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Abstract 

In order to express tree pattern query in query plan and take advantage of formal 

method to analyze its behavioral characteristics, this paper present a formal 

description of tree pattern query based on functional language and denotational 

semantics. This description major focuses on behavior of a tree pattern query on 

matching against an eXtensible Markup Language (XML) document tree. First, we 

introduce a formal definition for a kind of extended generalized tree pattern 

(GTP++). Then we present a functional tree pattern description language (XTPL) for 

GTP++ and give its complete denotational semantics based on a novel data 

structure, named WTree, which efficiently organizes this typical XML data query 

results and provides flexible data access method. In the end, we present the formal 

semantics of identifying tree pattern from path expressions. By using formal methods, 

the semantics of tree pattern query is consistent and analyzable. As the core operation 

of XML query, this formal description can provide an initial step for analyzing the 

correctness of XML queries, and improves the reliability and robustness of query 

processing methods. 

Keywords: XML; tree pattern query; XTPL; denotational semantics; XQuery 

 

1. Introduction 

EXtensible Markup Language (XML) has become the de facto standard for information 

exchange and sharing among various applications on the internet. Due to the increasingly 

widely used, how to improve XML query efficiency has become an important issue in the 

field of XML data processing in recent years. However, being different from the relational 

data, XML is a kind of semi-structured data, the query processing and optimization for XML 

also has its own particularity. The most prominent feature is the tree pattern query (TPQ), 

also called twig query. This kind of tree-shaped query against tree-structured XML data 

appears widely in XML query requests described by XML query languages such as XPath 

and XQuery, and is considered to be the core operation of XML data query. TPQ can fully 

reflect the characteristic of semi-structured data processing. 

In order to standardize the XML data query and processing, W3C has developed XQuery 

as standard XML data query language. Since XQuery is a kind of XML data query language 

as well as functional programming language. High-performance implementation of XQuery 

needs to use query optimization methods provided by XML query algebra, also needs to use 

efficient holistic twig matching algorithm. Tree patterns are graphical re-presentations of 

queries over data trees 
[1]

. Although graphical tree pattern can intuitively reflect XML query 
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requirements, it cannot adapt to the flexibility and the complexity of the XQuery language 

since lack of precise semantics and effective results organization. Therefore, there are several 

challenges on integrating tree pattern query into algebraic frameworks. Firstly, the form of 

tree pattern query request is tree-shaped, and the query results are generated by pattern 

matching. It is difficult to de-scribe tree pattern query and results reference using function 

calls in query plan. Secondly, there is much more to XQuery evaluation than a simple tree 

pattern matching. Sub-queries results can be organized by various ways and appeared at 

different positions simultaneously in XQuery expressions. However, it is difficult to access 

sub-queries results from unfolded multiple sequences generated by nested FLWOR clauses. 

Therefore, both the evaluation strategies and results organization of tree pattern query should 

be supported by query plan description language. To solve these issues, in this paper, we 

propose a kind of XML tree pattern description language, named XTPL, and give its complete 

denotational semantics to analyze behavioral characteristics of tree pattern query 
[2]

. The main 

contributions of the paper are as follows: 

(1) In order to contain more XQuery query semantics into high-performance tree pattern 

query, we introduce an extended XML tree pattern, called GTP++, which extends GTP in [3] 

with logic node AND, OR, NOT, wildcard and various predicates, and is able to express the 

query in nested FLWOR expressions;  

(2)We develop a novel data structure, named WTree, which effectively organizes the tree 

pattern query result and provides flexible data access method. With this data structure, 

intermediate result can be avoided unfolding into multiple sequences with duplicate XML 

elements, thereby save memory overhead. Moreover, any sub-query results in a tree pattern 

can be accessed arbitrarily; 

(3) Based on WTree structure, taking generalized list as data model, we present the 

functional XML tree pattern description language, named XTPL, and give its complete 

denotational semantics. As intermediate language used for the realization of tree pattern 

queries, XTPL not only has strong ability to abstract description, but also has simple grammar 

structure and clear semantic which facilitate to program analysis. XTPL denotational 

semantics provide formal definition for tree pattern queries, and make it possible to use 

formal method to analyze behavioral characteristics of tree pattern queries. Meanwhile, it 

contributes to verify correctness of XML queries, and improve the reliability and robustness 

of query processing method. More importantly, it can be seamless integrated into FXQL and 

realized in the framework in [4]; 

(4) To utilize tree pattern query for effectively realization of XQuery, it is inevitable to 

analysis the query plan and identify tree pattern from it. Due to limited space, this paper gives 

the denotational semantics of rewriting path expression in XQuery to tree pattern in XTPL, 

which is the core part of tree pattern identifying. 

The remainder of this paper is organized as follows. Section II introduces the related work 

and Section III describes GTP++ and WTree structure. Then we present XTPL abstract 

syntax and denotational semantics in detail in Section IV. In Section V, we discuss the 

Identify-ing rules for GTP++ and Section VI concludes the paper. 

