runtime infrastructure.

Object Model Template (OMT): A documentation standard for the consistency of data and

interactions, used for communication between HLA Federates.

Federation Object Model (FOM): The common description of interactions to be

communicated between Federates in a Federation. The Runtime Infrastructure (RTI) uses the

FOM for routing the information between Federates.

Simulation Object Model (SOM): Each Federate provides Objects and Interactions to a

Federation. The description of a Federate Objects and Interactions is called the SOM. SOMs of

all Federates together constitute the Federation Object Model (FOM).

1.3 HLA Communication Policy

The relations between federation components in HLA framework obey following rules [4]:

1. Federations shall have an HLA Federation Object Model (FOM), standardized in accord with

the HLA Object Model Template (OMT).

2. During a federation execution, all interaction of FOM data among federates shall occur via

the RTI.

4. Federates shall interact with the runtime infrastructure (RTI) in accord with the HLA

interface specification, during a federation execution.

5. Federates shall have an HLA Simulation Object Model (SOM), standardized in accord with

the HLA Object Model Template (OMT).

6. Federates shall be able to send and/or receive SOM object interactions externally, as specified

in their SOM.

International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-202

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

Copyright ⓒ 2014 SERSC 189

Figure 1. Functional Specification of HLA Framework

HLA framework support federate execution, simulation interaction and interoperability for

data exchange between real-time simulations, paced systems, time-stepped simulation and

event-driven systems as depicted in the Figure 1.

2. Object Service Object Service Tier (OST) in HLA Framework

Behavioral changes are an important phenomenon during simulation as entities are evolved

during course of a simulation. Object Service Tier (OST) is proposed in view of state full and

stateless behavioral changes in simulation systems. Object oriented principles, concepts and

constructs are applied to achieve the behavioral changes of entities involved in simulation.

These behavioral changes are either due to simulation or user intervention. For example, an

armored vehicle unit may become a scout and later an artillery observation unit [5]. OST acting

a middleware will simplify the use of HLA by providing abstraction and wrapper layer which

ease the limitations faced by novice developers. A number of such intermediate layer

implementations for the HLA have been available.

2.1 HLA Architecture without OST

An application not introducing an Object Service Tier (OST) will need to call the RTI using

the typical services in the HLA interface Specification as described in the previous section

“Introduction to HLA Framework”

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

190 Copyright ⓒ 2014 SERSC

2.2 Process without Object Service Tier (OST)

Without OST, the application (program/client/federate) has to initiate a remote interface to

which it makes calls. Callbacks from the RTI are sent to a federate ambassador object (FAO)

that was initially supplied by the application (program/client/federate) [6].

The developer needs to understand at least the core calling interfaces, which are by definition

 Federation Creation

 Federation Joining

 Publishing and Subscribing

 Object Registration

All the development involving code for federate development and interactions with RTI through

the interfaces is to be done from beginning.

Figure 2. HLA Integration without Intermediate Layer

This indulges all developers to develop an initial prototype of federates with a sample

federate and extend it to fit their needs. This process takes time and needs expertise at each level

of federate design and implementation. The resulting code will be static and less scalable.

2.3 Process with Object Service Tier (OST)

Introduction of an object-service tier (OST) is designed to yield a level of abstraction

between the simulation modeler and the details of the RTI. This will improve development time

as well as add scalability and robustness as only fine details are involved [7].

Customary ways of federate execution requires in depth understanding and detail handling of

all the federate creation, joining, publishing and registering processes. Proposed object service

tier (OST) provides openness, flexibility, and scalability that are needed by enterprises to

develop and deploy simulation applications efficiently and independent. Decreased coupling

isolates the general requirements and limitation of HLA process from problem design.

