
International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.171-186

http://dx.doi.org/10.14257/ijdta.2014.7.5.13

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

A Formal Description of XML Tree Pattern Query for XQuery

Language

Husheng Liao, Xiaoqing Li and Hang Su

Beijing University of Technology, Beijing, China

{liaohs@, li_xiaoqing@emails.,suhang@}bjut.edu.cn

Abstract

In order to express tree pattern query in query plan and take advantage of formal

method to analyze its behavioral characteristics, this paper present a formal

description of tree pattern query based on functional language and denotational

semantics. This description major focuses on behavior of a tree pattern query on

matching against an eXtensible Markup Language (XML) document tree. First, we

introduce a formal definition for a kind of extended generalized tree pattern

(GTP++). Then we present a functional tree pattern description language (XTPL) for

GTP++ and give its complete denotational semantics based on a novel data

structure, named WTree, which efficiently organizes this typical XML data query

results and provides flexible data access method. In the end, we present the formal

semantics of identifying tree pattern from path expressions. By using formal methods,

the semantics of tree pattern query is consistent and analyzable. As the core operation

of XML query, this formal description can provide an initial step for analyzing the

correctness of XML queries, and improves the reliability and robustness of query

processing methods.

Keywords: XML; tree pattern query; XTPL; denotational semantics; XQuery

1. Introduction

EXtensible Markup Language (XML) has become the de facto standard for information

exchange and sharing among various applications on the internet. Due to the increasingly

widely used, how to improve XML query efficiency has become an important issue in the

field of XML data processing in recent years. However, being different from the relational

data, XML is a kind of semi-structured data, the query processing and optimization for XML

also has its own particularity. The most prominent feature is the tree pattern query (TPQ),

also called twig query. This kind of tree-shaped query against tree-structured XML data

appears widely in XML query requests described by XML query languages such as XPath

and XQuery, and is considered to be the core operation of XML data query. TPQ can fully

reflect the characteristic of semi-structured data processing.

In order to standardize the XML data query and processing, W3C has developed XQuery

as standard XML data query language. Since XQuery is a kind of XML data query language

as well as functional programming language. High-performance implementation of XQuery

needs to use query optimization methods provided by XML query algebra, also needs to use

efficient holistic twig matching algorithm. Tree patterns are graphical re-presentations of

queries over data trees
[1]

. Although graphical tree pattern can intuitively reflect XML query

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

172 Copyright ⓒ 2014 SERSC

requirements, it cannot adapt to the flexibility and the complexity of the XQuery language

since lack of precise semantics and effective results organization. Therefore, there are several

challenges on integrating tree pattern query into algebraic frameworks. Firstly, the form of

tree pattern query request is tree-shaped, and the query results are generated by pattern

matching. It is difficult to de-scribe tree pattern query and results reference using function

calls in query plan. Secondly, there is much more to XQuery evaluation than a simple tree

pattern matching. Sub-queries results can be organized by various ways and appeared at

different positions simultaneously in XQuery expressions. However, it is difficult to access

sub-queries results from unfolded multiple sequences generated by nested FLWOR clauses.

Therefore, both the evaluation strategies and results organization of tree pattern query should

be supported by query plan description language. To solve these issues, in this paper, we

propose a kind of XML tree pattern description language, named XTPL, and give its complete

denotational semantics to analyze behavioral characteristics of tree pattern query
[2]

. The main

contributions of the paper are as follows:

(1) In order to contain more XQuery query semantics into high-performance tree pattern

query, we introduce an extended XML tree pattern, called GTP++, which extends GTP in [3]

with logic node AND, OR, NOT, wildcard and various predicates, and is able to express the

query in nested FLWOR expressions;

(2)We develop a novel data structure, named WTree, which effectively organizes the tree

pattern query result and provides flexible data access method. With this data structure,

intermediate result can be avoided unfolding into multiple sequences with duplicate XML

elements, thereby save memory overhead. Moreover, any sub-query results in a tree pattern

can be accessed arbitrarily;

(3) Based on WTree structure, taking generalized list as data model, we present the

functional XML tree pattern description language, named XTPL, and give its complete

denotational semantics. As intermediate language used for the realization of tree pattern

queries, XTPL not only has strong ability to abstract description, but also has simple grammar

structure and clear semantic which facilitate to program analysis. XTPL denotational

semantics provide formal definition for tree pattern queries, and make it possible to use

formal method to analyze behavioral characteristics of tree pattern queries. Meanwhile, it

contributes to verify correctness of XML queries, and improve the reliability and robustness

of query processing method. More importantly, it can be seamless integrated into FXQL and

realized in the framework in [4];

(4) To utilize tree pattern query for effectively realization of XQuery, it is inevitable to

analysis the query plan and identify tree pattern from it. Due to limited space, this paper gives

the denotational semantics of rewriting path expression in XQuery to tree pattern in XTPL,

which is the core part of tree pattern identifying.