 

2. Related Work 

With XML becoming a ubiquitous language for data interoperability purposes in 

various domains, efficiently querying XML data is a critical issue. This has lead to the 

design of algebraic frameworks based on tree-shaped patterns akin to the tree-structured 

data model of XML 
[1]

. Both XML tree pattern matching and query algebraic have been 

widely studied in recent years. 
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On the one hand, as the core operation of XML query processing. The representation 

of TPQ and its matching algorithm have been widely studied in the past ten years. TAX 

in [5] first introduces the notion of pattern tree in which edges specify the structural 

constraints between XML nodes, including ancestor-descendant (AD) relationship and 

parent-child (PC) relationship. There has been much work towards algorithms for 

matching such pattern against XML data efficiently, such as two-phase algorithms in 

[6][7] and one-phase algorithms in [8][9]. Bruno et al. in [6] proposed the first holistic 

twig join algorithm, TwigStack, which is claimed that is optimal for AD relationship. 

Lu et al. in [7] proposed TJFast algorithm based on extended Dewey to access only leaf 

elements. To avoid unnecessary path merger existed in two-phase algorithms, 

Twig
2
Stack in [8] uses complex hierarchical-stacks instead of enumeration of path 

matches to avoid the merging phase. Qin et al in [9] proposed another one-phase 

algorithm, TwigList, which uses a much simpler data structure, a set of lists, to store the 

final solutions. Since basic tree pattern query which only contains structural constrains 

and node test is a small part of XQuery query. In order to contain more XQuery 

semantics in high-performance tree pattern query, many studies have extended XML 

tree pattern with different features and developed corresponding matching algorithm. 

For instance, GTP in [3] extends the pattern tree by extending the tree pattern to include 

semantics related to output nodes, optional nodes, and boolean expressions which are 

part of the XQuery language. Reference [10] makes a study on extended XML tree 

pattern which includes PC, AD relationships, negation functions, wildcards and order 

restriction. Based on their theoretical framework, they propose TreeMatch algorithm to 

process the extended XML tree pattern efficiently. Reference [11] utilizes the semantic 

structure of the XML data being queried to process twig queries and develop OTQ. In 

addition, many TPQs have been proposed for particular optimization purposes. For 

example, logic operators AND, OR, XOR and NOT are introduced in[11]. The TPQ 

proposed in [13] is designed for XML graphs data. Whereas, almost all of studies on 

tree pattern queries focus on queries algorithm, the tree patterns are graphical 

representation. Fig. 1 shows a simple XPath query Q1 and its corresponding graphical 

tree pattern TPQ1, where single/double edge denotes PC/AD relationship respectively 

and capital letter denotes the node type of node test. In Fig. 1(c), grey node denotes the 

matched XML node, and solutions are enumerated under XML document tree.  

Figure 1. A Case of Tree Pattern and Its Matching 
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On the other hand, note that a TPQ that cannot be expressed in a physical form is 

usually considered useless 
[1]

. A number of algebras techniques have been developed for 

XQuery implementations 
[4][14]

. The XQuery compiler built in [15] is claimed that is 

complete, correct, and efficient. In order to support tree pattern query, Michiels et al. in 

[16] put a tree pattern operator in the query plan that allow an XQuery compiler to 

detect when efficient tree pattern algorithms can be used. Based on the lambda calculus, 

reference [4] develops a concise functional intermediate language for XQuery 

implementation, called Functional XML XQuery Language (FXQL), which is based on 

query algebra technology for XQuery and compiler technology, and proposes a 

framework for XQuery system with XML algebra and tree pattern query.  

 

3. Preliminaries 
 

3.1. GTP++ With Its Representation 

GTP++ is an extended generalized tree query pattern. It extends GTP in [2] with 

logic AND node, OR node, NOT node, wildcard and various predicates, which is able 

to express the tree pattern query request in nested FLWOR expressions. There are four 

kinds of nodes in GTP++: query node, AND node, OR node and NOT node. Query node 

can bind to variables, indicating that it is a return node. Besides, any query node can be 

annotated with predicates. There are four kinds of edges in GTP++: compulsory PC/AD 

relationship and optional PC/AD relationship. Optional relationship indicates that the 

matching of corresponding to a sub-tree pattern query is not essential, but the matched 

XML nodes will also be returned as query results. 