A

P

P

L

I

C

A

T

I

O

N

R
T
I

Federate Creation Process

Publish/Subscribe Process

Registration Process

Multiple Protocol Support

Exception Handling

International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-202

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

Copyright ⓒ 2014 SERSC 191

2.4 Design Methodology

A basic object service tier OST middleware is shown in the Figure 3 and it consists of: [8]

 An Object Service Tier Core (OST)

 Layer Containers that run within the object service tier (OST) Core (LC)

 Service Modules that run within Layer Containers (SMC)

 Finally federates in the federation and RTI to provide runtime services

Figure 3. Object Service Tier Architecture

OBJECT SERVICE TIER CORE:

The Object Service Tier (OST) core provides an organized framework and execution

environment for layer containers (LC) which encapsulates set of HLA services to run in. OST

makes available system services for exception handling, network distribution of messages,

multiprocessing, load-balancing among federates, or/and device access for Layer Container

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

192 Copyright ⓒ 2014 SERSC

(LC). The Object Service Tier (OST) may also offer control access and permissions for Layer

container (LC) services, through creational patterns.

The Object Service Tier (OST) may also facilities simulation and requirement specific

features like data optimization, control interfaces, or any additional Services as needed by

distributed simulation requirement.

LAYER CONTAINER:

A Layer container (LC) acts as the interface between a Federate and low-level, platform-

specific functionality that supports the integration between Federate and RTI. The Layer

container is an abstraction that manages one or more core services required by RTI to

communicate with federate. Standard interfaces are described in Layer Container (LC) as

defined in HLA specification, to provide core services. A federate never accesses a

concept/entity or passes a message directly to RTI. Any message or concept is accessed through

Layer Container (LC) modules, which in turn invoke the RTI.

There are two types of service methodologies for layer containers (LC):

 Calling layer containers that may contain transient, non-persistent services/messages

for federates whose states are not saved at all.

 Entity services layer containers that contain persistent services/messages for federates

whose states are saved between subsequent requests.

So layer container manages different layers of discrete importance to RTI by providing wrapper

for multiple services in OST, providing core functionality to RTI and federates.

Two of major HLA architecture constructs are taken into consideration for proposal of design

methodology using OST middleware in context of Layer Container (LC) and functional services

[6].

3. OOP-FOM Model in Object Service Tier

Federation Object Models (FOMs) are responsible for data exchange within federation (i.e.,

multiple simulations) [9].The FOM describes a static design that restricts the simulation product

dynamism and intricate development efficiency (e.g., it is difficult to extend and structure FOM

dynamically after creating a federation).

In HLA specification two types of data exchange models are:[10]

 Federation Object Model (FOM)

 Simulation Object Model (SOM).

Object Model Template (OMT) is proposed to achieve following considerations in the HLA

architecture [13]:

(1) It provides systematic blueprint to specify the format of data exchanged at runtime for

HLA federations

(2) Standardizes format for specifying the external interface of each HLA federates.

As HLA framework is not strictly object oriented, it imposes entity approach for

communication between federates in federation. The information is usually transferred using

standard input files. Implementation of such files is difficult static, which requires all effort at

design time.

International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-202

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

Copyright ⓒ 2014 SERSC 193

In view of above and other limitations a signature based representation of elements is

proposed that arrange the FOM/SOM in the Object Service Tier (OST) middleware for

descriptions of concepts/entities to carry out requirements described by object model template

(OMT) [14]. The design and structure of projected Object oriented federate object (OOP-FOM)

model is depicted in Figure 4.

A signature primarily describes the structure of group of related FOM entities [16]. Including

this a signature may also define entity types, their attributes, the types of those attributes, and

the relationships allowed between the FOM/SOM entities. In other words, signature provides

statements which include a list of goals and a definitive enumeration of key concepts within a

domain addressed by FOM/SOM. The Object Service Tier (OST) middleware interprets the

information provided in the form of signatures and makes decisions by services managed by

Layer Container (LC) without adding or modifying code. Using this multiple FOMs are

supported without code modification and across multiple federates in federation.