The remainder of this paper is organized as follows. Section II introduces the related work

and Section III describes GTP++ and WTree structure. Then we present XTPL abstract

syntax and denotational semantics in detail in Section IV. In Section V, we discuss the

Identify-ing rules for GTP++ and Section VI concludes the paper.

2. Related Work

With XML becoming a ubiquitous language for data interoperability purposes in

various domains, efficiently querying XML data is a critical issue. This has lead to the

design of algebraic frameworks based on tree-shaped patterns akin to the tree-structured

data model of XML
[1]

. Both XML tree pattern matching and query algebraic have been

widely studied in recent years.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 173

r

a2

c1

a3a1

c3b1

d1

c2e1 e2

A

C

(c)Results of matching TPQ1 against test.xml

D

Q1：//a[c]//d

a4

 b2 b4

d3 d5

b5b3

d4

<a1 c1 d1>,<a2 c2 d2>,<a2 c2 d3>,<a3 c3 d4>

PC AD Query node
Matched node< > Tuple

(a)Query Q1 in Xpath

(b)Tree pattern TPQ1

On the one hand, as the core operation of XML query processing. The representation

of TPQ and its matching algorithm have been widely studied in the past ten years. TAX

in [5] first introduces the notion of pattern tree in which edges specify the structural

constraints between XML nodes, including ancestor-descendant (AD) relationship and

parent-child (PC) relationship. There has been much work towards algorithms for

matching such pattern against XML data efficiently, such as two-phase algorithms in

[6][7] and one-phase algorithms in [8][9]. Bruno et al. in [6] proposed the first holistic

twig join algorithm, TwigStack, which is claimed that is optimal for AD relationship.

Lu et al. in [7] proposed TJFast algorithm based on extended Dewey to access only leaf

elements. To avoid unnecessary path merger existed in two-phase algorithms,

Twig
2
Stack in [8] uses complex hierarchical-stacks instead of enumeration of path

matches to avoid the merging phase. Qin et al in [9] proposed another one-phase

algorithm, TwigList, which uses a much simpler data structure, a set of lists, to store the

final solutions. Since basic tree pattern query which only contains structural constrains

and node test is a small part of XQuery query. In order to contain more XQuery

semantics in high-performance tree pattern query, many studies have extended XML

tree pattern with different features and developed corresponding matching algorithm.

For instance, GTP in [3] extends the pattern tree by extending the tree pattern to include

semantics related to output nodes, optional nodes, and boolean expressions which are

part of the XQuery language. Reference [10] makes a study on extended XML tree

pattern which includes PC, AD relationships, negation functions, wildcards and order

restriction. Based on their theoretical framework, they propose TreeMatch algorithm to

process the extended XML tree pattern efficiently. Reference [11] utilizes the semantic

structure of the XML data being queried to process twig queries and develop OTQ. In

addition, many TPQs have been proposed for particular optimization purposes. For

example, logic operators AND, OR, XOR and NOT are introduced in[11]. The TPQ

proposed in [13] is designed for XML graphs data. Whereas, almost all of studies on

tree pattern queries focus on queries algorithm, the tree patterns are graphical

representation. Fig. 1 shows a simple XPath query Q1 and its corresponding graphical

tree pattern TPQ1, where single/double edge denotes PC/AD relationship respectively

and capital letter denotes the node type of node test. In Fig. 1(c), grey node denotes the

matched XML node, and solutions are enumerated under XML document tree.

Figure 1. A Case of Tree Pattern and Its Matching

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

174 Copyright ⓒ 2014 SERSC

On the other hand, note that a TPQ that cannot be expressed in a physical form is

usually considered useless
[1]

. A number of algebras techniques have been developed for

XQuery implementations
[4][14]

. The XQuery compiler built in [15] is claimed that is

complete, correct, and efficient. In order to support tree pattern query, Michiels et al. in

[16] put a tree pattern operator in the query plan that allow an XQuery compiler to

detect when efficient tree pattern algorithms can be used. Based on the lambda calculus,

reference [4] develops a concise functional intermediate language for XQuery

implementation, called Functional XML XQuery Language (FXQL), which is based on

query algebra technology for XQuery and compiler technology, and proposes a

framework for XQuery system with XML algebra and tree pattern query.