Definition 1 A GTP++ T is a septuple (QNode, Edge, type, test, pred, root, return), where: 

  QNode is the set of all nodes in GTP++; 

  Edge = QNode  BindType  QNode, is the set of all edges in GTP++, which 

describe the structural constraints between nodes, where BindType = {C-PC, C-AD, O-

PC, O-AD} represent the compulsory PC, AD, and optional PC, AD relationship between 

nodes respectively; 

  type: QNode  {QUERY, AND, OR, NOT}, is the partial function of evaluating 

node type. Given any one node qnQNode, type(qn) describes node type of qn, which is 

one of four type, query nodes type QUERY, logic nodes type AND, OR, and NOT. 

  test: QNode  NodeTest, is the partial function of evaluating node test conditions; 

  pred: QNode  Exp*, is the function of describing predicate expressions for every 

qnQNode. 

  root QNode, is the root of the GTP++; 

  return: QNode  Ide, gets the branch variable reference for given query node. 

Figure  2 shows an example of GTP++, TQ2, which is corresponding to a sample 

XQuery program, Q2, and its matching results against an XML document tree, test.xml. 

The graphical GTP++ derived from Q2 is shown in Fig. 2(b), which is composed of five 

query nodes, VA, VB, VC, VD, VE, notated by single circle, and a logic node, VAND, 

notated by double circles. Solid/dotted edge denotes compulsory/optional relationship. 

Single/double edge denotes PC/AD relationship. Query nodes in GTP++ can be 

annotated with predicate constraints, for example, query node VB is required to satisfy 

the predicate position() <= 1, that is, only the first B-type XML nodes which has C-type 

siblings was committed to the final results. According to definition 1, its formalization 

is shown as Fig. 2(c). Grey XML nodes in Fig. 2(d) are matched XML nodes for TQ2. 
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Figure 1 A Case of GTP++ and Its Matching 

In Q2, the first for-where clauses describe the compulsory conditions that must be 

satisfied, that is, there must be A-type elements which have C-type children. Thereby 

the structure relationship between them is compulsory PC relationship, which is 

identified as edge (VA, C-PC, VC). Edge (VB, O-PC, VD) means that a B-type XML 

element which has at least one E-type sibling commit to TQ2 even though it does not 

contain D-type children. Meanwhile, there is nested FLWOR in return clause, which 

applies on the results of the previous query, but the results of this kind of nested queries 

can be empty. The nested for-where clauses use the previous query results, and B-type 

child and E-type child must exist both at once although they are optional relationship 

for previous query. Therefore, for this situation, it adds logic AND, and provides 

optional relationship between query node and logic node in tree pattern, such as edge 

(VA, D-PC, VAND). Similarly, there may be some situations need logic OR and NOT in 

tree pattern to describe XQuery queries. This shows that GTP++ TQ2 is able to represent 

the query request of Q2 with the help of AND operation and optional relationship, while 

the GTP does not have this capability. 
 

3.2. WTree Structure 

Data structure is a crucial factor that often impairs the efficiency of traditional 

algorithms for evaluating tree pattern queries. XQuery 1.0 and XPath 2.0 Data Model 

(XDM) recommended by W3C is composed of atomic values, XML nodes and 

sequences. Because it is hard to determine that which sub-sequence corresponds to which 

expression calculation from this kind of data model, it is difficult for logic 

optimization. In order to better support the logic and optimization of the query, some XML 

query algebra learn tuples concept from relational databases. However, the basic structure 

of XML data is tree shape structure. If adopt tuples completely, there must be an excess 

of reduplicative intermediate data. Meanwhile, there may be more than one return node 

in a tree pattern query for XQuery, and those return nodes will be referenced in various 
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WQ2=({ba1,ba2,ba3,bb1,bb2,bc1,bc2,bc3,bd1,be1,be2},Env, march)

Env($a)=VA, Env($b)=VB

march(VA)=[ba1,ba2,ba3] , ba1 =<a1,marcha1>, ba2 =<a2,marcha2>,

                    ba3 =<a3,marcha3>

marcha1(VB)=[bb1],bb1=<b1,marchb1>,marchb1(VD)=[bd1],bd1=<d1,nil>

marcha1(VC)=[bc1],bc1=<c1,nil>

marcha1(VE)=[be1],be1=<e1,nil>

marcha2(VB)=[bb2],bb2=<b2,marchb2>,marchb2(VD)=[ ]

marcha2(VC)=[bc2],bc2=<c2,nil>

marcha2(VE)=[be2],be2=<e2,nil>

marcha3(VB)=[ ]

marcha3(VC)=[bc3],bc3=<c3,nil>

marcha3(VE)=[ ]

 

Figure 1. WTree instance WQ2 

ways by diverse parts of loop body. Tree pattern branch variable provides reference 

method for different return nodes. For certain query node, it can assess its arbitrary sub-

query results by branch variable expression. Further, starting with these sub-query 

results, their sub-query results can be got easily. 

Based on above analysis, it is needed to add additional data structure in XTPL data 

model which represent the results of tree pattern queries. 