Figure 4. Design Methodology Of OOP-FOM

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

194 Copyright ⓒ 2014 SERSC

The signature representing entities involved in a particular FOM can be modeled using:

 Conceptual model,

 Dynamic model,

 Functional model.

The conceptual model represents the artifacts (pieces) of the signature i.e., entities. The

dynamic model represents the interaction between these artifacts represented as event, status,

and evolution during simulation. The functional model represents the scheme of information

exchange flow between participating artifacts.

Figure 5. OOP-FOM Systems Flow

As base signature entities will be located at a meta-level with regard to individual concepts

and relations between federates, all the related concepts of federate are instances of a signature,

as depicted in Figure 5.

Concepts involved in messages may have properties that are complex, and therefore, difficult

to generalize. However, in proposed object service tier (OST) the number of possible types

(structure) for such properties is predetermined as each federate has a certain role in federation.

Many properties of different concepts involve in federation are related through various

associations, which adds dynamism by identifying specific OOP-FOM during execution. OOP-

FOM define base signature concept that can monitor and modify itself according to a desired

goal to support tracking or modification during message passing at runtime.

International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-202

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

Copyright ⓒ 2014 SERSC 195

Properties related to specific entity can be stored as a particular data or structure. This

maintains state of a particular concept involved in federation, which helps to describe and

identify a certain federation.

4. OOP-Communication Layer in Object Service Tier (OST):

The intent to propose a design methodology of OOP-COMM layer within OST middleware

is reusability, data compatibility and providing an abstraction for the distributed separated

simulation systems.

OOP-COMM divides Object Model Template (OMT) into discrete parts that can be

expanded to form the generalized data communication model. OOP-COMM also assists in

dealing with real time decision or application integration problems in an extremely dynamic and

agile sphere, such as net-centric war-game. The unique idea of dynamic rapid integration and

simulation on demand is achieved efficiently.

4.1 Importance of OOP-Comm Model in OST

OOP-COMM services, managed through Layer Container (LC) in OST middleware will

serve as mature commercial off the shelf components.Protocols involved will increase the

interopartibilty[17]. The OOP-COMM layer in OST middleware uses interfaces to provide

contractual bindings in federate and RTI conforming to HLA interface specification. The

interfaces defined by object service tier (OST) isolates the concerns of federates and RTI.

The OOP-COMM model is scalable as the identical interface chain is used by several

fedrates in the federation at a time.Customary HLA communication is strongly coupled because

of reliance upon static SOM and FOM. OOP-COMM achieve loose coupling due to indirect

addressing by involvement of association amoung concern entities involved in data transfer and

message passing.Use of interfaces (indirect addressing) provide independence from dissimilar

contexts making data interchange model more flexible.

Lagacy HLA systems are based upon bidirectional callback communications between

federates and RTI using TCP and UDP for data transportation. RTI has to use many LRS (local

resource services) for data exchange while each could connect one federate at the time [17].

In OOP-COMM layer unidirectional request/response interactions and messages are

transfered by signatures over data channel reducing network traffic and can address multiple

federates. Data encoding used normally in lagacy HLA systems is binary supported while data

encoding in OOP-Communication layer are reuseable components based upon readable strings

or xml formats which provides paltform and components independency.

OOP-COMM Layer in OST framework is flexible enough to introduce standardized

representations of 64 bit data structure/type to be compatible with 64-bit architecture.

As simulation entities change their states and behavior over time, native legacy methodology

uses Local Resource Services (LRS) to maintain the states of local federates. Sessions can be

used to maintain the state of remote federates in OOP-COMM due to involvement of signatures

which are inherently state full. This provides solution to handle multiple federates through

several sessions.

Reusability and flexibility features of object service tier (OST) middleware enhance object

oriented communication model (OOP-COMM) in its mechanism [14].