3. Preliminaries

3.1. GTP++ With Its Representation

GTP++ is an extended generalized tree query pattern. It extends GTP in [2] with

logic AND node, OR node, NOT node, wildcard and various predicates, which is able

to express the tree pattern query request in nested FLWOR expressions. There are four

kinds of nodes in GTP++: query node, AND node, OR node and NOT node. Query node

can bind to variables, indicating that it is a return node. Besides, any query node can be

annotated with predicates. There are four kinds of edges in GTP++: compulsory PC/AD

relationship and optional PC/AD relationship. Optional relationship indicates that the

matching of corresponding to a sub-tree pattern query is not essential, but the matched

XML nodes will also be returned as query results.

Definition 1 A GTP++ T is a septuple (QNode, Edge, type, test, pred, root, return), where:

 QNode is the set of all nodes in GTP++;

 Edge = QNode  BindType  QNode, is the set of all edges in GTP++, which

describe the structural constraints between nodes, where BindType = {C-PC, C-AD, O-

PC, O-AD} represent the compulsory PC, AD, and optional PC, AD relationship between

nodes respectively;

 type: QNode  {QUERY, AND, OR, NOT}, is the partial function of evaluating

node type. Given any one node qnQNode, type(qn) describes node type of qn, which is

one of four type, query nodes type QUERY, logic nodes type AND, OR, and NOT.

 test: QNode  NodeTest, is the partial function of evaluating node test conditions;

 pred: QNode  Exp*, is the function of describing predicate expressions for every

qnQNode.

 root QNode, is the root of the GTP++;

 return: QNode  Ide, gets the branch variable reference for given query node.

Figure 2 shows an example of GTP++, TQ2, which is corresponding to a sample

XQuery program, Q2, and its matching results against an XML document tree, test.xml.

The graphical GTP++ derived from Q2 is shown in Fig. 2(b), which is composed of five

query nodes, VA, VB, VC, VD, VE, notated by single circle, and a logic node, VAND,

notated by double circles. Solid/dotted edge denotes compulsory/optional relationship.

Single/double edge denotes PC/AD relationship. Query nodes in GTP++ can be

annotated with predicate constraints, for example, query node VB is required to satisfy

the predicate position() <= 1, that is, only the first B-type XML nodes which has C-type

siblings was committed to the final results. According to definition 1, its formalization

is shown as Fig. 2(c). Grey XML nodes in Fig. 2(d) are matched XML nodes for TQ2.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 175

r

a2

c1

a3a1

c3b1

d1

c2e1 e2

A

C

E

(d) Results of matching TQ2 against test.xml

$src

S-PC S-AD
D-PC D-AD

AND

B [_pos≤1]

D

Logic node
Query node

Q2：
for $a in doc(“test.xml”)//a

where count($a/c) > 0

return

 <result>

 for $b in $a/b[position()≤1]

 where count($a/e)>0

 return $b/d

 </result>

(a) Query Q2 in XQuery

a4

VA

VB

VC

VD

VE

VAND

b2 b4

d2 d3
d4

b5b3

TQ2 ={Ns, Es, type, test, pred, VR, return}，其中：
Ns =(VA,VB,VC,VD,VE,VAND)

Es ={(VR,C-AD,VA),(VA,C-PC,VC),(VA,D-PC,VAND),

 (VAND,C-PC,VE),(VAND,C-PC,VB),(VB,D-PC,VD)}

type(VA) =type(VB)=type(VC)=type(VD)=type(VE)=”Query”

type(VAND)=”AND”

test(VA) =A, test(VB)=B, test(VC)=C, test(VD)=D, test(VE)=E

pred(VB) =_pos≤1

return(VA) =$a, return(VB) =$b

VR

(c) Formalization of TQ2

(b) GTP++ TQ2 corresponding to Q2

Figure 1 A Case of GTP++ and Its Matching

In Q2, the first for-where clauses describe the compulsory conditions that must be

satisfied, that is, there must be A-type elements which have C-type children. Thereby

the structure relationship between them is compulsory PC relationship, which is

identified as edge (VA, C-PC, VC). Edge (VB, O-PC, VD) means that a B-type XML

element which has at least one E-type sibling commit to TQ2 even though it does not

contain D-type children. Meanwhile, there is nested FLWOR in return clause, which

applies on the results of the previous query, but the results of this kind of nested queries

can be empty. The nested for-where clauses use the previous query results, and B-type

child and E-type child must exist both at once although they are optional relationship

for previous query. Therefore, for this situation, it adds logic AND, and provides

optional relationship between query node and logic node in tree pattern, such as edge

(VA, D-PC, VAND). Similarly, there may be some situations need logic OR and NOT in

tree pattern to describe XQuery queries. This shows that GTP++ TQ2 is able to represent

the query request of Q2 with the help of AND operation and optional relationship, while

the GTP does not have this capability.