Definition 2 Given a tree pattern, TQ = (QNode, Edge, type, test, pred, root, return), 

the WTree instance of TQ, notated WQ, is a triple (WNode, WEnv, WMatch), where: 

 WNode: Nodes  WMatch, is the set of WTree instance nodes, where Nodes is 

defined in XDM; 

 WEnv: IdeQNode, is the function to describe bind relationship between tree pattern 

branch variable and query node in TQ; 

 WMatch: QNode  WNode*, is the function to evaluate all WNode instances for a 

given query node in TQ. 

According to definition 2, tree pattern query results are saved in a mapping table 

which represents the function relationships in WMarch. Each XML node matched by 

the corresponding tree pattern query node is encapsulated in a WNode instance. Besides 

that XML node, there are a number of sub-queries results saved by mapping table, 

which are the query results of the sub-tree rooted by that XML node. When it is needed 

to get some part of the query results, it firstly obtains the query node from WEnv by 

tree pattern branch variable, and then it gets WNode instances matched by the query 

node from the corresponding WMarch instance. From this kind of WNode instance, not 

only XML node, but also the sub-queries results can be obtained straightforwardly. 

Continue the above example, Figure 3 shows the WTree instance WQ2, corresponding 

to TQ2 against test.xml in Figure 2. 

 

4. XML Tree Pattern Language 

As discussed in Section 2, GTP++ can represent XQuery query written by nested 

FLWOR clauses. The results still need be processed according to the processing logic 

described by FLWOR, further be organized as XML nodes sequence. Thereby, GTP++ 

should be organized as a query plan, that is, it needs a kind of intermediate language to 

describe GTP++. Since functional language has the characteristics such as simple structure 

and reference transparency, etc. We develop the functional XML tree pattern language to 
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describe GTP++, named XTPL. The following tree pattern mentioned in this paper all refer to 

GTP++ without special instruction. 

 

4.1. Abstract Syntax 

Table 1 and Table 2 show syntactic domain and abstract productions of XTPL respectively, 

where symbols in bold are keywords. An expression e can be a variable reference, axis 

operation, or a function. Function parameters can be expressions or anonymous functions, 

which support nested function calls and functional parameters. The expression ide1.ide2 is 

branch variable reference expression, which is composed of two variables divided by 

symbol ‘.’. The former, ide1, is the bind variable in with clause for a tree pattern and 

represents the tree pattern query results, while the latter, ide2, is tree pattern branch 

variable name. Branch variable reference is used to achieve tree patter results according 

to bind variable. The structure of with clause is composed of return results expression e 

and a tree pattern tb which was bound to a specified variable. The non-terminal tb stands 

for a tree pattern query request, which indicates that the tree pattern query will be applied on 

computation results of given expression, and the results will be referred with the 

specified variable. Nodes in tree pattern are represented in tn, including query node, 

AND node, OR node and NOT node. Query node with binding denotes return node, 

where the bind variable can be used to access the matched XML nodes. Such variables 

called tree pattern branch variable. Among various tn representations, symbol ‘?’ in 

bold indicates that the structural constraint is optional, while the match option of the 

other nodes are compulsory. Non-terminal ts shows the representation of node tests and 

predicates. Recursive definition of tn structure is used to describe the hierarchical 

relationships of the nodes in tree pattern. In the description of predicate, any expression 

or anonymous function can be used. 

Table 1. Syntactic Domain of XTPL 

Syntactic domain Interpretation 

e:Exp Expression 

ide:Ide Identifier(name of variable and function) 

axis:Axis Name of Axis operation 

test:Test Node test 

tb: TBind Root of tree pattern 

tn: TNode Query node in tree pattern 

ts: TStep Query step 

arg: Arg Argument 

fun (ide*){e} Anonymous function 

Table 1. Abstract Production Rules of XTPL 

Production Interpretation 

e::= ide Variable name  

e::= axis (e1, test ( [e])*) Axis operation 

e::= ide (arg*) Function call  

e::= ide1. ide2  Get tree patter result 

e::= e with ide=tb With expression 
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$t.$r2

with  $t= doc("test.xml")
                   { $a=//a
                       { $r1=/c,                                       
                         ?and ($b=/b[fun(_dot,_pos,_sz)le(_pos,1)]{ $r2=?/d }
                       }
                    }

 

Figure 1. WTree Instance WQ2 

tb::= e { tn* } Root of tree pattern 

tn::= ide= ??ts {tn * } | Query node with binding  

tn::=??ts { tn* } | Query node without binding 

tn::=??and {tn * } | AND node 

tn::=??or{tn * } | OR node 

tn::=??not{tn } NOT node 

ts::= (/|//)? test ([fun (ide*) {e}])* | Element query step  

ts::= (/@|//@”)?test([fun (ide*){e}])* Attribute query step 

arg::= e| fun (ide*) { e } Argument 

Symbols in bold are keywords 

 

According to the above syntax, the XTPL program corresponding to TQ2 is shown in 

Figure 4. The tree pattern branch variable reference $t.$r2 represent the final return 

results. It is a remarkable fact that XTPL only covers the tree pattern query request and 

can be used in the realizations of XPath and XQuery, but it does not cover complete 

XQuery semantics. 