Connection between federate may break down due to federate or network failure. Object

service tier (OST) will maintain the session for some time and if the connection is recovered in

allowed period, simulation will resume which endorse fault-tolerance of simulation federation.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

196 Copyright ⓒ 2014 SERSC

In the meantime, object service tier (OST) checks sessions at regular times. The time-out

sessions are treated as invalid ones and will be terminated [16].

4.2 Proposed Design Methodology for OOP-Communication Layer

Figure 6. OOP-COMM Layer Processes [21]

The design considerations of OOP-COMM model is described below.

4.3 Design Goals

The OOP -COMM model goal is to achieve the facility which easily replaces any simulation

component with little or no software modifications. The OOP-COMM model components are

designed to be self contained and provide communication architecture to HLA framework using

well defined interfaces. Following are the basic constructs involved to achieve OOP-COMM

desired design.

BASE FEDERATE CONCEPT: It is responsible for maintaining the state information,

sending and receiving this information over HLA network using OOP-COMM subsystems

(federates) request to subscribe/publish entities, messages or interactions. Once registered to

HLA network, federates define an interface for update to be notified by OOP-COMM layer.

OOP-COMM layer handles the data that can be transmitted as concepts or interactions. A

concept can contain data as attributes and properties. The fundamental difference between

concepts and interactions is that the state of a concept persists throughout time, while an

interaction is a onetime message that is sent and then ceases to exist.

International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-202

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

Copyright ⓒ 2014 SERSC 197

Figure 7. Design Methodology of OOP-COMM

FEDERATE CONCEPT: Federate Factory is responsible for locating, creating and removing

instances of base federate concept represented through signature model as depicted in figure

above.

FEDERATE CONCEPTS LISTENER: The Federate Concept Listener interface provides

methods/services to be implemented by base federate concept. This type of framework makes it

possible to create a standard startup template for novice users.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

198 Copyright ⓒ 2014 SERSC

FEDERATE FACTORY: Federate factory provides an abstract layer hiding underlying

complexity of resource allocation, thread acquisition involved in instance creation to facilitate

calling modules limiting dependency and coupling.

THE FEDERATE REMOTE INTERFACE: The remote interface in the federate provides

certain services and lists the service methods available by the federate. The base federate

concept is the client’s view (simulation) request involved in simulation and implements the

remote interface through federate concept listener.

OBJECT SERVICE TIER (OST) INTERACTION FRAMEWORK: The base federate

concept itself is contained within an object service tier (OST) container, and should never be

directly accessed by external entity or interface. The object service tier (OST) should mediate

all base federate concept accesses. The remote interface definitions are provided through

federate concept listener which prevents unsecure accesses from different federates in

federation. It helps to ensure that the messages are addressed by particular federate concept in

OST middleware. It also allow for resource pooling so that certain federate concept instances

are created and are in pool waiting to fulfill the request.

FEDERATE AND RTI INTERACTION FRAMEWORK: Federate locate the specific

federate concept in OST through Initial Object Context (IOC). The OST is responsible to

invoke the required services through Object Management Service (OMS). Federates involved in

federation only get a reference to base federate concept instance through federation concept

listener. When the federate client invokes a method, the Object Management Service (OMS)

receives the request and delegates it to the corresponding base federate concept instance while

providing any necessary wrapping functionality like Stream helper classes, object management,

data encoding etc.

The federate uses the federate factory to create or destroy instances of a base federate concept.

Federate uses the federate concept listener instance, to invoke the methods of an actual federate

class.

CONCEPTS MANAGEMENT SERVICE: Concept Management Service (CMS) deals with

the registration, modification, and request/response of messages as the federation concepts [22]

are made available through Service Locator Interface (SLI). Support Service like Get

ClassName, GettRemoteException etc is also served through Object Management Service

(OMS).

5. Conclusion

The proposed object service tier (OST) middleware approach in HLA Federation architecture

minimizes the level of HLA and enables them to focus the simulation behavior of the system

[23]. The programming complexities of the RTI are encapsulated and requirements necessary to

develop federate software are lessened. Robust conceptual code skeleton for federates and HLA

entities is achieved. At the same time extending inherit features of HLA scalability, time

management, synchronization, states maintenance and performance.