3.2. WTree Structure

Data structure is a crucial factor that often impairs the efficiency of traditional

algorithms for evaluating tree pattern queries. XQuery 1.0 and XPath 2.0 Data Model

(XDM) recommended by W3C is composed of atomic values, XML nodes and

sequences. Because it is hard to determine that which sub-sequence corresponds to which

expression calculation from this kind of data model, it is difficult for logic

optimization. In order to better support the logic and optimization of the query, some XML

query algebra learn tuples concept from relational databases. However, the basic structure

of XML data is tree shape structure. If adopt tuples completely, there must be an excess

of reduplicative intermediate data. Meanwhile, there may be more than one return node

in a tree pattern query for XQuery, and those return nodes will be referenced in various

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

176 Copyright ⓒ 2014 SERSC

WQ2=({ba1,ba2,ba3,bb1,bb2,bc1,bc2,bc3,bd1,be1,be2},Env, march)

Env($a)=VA, Env($b)=VB

march(VA)=[ba1,ba2,ba3] , ba1 =<a1,marcha1>, ba2 =<a2,marcha2>,

 ba3 =<a3,marcha3>

marcha1(VB)=[bb1],bb1=<b1,marchb1>,marchb1(VD)=[bd1],bd1=<d1,nil>

marcha1(VC)=[bc1],bc1=<c1,nil>

marcha1(VE)=[be1],be1=<e1,nil>

marcha2(VB)=[bb2],bb2=<b2,marchb2>,marchb2(VD)=[]

marcha2(VC)=[bc2],bc2=<c2,nil>

marcha2(VE)=[be2],be2=<e2,nil>

marcha3(VB)=[]

marcha3(VC)=[bc3],bc3=<c3,nil>

marcha3(VE)=[]

Figure 1. WTree instance WQ2

ways by diverse parts of loop body. Tree pattern branch variable provides reference

method for different return nodes. For certain query node, it can assess its arbitrary sub-

query results by branch variable expression. Further, starting with these sub-query

results, their sub-query results can be got easily.

Based on above analysis, it is needed to add additional data structure in XTPL data

model which represent the results of tree pattern queries.

Definition 2 Given a tree pattern, TQ = (QNode, Edge, type, test, pred, root, return),

the WTree instance of TQ, notated WQ, is a triple (WNode, WEnv, WMatch), where:

 WNode: Nodes  WMatch, is the set of WTree instance nodes, where Nodes is

defined in XDM;

 WEnv: IdeQNode, is the function to describe bind relationship between tree pattern

branch variable and query node in TQ;

 WMatch: QNode  WNode*, is the function to evaluate all WNode instances for a

given query node in TQ.

According to definition 2, tree pattern query results are saved in a mapping table

which represents the function relationships in WMarch. Each XML node matched by

the corresponding tree pattern query node is encapsulated in a WNode instance. Besides

that XML node, there are a number of sub-queries results saved by mapping table,

which are the query results of the sub-tree rooted by that XML node. When it is needed

to get some part of the query results, it firstly obtains the query node from WEnv by

tree pattern branch variable, and then it gets WNode instances matched by the query

node from the corresponding WMarch instance. From this kind of WNode instance, not

only XML node, but also the sub-queries results can be obtained straightforwardly.

Continue the above example, Figure 3 shows the WTree instance WQ2, corresponding

to TQ2 against test.xml in Figure 2.

4. XML Tree Pattern Language

As discussed in Section 2, GTP++ can represent XQuery query written by nested

FLWOR clauses. The results still need be processed according to the processing logic

described by FLWOR, further be organized as XML nodes sequence. Thereby, GTP++

should be organized as a query plan, that is, it needs a kind of intermediate language to

describe GTP++. Since functional language has the characteristics such as simple structure

and reference transparency, etc. We develop the functional XML tree pattern language to

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 177

describe GTP++, named XTPL. The following tree pattern mentioned in this paper all refer to

GTP++ without special instruction.