5. Denotational Semantics of XTPL 

5.1. Data Model 

In XTPL program, results of a given query node in WTree instance can be accessed 

by tree pattern branch variables, therefore it  is unnecessary to save the information of 

tree pattern query nodes. Then, we merge WEnv and WMatch as WMap to represent 

tree pattern queries results in XTPL data model. Finally, the production rules of XTPL 

data model are shown in Table 3. Actually, it is a generalized list, and each item in the 

list can be an XML node, atomic values, or a generalized list which represents sub-

query results rooted by certain XML node. 

Table 1. Data Model of XTPL 

Production Interpretation 

List::=Elem* Generalized list 

Elem::=Item | List Data item or generalized list 

Item::=Node | Atom | WNode XML node, atomic values, or WNode 

WNode::=Node WMap XML node with its sub-queries results 

WMap::=WBind* Containing several branch variable  

WBind::=Idn WNode+ Binding branch variable to WNode instances 
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5.2. Semantics Domain 

The semantics of XTPL expression is captured by the expression evaluation, that is, 

XTPL data model instance. 

Table 4 shows the semantics domain of XTPL. The data type Value is the set of data 

model instances. As discuss in above, it can be an XML node, atomic values, sub-query 

results rooted by certain XML node, or generalized list composed of above data items. 

The evaluation environment, Env is a mapping table from identifier to data model 

instance or function closure. When the identifier is a tree pattern branch variable, it is 

mapped to corresponding data model instance. If it is a function name, then the 

identifier is mapped to function closure. The function closure is a triple where Ide*, Exp, 

and Env represent virtual arguments, function body, and external environment 

respectively. 

Table 1. Semantic Domain of XTPL 

Production Interpretation 

v,z,x,y,dum:Value  Set of data model instance 

d:Value Current item 

p:Integer Index of current item  

s: Integer Size of current sequence 

tt,ff: Boolean=(True,False) Boolean  

u,w:Env = (Ide →Value + Closure) Evaluation environment 

Closure = Ide* × Exp × Env Function closure 

 

5.3. Semantic Functions 

Table 5 shows the semantics functions of evaluating XTPL expressions.  

Table 1. Semantic Functions of XTPL 

Semantic Functions Interpretation 

⟦⟧Exp : Exp → Env → Value Expression evaluation 

⟦⟧Arg : Arg →Env → Closure + Value Argument evaluation 

⟦⟧Step: TStep→Value→Env→Value Query step evaluation 

⟦⟧TBind: TBind→Env→WMap Tree pattern evaluation 

⟦⟧TNode:TNode→Env→Node→Bool×WBind* Node evaluation 

 

The semantics function ⟦⟧Exp evaluates XTPL expressions according to the input 

expression and evaluation environment. The semantic function ⟦⟧Arg calculates the value 

of actual argument or function closure of anonymous functions according to the input 

XTPL argument and evaluation environment. The semantic function ⟦⟧Step is a single 

XPath step evaluation function. It calculates the value after processing this XPath step 

according to query step, current context, and evaluation environment. The evaluation 

result of semantic function ⟦⟧TBind is a WTree instance. The semantic function ⟦⟧TNode is 

an evaluation function for tree pattern node. For a given tree pattern node, it obtains the 

boolean value which infer whether matching successful or not, or the WBind instances 

set of query results. 



International Journal of Database Theory and Application 

Vol.7, No.5 (2014) 

 

 

180   Copyright ⓒ 2014 SERSC 

5.4. Semantics Equations 

In order to facilitate description, some auxiliary functions used in semantics 

equations are listed in Table 6. Given function name fn and arguments list, the auxiliary 

function call active the fn function call. The auxiliary function map executes given node 

test for each item of the expression calculation results. Each node test is processed 

through a physical operator which is named by axis operation and takes current item 

and node test marker as arguments. The auxiliary function getNodeList is used to get 

WNode instances according to given tree pattern branch variable. 

Table 1. Auxiliary Functions 

Auxiliary Functions Interpretation 

name(ide) Get built-in function name 

call( fn, arg1, …, arg n) Function call 

map( v, f ) = 

if v=[ ] then[ ] 

else cons( f(v[1]), map( v[2..], f ) ) 

Node test 

filter( v, f ) = fil( v,1, size(v) ) 

where fil(v, p, s) = 

if v=[ ] then [ ] 

if fil( hd(v),p,s ) then  

cons(hd(v), fil(tl(v), p+1, s)) 

else fil(tl(v), p+1, s) 

Process Predicate  

cons: Elem × List→List  Construct list  

hd : List → Elem Get list head 

tl : List → List Get list tail 

node:Elem→Boolean Whether an XML node or not 

newWNode: Node→WMap→WNode Construct WNode instance 

newWMap: WBind*→WMap Construct WMap instance 

newWBind: ide→WNode*→WBind Construct WBind instance 

getNodeList: WNode→Ide→WNode* Get WNode instances  

 