The Object Service Tier (OST) middleware in HLA reflects the idea of simulation as object

model [55]. Using object oriented federate object model (OOP-FOM) layer in object service tier

(OST) middleware ensures HLA framework to center on interoperability, interactions between

simulation components and effective information interchange among resources [24] by using

signature model services of generalization and abstraction for scalability, state maintenance and

International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.187-202

http://dx.doi.org/10.14257/ijdta.2014.7.5.14

Copyright ⓒ 2014 SERSC 199

performance. The combination of HLA and OOP-FOM model can largely extend the capability

of simulation frameworks.

OOP-COMM in OST middleware makes deployment and access of simulation application

convenient in distant communication involving firewall access and heterogeneous resources.

Conceptually OST middleware framework is a trade-off between performance and

modularization. For Example: OOP-COMM model is based on XML with string-encoded data

and the encoding/decoding overhead makes transmission efficiency lower than that with binary

data.

Simulation applications that are developed using OST proposed object model have important

research value and wide application prospect as they encourage the transformation of current

simulation resources and the development of new applications. Further research on other

services of OST middleware is underway. OOP-FOM and OOP-COMM will provide the basis

for further research. Moreover efficiency of current model in existing HLA implementation will

be evaluated using Benchmarks.

References

[1]. W. Y. Min and G. Tag, “Design and Implementations of Surrogates for Interoperation of HLA Federations”,

Kim School of EECS KAIST 373 -1 Kusong - dong, Yusong -guDaejeon, Korea pp. 305-701.

[2]. High-level architecture (simulation) from wikipedia free encyclopedia, en.wikipedia.org/wiki/High-

level_architecture_(simulation).

[3]. J. P. Sousa and D. Garlan, “Formal Modeling of the Enterprise JavaBeans ™ Component Integration

Framework September 2000 CMU-CS-00-162 ,School of Computer Science Carnegie Mellon University,

Pittsburgh, PA 15213 US.

[4]. Dr. Çağatay ÜNDEĞER, Öğretim Görevlisi, “A Distributed Simulation Standard: High Level Architecture

(HLA)”, Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü.

[5]. D. Theotokis, A. Sotiropoulou and G. Gyftodimos, “Transparent Modeling Of Objects Evolution ,Department of

Computer Science and Technology”, School of Science and Technology, University of Peloponnese, GR 22100

Tripolis, Grecce.

[6]. B. Möller and F. Antelius, “Object-Oriented HLA - Does One Size Fit All?”, bjorn.moller@pitch.se

fredrik.antelius@pitch.se.

[7]. R. Shweta, “Evolution of Middleware Technology and Its Widespread Applications”, Department of Computer

Science, Ajay Kumar Garg Engineering College,Ghaziabad.

[8]. M. Salehie, S. Li and L. Tahvildari, “Architectural Recovery of JBoss Application Server,Electrical and

Computer Engineering,University of Waterloo,Waterloo”, Ontario,Technical Report UW-ECE#2005-

02,February (2005).

[9]. W. G. Wang, Y. P. Xu, X. Chen, Q. Li and W. P. Wang, “High level architecture evolved modular federation

object model”, College of Information System and Management, National University of Defense Technology,

Changsha 410073, P. R. China (2008).

[10]. J. S. Dahmann, R. M. Fujimoto and R. M. Weatherly, “The DOD High Level Architecture: An Update”,

Defense Modeling and Simulation Office N. Beauregard Street Alexandria, VA 22311 College of Computing,

Georgia Institute of Technology, Atlanta, GA 30332-0280, The MITRE Corporation,7525 Colshire

Drive,McLean, VA 22102-3481, (1901).