4.1. Abstract Syntax

Table 1 and Table 2 show syntactic domain and abstract productions of XTPL respectively,

where symbols in bold are keywords. An expression e can be a variable reference, axis

operation, or a function. Function parameters can be expressions or anonymous functions,

which support nested function calls and functional parameters. The expression ide1.ide2 is

branch variable reference expression, which is composed of two variables divided by

symbol ‘.’. The former, ide1, is the bind variable in with clause for a tree pattern and

represents the tree pattern query results, while the latter, ide2, is tree pattern branch

variable name. Branch variable reference is used to achieve tree patter results according

to bind variable. The structure of with clause is composed of return results expression e

and a tree pattern tb which was bound to a specified variable. The non-terminal tb stands

for a tree pattern query request, which indicates that the tree pattern query will be applied on

computation results of given expression, and the results will be referred with the

specified variable. Nodes in tree pattern are represented in tn, including query node,

AND node, OR node and NOT node. Query node with binding denotes return node,

where the bind variable can be used to access the matched XML nodes. Such variables

called tree pattern branch variable. Among various tn representations, symbol ‘?’ in

bold indicates that the structural constraint is optional, while the match option of the

other nodes are compulsory. Non-terminal ts shows the representation of node tests and

predicates. Recursive definition of tn structure is used to describe the hierarchical

relationships of the nodes in tree pattern. In the description of predicate, any expression

or anonymous function can be used.

Table 1. Syntactic Domain of XTPL

Syntactic domain Interpretation

e:Exp Expression

ide:Ide Identifier(name of variable and function)

axis:Axis Name of Axis operation

test:Test Node test

tb: TBind Root of tree pattern

tn: TNode Query node in tree pattern

ts: TStep Query step

arg: Arg Argument

fun (ide*){e} Anonymous function

Table 1. Abstract Production Rules of XTPL

Production Interpretation

e::= ide Variable name

e::= axis (e1, test ([e])*) Axis operation

e::= ide (arg*) Function call

e::= ide1. ide2 Get tree patter result

e::= e with ide=tb With expression

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

178 Copyright ⓒ 2014 SERSC

$t.$r2

with $t= doc("test.xml")
 { $a=//a
 { $r1=/c,
 ?and ($b=/b[fun(_dot,_pos,_sz)le(_pos,1)]{ $r2=?/d }
 }
 }

Figure 1. WTree Instance WQ2

tb::= e { tn* } Root of tree pattern

tn::= ide= ??ts {tn * } | Query node with binding

tn::=??ts { tn* } | Query node without binding

tn::=??and {tn * } | AND node

tn::=??or{tn * } | OR node

tn::=??not{tn } NOT node

ts::= (/|//)? test ([fun (ide*) {e}])* | Element query step

ts::= (/@|//@”)?test([fun (ide*){e}])* Attribute query step

arg::= e| fun (ide*) { e } Argument

Symbols in bold are keywords

According to the above syntax, the XTPL program corresponding to TQ2 is shown in

Figure 4. The tree pattern branch variable reference $t.$r2 represent the final return

results. It is a remarkable fact that XTPL only covers the tree pattern query request and

can be used in the realizations of XPath and XQuery, but it does not cover complete

XQuery semantics.

5. Denotational Semantics of XTPL

5.1. Data Model

In XTPL program, results of a given query node in WTree instance can be accessed

by tree pattern branch variables, therefore it is unnecessary to save the information of

tree pattern query nodes. Then, we merge WEnv and WMatch as WMap to represent

tree pattern queries results in XTPL data model. Finally, the production rules of XTPL

data model are shown in Table 3. Actually, it is a generalized list, and each item in the

list can be an XML node, atomic values, or a generalized list which represents sub-

query results rooted by certain XML node.

Table 1. Data Model of XTPL

Production Interpretation

List::=Elem* Generalized list

Elem::=Item | List Data item or generalized list

Item::=Node | Atom | WNode XML node, atomic values, or WNode

WNode::=Node WMap XML node with its sub-queries results

WMap::=WBind* Containing several branch variable

WBind::=Idn WNode+ Binding branch variable to WNode instances

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 179

5.2. Semantics Domain

The semantics of XTPL expression is captured by the expression evaluation, that is,

XTPL data model instance.

Table 4 shows the semantics domain of XTPL. The data type Value is the set of data

model instances. As discuss in above, it can be an XML node, atomic values, sub-query

results rooted by certain XML node, or generalized list composed of above data items.

The evaluation environment, Env is a mapping table from identifier to data model

instance or function closure. When the identifier is a tree pattern branch variable, it is

mapped to corresponding data model instance. If it is a function name, then the

identifier is mapped to function closure. The function closure is a triple where Ide*, Exp,

and Env represent virtual arguments, function body, and external environment

respectively.