Semantics equations listed in Table 7 illustrate how semantic functions perform for 

each grammar structure. Semantics equation (1) shows that the value of a variable is 

obtained from evaluation environment. Semantics equation (2) processes function calls 

which applies built-in function on the calculation results of arguments. The semantics 

of tree pattern branch variable is illustrated through semantics equation (3). It declares 

that all WTree instances bound to branch variable ide2 are obtained from the query 

results bound to branch variable ide1. Semantics equation (4) explain if expression is a 

tree pattern binding then the branch variable of tree pattern query results and the results 

should be add to current evaluation environment and generate the new evaluation 

environment simultaneously.  

Table 2. Semantics Equations of XTPL 

Semantics Equations Number 

⟦ ide ⟧Exp u = u(ide) (1) 

⟦ ide (arg1,…, argn) ⟧ Exp u = call(fn, ⟦ arg1 ⟧Arg u,…, ⟦ argn ⟧Arg u) where fn=name(ide) (2) 

⟦ ide1. ide2 ⟧Exp u = if u(ide1) = Ø  then error else getNodeList(u(ide1), ide2) (3) 

⟦ e with ide=tb ⟧Exp u = ⟦e⟧Exp w  where w = u ++{< ide, ⟦ tb⟧TBind u >} (4) 
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⟦ e{ tn1,…, tnn }⟧TNode u =  

 if node(v) then newWNode(v,newWMap(fn(v))) 

 else  newWNode(dum, newWMap(bd1++ bdm)) where (bd1++ bdm)=map(v,fn) 

 where  v = ⟦ e ⟧Exp u 

  fn(z)= if m1=…=mn=‘tt’ then tws1 ++ … ++ twsn  

   else [ ] where (mi, twsi) =⟦tni ⟧TNode z u for i=1,…,n 

(5) 

⟦ ide = ts{tn1 … tnn}⟧TNode x u = if ns ≠ [ ] then (‘tt’, [newWBind(ide, map(y, fn))] )  else (‘ff’, [ ]) 

 where  y = ⟦ ts⟧Step x u; 

  fn(z) = if m1=’ ff’ or… or mn=’ ff ’then [ ]  

   else newWNode(z,newWMap(twsi++…++ twsn))  

   where (mi, twsi) = ⟦ tni ⟧TNode z u  for i=1,…,n  

(6) 

⟦ ide = ?ts tn1 … tnn ⟧TNode x u = (‘tt’, [newWBind(ide, map(y, fn))] )  

 where  y =⟦ ts⟧Step  

 fn(z) = if m1=’ff’ or … or mn=’ ff’ then [ ] else newWNode(z,newWMap(twsi++…++twsn))    

  where (mi, twsi) = ⟦ tni ⟧TNode z u for i=1,…,n  

(7) 

⟦ ts{tn1 … tnn} ⟧TNode x u = if tws ≠ [ ] then (‘tt’, tws)  else (‘ff’, [ ]) 

 where  tws = map( ⟦ ts ⟧Step x u, fn); 

  fn(z) = if m1=’ff’ or … or mn=’ff’ then [ ] else twsi ++ … ++ twsn  

   where (mi, twsi) = ⟦ tni ⟧TBind z u  for i=1,…,n 

(8) 

⟦ ?ts {tn1 … tnn} ⟧TNode x u = (‘tt’, map(⟦ ts⟧Step x u, fn) )  

 where  fn(z) = if m1=’ ff’ or … or mn=’ ff’ then [ ] else twsi ++ … ++ twsn  

   where (mi, twsi) = ⟦ tni ⟧TBind z u for i=1,…,n 

(9) 

⟦ and ( tn1, …, tnn ) ⟧TBind x u = if m1=’tt’ and…and mn=’tt’ then (‘tt’, tws1 ++…++ twsn) else (‘ff’, [ ]) 

 where (mi, twsi) = T ⟦ tni⟧TBind x u  for i=1,…,n 

(10) 

⟦ or( tn1, …, tnn ) ⟧TBind x u = if m1=’tt’ or … or mn=’tt’ then (‘tt’, tws1 ++ … ++ twsn) else (‘ff’, [ ]) 

 where (mi, twsi) = ⟦ tni ⟧TBind x u  for i=1,…,n 

(11) 

⟦ not( tn ) ⟧TBind x u = if m=’tt’ then (‘ff’, [ ])  else (‘tt’, tws) where (m, tws) = ⟦ tn⟧TBind x u  (12) 

⟦ ?op ( args ) ⟧TBind x u = for op{ and, or, not } if m=‘ ff’ then (‘tt’, tws) else (‘ff’, tws)  

 where (m, tws) = ⟦ op( args ) ⟧TBind x u 

(13) 