[11]. R. Singh and H. S. Sarjoughian, “Software Architecture for Object-Oriented Simulation Modeling and

Simulation Environments: Case Study and Approach Technical Report TR-03-09 Sept. Dept. of Computer

Science & Engineering Ira A. Fulton School of Engineering Arizona State University Tempe”, Arizona,

85287-5406, USA, (2003).

[12]. M. D. Myjak, S. T. Sharp, T. Lake and K. Briggs, “Object Transfer In HLA,The Virtual Workshop, & HLA

Products, Inc”, P. O. Box 98 Titusville, FL 32781.

[13]. R. R. Lutz, “Migrating the HLA OMT to an IEEE Standard, Johns Hopkins APL Technical Digest, vol. 21, no.

3, (2000).

[14]. Dr. A. Tolk, “HLA-OMT versus Traditional Data and Object Modeling (Updated and Extended Version for the

6. ICCRTS)”, Industrieanlagen-Betriebsgesellschaft mbH (IABG) ,Einsteinstr. 20 D-85521 Ottobrunn,

Germany.

[15]. The HLA Tutorial, “A Practical Guide for developing Distributed Simulations www.pitch.se/hlatutorial

Copyright Pitch Technologies AB”, Sweden, (2012).

mailto:fredrik.antelius@pitch.se

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

200 Copyright ⓒ 2014 SERSC

[16]. B. B. Kristenseny and O. Vilmannzy, “HLA and Simulation Frameworks_ The Maersk Mc-Kinney Moller

Institute for Production Technology”, University of Southern Denmark/Odense University, DK 5230 Odense M,

Denmark.

[17]. O. Topçu and H. Og˘uztüzün, “Multi-Layered Simulation Architecture: A Practical approach”, Computer and

Information Sciences II, (2012), pp 439-443.

[18]. M. D. Myjak, “Java Real-Time RTI”, The Virtual Workshop P. O. Box 98 Titusville, FL 32781 Sean T. Sharp

The Virtual Workshop P. O. Box 98Titusville, FL 32781.

[19]. M. D. Myjak, S. T. Sharp and W. Wennie Shu, “PhD, Implementing Object Transfer In the HLA”, The Virtual

Workshop P. O. Box 98 Titusville, FL 32781 Jeremy Riehl, Demarron Berkley, Phuoc Nguyen, Sean Camplin,

Mike Roche,Lockheed-Martin, 12506 Lake Underhill Road, Orlando, FL 32825-5002.

[20]. M. Eklöf, “Fault-Tolerance in HLA-Based Distributed Simulations, Department of Electronic”, Computer &

Software Systems, TRITA-ICT/ECS AVH 06:03 ,ISSN 1653-6363 ,ISRN KTH/ICT/ECS AVH-06/03--SE ©

Martin Eklöf, (2006).

[21]. M. Wurpts and R. Logan, “HLA inside and out: Intra- and Inter-Vehicle Communications”, Southwest Research

Institute, San Antonio, Texas.

[22]. D. Ç etinkaya and H. Oğuztüzün, “A Metamodel for the HLA Object Model”, Department of Computer

Engineering ,Middle East Technical University ,Inonu Bulvari, 06531, Ankara, Turkey.

[23]. K. Cox, “A Framework-based Approach to HLA Federate Development”, John Hopkins University / Applied

Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20723.

[24]. W. G. Wang, W. G. Yu, Q. Li, W. P. Wang and X. C. Liu, “Service-Oriented High Level Architecture,

European Simulation Interoperability Workshop., Edinburgh, Scotland: Simulation Interoperability Standards

Organization. 08E-SIW-022, (2008).

[25]. M. Salehie, S. Li and L. Tahvildari, “A Metric-Based Heuristic Framework to Detect Object-Oriented Design

Flaws”, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario,

Canada, N2L 3G.

http://link.springer.com/book/10.1007/978-1-4471-2155-8
http://link.springer.com/book/10.1007/978-1-4471-2155-8