Table 1. Semantic Domain of XTPL

Production Interpretation

v,z,x,y,dum:Value Set of data model instance

d:Value Current item

p:Integer Index of current item

s: Integer Size of current sequence

tt,ff: Boolean=(True,False) Boolean

u,w:Env = (Ide →Value + Closure) Evaluation environment

Closure = Ide* × Exp × Env Function closure

5.3. Semantic Functions

Table 5 shows the semantics functions of evaluating XTPL expressions.

Table 1. Semantic Functions of XTPL

Semantic Functions Interpretation

⟦⟧Exp : Exp → Env → Value Expression evaluation

⟦⟧Arg : Arg →Env → Closure + Value Argument evaluation

⟦⟧Step: TStep→Value→Env→Value Query step evaluation

⟦⟧TBind: TBind→Env→WMap Tree pattern evaluation

⟦⟧TNode:TNode→Env→Node→Bool×WBind* Node evaluation

The semantics function ⟦⟧Exp evaluates XTPL expressions according to the input

expression and evaluation environment. The semantic function ⟦⟧Arg calculates the value

of actual argument or function closure of anonymous functions according to the input

XTPL argument and evaluation environment. The semantic function ⟦⟧Step is a single

XPath step evaluation function. It calculates the value after processing this XPath step

according to query step, current context, and evaluation environment. The evaluation

result of semantic function ⟦⟧TBind is a WTree instance. The semantic function ⟦⟧TNode is

an evaluation function for tree pattern node. For a given tree pattern node, it obtains the

boolean value which infer whether matching successful or not, or the WBind instances

set of query results.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

180 Copyright ⓒ 2014 SERSC

5.4. Semantics Equations

In order to facilitate description, some auxiliary functions used in semantics

equations are listed in Table 6. Given function name fn and arguments list, the auxiliary

function call active the fn function call. The auxiliary function map executes given node

test for each item of the expression calculation results. Each node test is processed

through a physical operator which is named by axis operation and takes current item

and node test marker as arguments. The auxiliary function getNodeList is used to get

WNode instances according to given tree pattern branch variable.

Table 1. Auxiliary Functions

Auxiliary Functions Interpretation

name(ide) Get built-in function name

call(fn, arg1, …, arg n) Function call

map(v, f) =

if v=[] then[]

else cons(f(v[1]), map(v[2..], f))

Node test

filter(v, f) = fil(v,1, size(v))

where fil(v, p, s) =

if v=[] then []

if fil(hd(v),p,s) then

cons(hd(v), fil(tl(v), p+1, s))

else fil(tl(v), p+1, s)

Process Predicate

cons: Elem × List→List Construct list

hd : List → Elem Get list head

tl : List → List Get list tail

node:Elem→Boolean Whether an XML node or not

newWNode: Node→WMap→WNode Construct WNode instance

newWMap: WBind*→WMap Construct WMap instance

newWBind: ide→WNode*→WBind Construct WBind instance

getNodeList: WNode→Ide→WNode* Get WNode instances

Semantics equations listed in Table 7 illustrate how semantic functions perform for

each grammar structure. Semantics equation (1) shows that the value of a variable is

obtained from evaluation environment. Semantics equation (2) processes function calls

which applies built-in function on the calculation results of arguments. The semantics

of tree pattern branch variable is illustrated through semantics equation (3). It declares

that all WTree instances bound to branch variable ide2 are obtained from the query

results bound to branch variable ide1. Semantics equation (4) explain if expression is a

tree pattern binding then the branch variable of tree pattern query results and the results

should be add to current evaluation environment and generate the new evaluation

environment simultaneously.

Table 2. Semantics Equations of XTPL

Semantics Equations Number

⟦ ide ⟧Exp u = u(ide) (1)

⟦ ide (arg1,…, argn) ⟧ Exp u = call(fn, ⟦ arg1 ⟧Arg u,…, ⟦ argn ⟧Arg u) where fn=name(ide) (2)

⟦ ide1. ide2 ⟧Exp u = if u(ide1) = Ø then error else getNodeList(u(ide1), ide2) (3)

⟦ e with ide=tb ⟧Exp u = ⟦e⟧Exp w where w = u ++{< ide, ⟦ tb⟧TBind u >} (4)