⟦ /test [fun(d1,p1,s1){e1}]…[fun(dn,pn,sn){en}]⟧Step x u = nsn+1 

 where ns1 = call( ‘child’, x, test );nsi+1 = filter( nsi, λdi. λpi. λsi. ⟦ei⟧Exp u) for i=1,…,n 

(14) 

⟦ //test [fun(d1,p1,s1)e1]…[fun(dn,pn,sn)en] ⟧Step x u = nsn+1  

 where  ns1 = call( ‘descendant-or-self’, x, test ) );  

  nsi+1 = filter( nsi, λdi. λpi. λsi. ⟦ei⟧Exp u); for i=1,…,n 

(15) 

⟦ /@test [fun(d1,p1,s1)e1]…[fun(dn,pn,sn)en] ⟧Step x u= nsn+1 

 where  ns1 = call( ‘attribute’, x, test ); nsi+1 =filter( nsi, λdi. λpi. λsi..⟦ ei ⟧Exp u); for i=1,…,n 

(16) 

⟦ //@test [fun(d1,p1,s1)e1]…[fun(dn,pn,sn)en] ⟧Step x u= nsn+1 

 where  ns0 = call( ‘descendant-or-self’, x, ‘*’ ) ); ns1 = map( ns0, λd.call( ‘attribute’, d, test ) ) 

  nsi+1 =filter( nsi, λdi. λpi. λsi. .⟦ ei ⟧Exp u) for i=1,…,n 

(17) 

⟦ e ⟧Arg u =.⟦ e ⟧Exp u (18) 

⟦ fun (ide1,…, idem) { e }⟧Arg u = <λide1…λiden . e, u > (19) 

 

In the tree pattern query semantics equation (5), it first evaluates expression e. If the 

calculation results only contain one XML node, then it matches branches and generates 

the WMap instance by constituting all branch variables after all branch have been 

matched successfully. Further, the WNode instance which represents the root of the 

WTree instance will be constructed. If the calculation results are an XML nodes 

sequence, then it processes each XML node respectively and constructs the virtual root 

for the WTree instance. Semantics equations (6) and (7) illustrate the query nodes 

evaluation which has a bind variable. It first processes query step and gets several XML 

nodes, further, it implement each sub-query for these XML nodes. For compulsory 

relationship, there must be a WNode instance, otherwise the matching is failing and 

return false. For optional relationship, it can bind empty list to the tree pattern branch 

variable. The evaluations of query nodes without bind variable are shown in semantics 



International Journal of Database Theory and Application 

Vol.7, No.5 (2014) 

 

 

182   Copyright ⓒ 2014 SERSC 

equations (8) and (9). Semantics of logic nodes are listed during equations (10) to (13). 

Semantics equations (10), (11), (12) illustrate the three logic operation with compulsory 

relationship respectively, while the three logic operation with optional relationship are 

shown in semantics equations (13). For optional relationship, it always return true to 

infer the matching is successful. Semantics equations (14) to (17) are semantics of 

query step which contain axis operation, node test, and various kind predicates. Since 

the query step is a kind of operation for current XML node, it needs context to evaluate 

predicates. Semantics equations (18) and (19) are semantics of argument; it is used to 

evaluate expression and construct function closure respectively. 

 

6. Extraction of Tree Pattren 

To take advantage of tree pattern query for effectively realization of XQuery, it is 

inevitable to analysis the query plan and extract tree pattern from it. For save space, this 

paper only gives the denotational semantics of processing path expression, which is the 

core part of tree pattern extraction. 

Extraction of tree pattern is the process of rewriting the structure information in the 

query expression according to certain rules as XTPL expression with the with clause. 

The essence of path expression in XQuery can be considered composed of several axis 

operations in Table1. Therefore the core of tree pattern extraction is rewriting axis 

operation expression. The semantics equation of tree pattern extraction is declared as 

follows:  

⟦⟧Extr: Exp→Ide×TBind→ExEnv→Exp×Tbind 

Exp and TBind in this semantics equation stand for XTPL expressions and the tree 

pattern in with clause respectively. ExEnv is the context environment which is used to 

store bind relationships between variables and tree pattern branch. If the result of 

expression rewriting applied semantics equation ⟦⟧Extr is a tree pattern branch variable, it 

will return a pair composed of branch variable name and TBind instance; otherwise, the 

target expression is the output and TBind is nil. 

The semantic domain and equations are listed in Table 8 and 9 respectively. In Table 

9, according to semantics equation (1), the variables without binding do not need to be 

rewritten; otherwise, this variable should be replaced with tree pattern branch variable. 