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 181

⟦ e{ tn1,…, tnn }⟧TNode u =

 if node(v) then newWNode(v,newWMap(fn(v)))

 else newWNode(dum, newWMap(bd1++ bdm)) where (bd1++ bdm)=map(v,fn)

 where v = ⟦ e ⟧Exp u

 fn(z)= if m1=…=mn=‘tt’ then tws1 ++ … ++ twsn

 else [] where (mi, twsi) =⟦tni ⟧TNode z u for i=1,…,n

(5)

⟦ ide = ts{tn1 … tnn}⟧TNode x u = if ns ≠ [] then (‘tt’, [newWBind(ide, map(y, fn))]) else (‘ff’, [])

 where y = ⟦ ts⟧Step x u;

 fn(z) = if m1=’ ff’ or… or mn=’ ff ’then []

 else newWNode(z,newWMap(twsi++…++ twsn))

 where (mi, twsi) = ⟦ tni ⟧TNode z u for i=1,…,n

(6)

⟦ ide = ?ts tn1 … tnn ⟧TNode x u = (‘tt’, [newWBind(ide, map(y, fn))])

 where y =⟦ ts⟧Step

 fn(z) = if m1=’ff’ or … or mn=’ ff’ then [] else newWNode(z,newWMap(twsi++…++twsn))

 where (mi, twsi) = ⟦ tni ⟧TNode z u for i=1,…,n

(7)

⟦ ts{tn1 … tnn} ⟧TNode x u = if tws ≠ [] then (‘tt’, tws) else (‘ff’, [])

 where tws = map(⟦ ts ⟧Step x u, fn);

 fn(z) = if m1=’ff’ or … or mn=’ff’ then [] else twsi ++ … ++ twsn

 where (mi, twsi) = ⟦ tni ⟧TBind z u for i=1,…,n

(8)

⟦ ?ts {tn1 … tnn} ⟧TNode x u = (‘tt’, map(⟦ ts⟧Step x u, fn))

 where fn(z) = if m1=’ ff’ or … or mn=’ ff’ then [] else twsi ++ … ++ twsn

 where (mi, twsi) = ⟦ tni ⟧TBind z u for i=1,…,n

(9)

⟦ and (tn1, …, tnn) ⟧TBind x u = if m1=’tt’ and…and mn=’tt’ then (‘tt’, tws1 ++…++ twsn) else (‘ff’, [])

 where (mi, twsi) = T ⟦ tni⟧TBind x u for i=1,…,n

(10)

⟦ or(tn1, …, tnn) ⟧TBind x u = if m1=’tt’ or … or mn=’tt’ then (‘tt’, tws1 ++ … ++ twsn) else (‘ff’, [])

 where (mi, twsi) = ⟦ tni ⟧TBind x u for i=1,…,n

(11)

⟦ not(tn) ⟧TBind x u = if m=’tt’ then (‘ff’, []) else (‘tt’, tws) where (m, tws) = ⟦ tn⟧TBind x u (12)

⟦ ?op (args) ⟧TBind x u = for op{ and, or, not } if m=‘ ff’ then (‘tt’, tws) else (‘ff’, tws)

 where (m, tws) = ⟦ op(args) ⟧TBind x u

(13)

⟦ /test [fun(d1,p1,s1){e1}]…[fun(dn,pn,sn){en}]⟧Step x u = nsn+1

 where ns1 = call(‘child’, x, test);nsi+1 = filter(nsi, λdi. λpi. λsi. ⟦ei⟧Exp u) for i=1,…,n

(14)

⟦ //test [fun(d1,p1,s1)e1]…[fun(dn,pn,sn)en] ⟧Step x u = nsn+1

 where ns1 = call(‘descendant-or-self’, x, test));

 nsi+1 = filter(nsi, λdi. λpi. λsi. ⟦ei⟧Exp u); for i=1,…,n

(15)

⟦ /@test [fun(d1,p1,s1)e1]…[fun(dn,pn,sn)en] ⟧Step x u= nsn+1

 where ns1 = call(‘attribute’, x, test); nsi+1 =filter(nsi, λdi. λpi. λsi..⟦ ei ⟧Exp u); for i=1,…,n

(16)

⟦ //@test [fun(d1,p1,s1)e1]…[fun(dn,pn,sn)en] ⟧Step x u= nsn+1

 where ns0 = call(‘descendant-or-self’, x, ‘*’)); ns1 = map(ns0, λd.call(‘attribute’, d, test))

 nsi+1 =filter(nsi, λdi. λpi. λsi. .⟦ ei ⟧Exp u) for i=1,…,n

(17)

⟦ e ⟧Arg u =.⟦ e ⟧Exp u (18)

⟦ fun (ide1,…, idem) { e }⟧Arg u = <λide1…λiden . e, u > (19)