Semantics equation (2) processes the common comparison operations in predicates, 

TPQ which bind may be extended because its arguments are often axis operations over 

current node. Semantics equation (3) is the core part of tree pattern extraction. The tree 

pattern extraction from axis operation can be divided into two cases: the first is  forward 

axis, which is used for the axis operations supported by basic tree pattern, such as PC, 

AD, property, etc; the second is reverse axis and other operation. For the first case, the 

source expression e in axis operation is processed first. If the result is a tree pattern 

branch variable (b’≠nil), then this tree pattern will be extended with new query nodes 

using current axis operation; otherwise, a new TBind instance will be constructed and 

extended with a new query node n using current axis operation. Subsequently, all 

predicates are processed to extend this query node. Other predicates pi except exist 

predicate are added to this query node. The new constructed tree pattern will be 

rewritten as with clause in XTPL, otherwise, a new constructed tree pattern branch 

variable <v, b#> will be returned. If it belongs to the second situation, a new tree pattern 

will be constructed after processing source expression e. Further, this tree pattern will 

be extended by processing predicates and the predicates which not be replaced by tree 
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pattern will be added as constraint conditions of query node. Finally, the axis operation 

will be rewritten as with clause in XTPL. 

Table 2. Semantic Domain of Tree Pattern Extraction 

Semantic Domain Interpretation 

a,p,x,y:Exp Expression in XTPL 

tn:TNode Query node 

tb,nil:TBind Tree pattren 

υ:ExEnv=(Ide→Ide×TBind) Extraction environment 

Table 3. Semantic Equations of Tree Pattern Extraction 

Semantic Equations Number 

⟦ ide ⟧Extr <x, tb> υ =  if υ(ide) = Ø  then < ide,nil> else if ide=d then < x, tb > else υ(ide) (1) 

⟦ cmp( arg1, arg2 ) ⟧Extr <x,tb> υ =  <genExp[ cmp(<e1>, <e2>) ], nil> 

where e1=if tb1≠nil then genExp[getNode(<var(tb1)>.<a1>)] else a1 

        e2=if tb2≠nil then genExp[getNode(<var(tb2)>.<a2>) else a2 

<a1, tb1>= ⟦arg1⟧Extr < x,tb > υ 

<a2, tb2>= ⟦arg2⟧Extr <x,tb1> υ 

(2) 

⟦ axis (e, test [e1]…[en]) ⟧Extr <x,tb> υ= 

if axis∈{child, descendant-or-self, attribute} then 

    if tb’≠nil then <y, tb#> 

    else <genExp[<y>with<tb#>], nil> 

    where <e0, tb’> = ⟦ e ⟧Extr <x, tb> υ 

 tb” = if tb’≠nil then tb’ else genTBind[ <newVar( )>=<e0> ] 

 y = newVar( ) 

  <ei, tbi> = ⟦ei ⟧Extr <y,tb”> υ   for i=1,…,n 

 tn = newTNode(y, axis, test) 

 pi = if tbi≠nil  then Ø   else genPred[ ei ] 

 tn’ = addPred(tn, p1…pn) 

 tb# = addTNode(tb”, y, tn’)  

else < genExp[<a> with <tbn>], nil > 

where <e0, tb’> = ⟦exp⟧Extr <x,tb> υ 

 e’ = if tb’≠nil then genExp[<var(tb).<e0>] else e0 

 y = newVar( ) 

 tb0 = newTBind(y, e’)  

 <ei, tbi> = ⟦ expi ⟧Extr <y,tb0> υ  for i=1,…,n  

 pi =if tbi≠nil then Ø  else genPred[fun(d,p,s)ei ]  

 a = genExp[ axis(<y>, <test><p1>…<pn>)] 

(3) 

 

Auxiliary Functions genExp represent generating expression based on template in 

which its arguments are specified with symbol ‘< >’, and genTBind represent generating 

tree pattern with representation of with clause. Function newTNode generates query 

node. Function addTNode add sub-query node with its bind variable to the given query 

node. Function addPred add predicates to the given query node. Function genPred 

construct a representation of predicates in with clause. 

 

7. Conclusion 

For extended XML tree pattern GTP++, which covers optional relationship, logical 

operators AND, OR, NOT, wildcard and various predicates, we develop a tree pattern 

description language XTPL, and give its denotational semantics to present the 

behavioral characteristics of tree pattern query. Meanwhile, in order to explain the tree 
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pattern extraction process, we present the semantics equations of rewriting rules for 

extracting tree pattern from path expressions. 

With the increasingly widespread application of XML data and the development of 

XQuery, efficient processing of XML data need to be supported in many fields. This 

paper focuses on XML tree pattern description language and its formalization. However, 

tree pattern query is only a subset of XQuery. To support complete XQuery query, the 

tree pattern query results are still need to be calculated with the help of other 

expressions. The future work aims to develop a complete intermediate language which 

contains XTPL and XML query algebra, and tree pattern extraction rules, so that we can 

effectively organize XQuery queries into a query plan consisted of tree pattern query 

and query algebra. Meanwhile, we will study various optimization techniques and 

provide a complete solution for XQuery queries. 
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