In the tree pattern query semantics equation (5), it first evaluates expression e. If the

calculation results only contain one XML node, then it matches branches and generates

the WMap instance by constituting all branch variables after all branch have been

matched successfully. Further, the WNode instance which represents the root of the

WTree instance will be constructed. If the calculation results are an XML nodes

sequence, then it processes each XML node respectively and constructs the virtual root

for the WTree instance. Semantics equations (6) and (7) illustrate the query nodes

evaluation which has a bind variable. It first processes query step and gets several XML

nodes, further, it implement each sub-query for these XML nodes. For compulsory

relationship, there must be a WNode instance, otherwise the matching is failing and

return false. For optional relationship, it can bind empty list to the tree pattern branch

variable. The evaluations of query nodes without bind variable are shown in semantics

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

182 Copyright ⓒ 2014 SERSC

equations (8) and (9). Semantics of logic nodes are listed during equations (10) to (13).

Semantics equations (10), (11), (12) illustrate the three logic operation with compulsory

relationship respectively, while the three logic operation with optional relationship are

shown in semantics equations (13). For optional relationship, it always return true to

infer the matching is successful. Semantics equations (14) to (17) are semantics of

query step which contain axis operation, node test, and various kind predicates. Since

the query step is a kind of operation for current XML node, it needs context to evaluate

predicates. Semantics equations (18) and (19) are semantics of argument; it is used to

evaluate expression and construct function closure respectively.

6. Extraction of Tree Pattren

To take advantage of tree pattern query for effectively realization of XQuery, it is

inevitable to analysis the query plan and extract tree pattern from it. For save space, this

paper only gives the denotational semantics of processing path expression, which is the

core part of tree pattern extraction.

Extraction of tree pattern is the process of rewriting the structure information in the

query expression according to certain rules as XTPL expression with the with clause.

The essence of path expression in XQuery can be considered composed of several axis

operations in Table1. Therefore the core of tree pattern extraction is rewriting axis

operation expression. The semantics equation of tree pattern extraction is declared as

follows:

⟦⟧Extr: Exp→Ide×TBind→ExEnv→Exp×Tbind

Exp and TBind in this semantics equation stand for XTPL expressions and the tree

pattern in with clause respectively. ExEnv is the context environment which is used to

store bind relationships between variables and tree pattern branch. If the result of

expression rewriting applied semantics equation ⟦⟧Extr is a tree pattern branch variable, it

will return a pair composed of branch variable name and TBind instance; otherwise, the

target expression is the output and TBind is nil.

The semantic domain and equations are listed in Table 8 and 9 respectively. In Table

9, according to semantics equation (1), the variables without binding do not need to be

rewritten; otherwise, this variable should be replaced with tree pattern branch variable.

Semantics equation (2) processes the common comparison operations in predicates,

TPQ which bind may be extended because its arguments are often axis operations over

current node. Semantics equation (3) is the core part of tree pattern extraction. The tree

pattern extraction from axis operation can be divided into two cases: the first is forward

axis, which is used for the axis operations supported by basic tree pattern, such as PC,

AD, property, etc; the second is reverse axis and other operation. For the first case, the

source expression e in axis operation is processed first. If the result is a tree pattern

branch variable (b’≠nil), then this tree pattern will be extended with new query nodes

using current axis operation; otherwise, a new TBind instance will be constructed and

extended with a new query node n using current axis operation. Subsequently, all

predicates are processed to extend this query node. Other predicates pi except exist

predicate are added to this query node. The new constructed tree pattern will be

rewritten as with clause in XTPL, otherwise, a new constructed tree pattern branch

variable <v, b#> will be returned. If it belongs to the second situation, a new tree pattern

will be constructed after processing source expression e. Further, this tree pattern will

be extended by processing predicates and the predicates which not be replaced by tree

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 183

pattern will be added as constraint conditions of query node. Finally, the axis operation

will be rewritten as with clause in XTPL.

Table 2. Semantic Domain of Tree Pattern Extraction

Semantic Domain Interpretation

a,p,x,y:Exp Expression in XTPL

tn:TNode Query node

tb,nil:TBind Tree pattren

υ:ExEnv=(Ide→Ide×TBind) Extraction environment

Table 3. Semantic Equations of Tree Pattern Extraction

Semantic Equations Number

⟦ ide ⟧Extr <x, tb> υ = if υ(ide) = Ø then < ide,nil> else if ide=d then < x, tb > else υ(ide) (1)

⟦ cmp(arg1, arg2) ⟧Extr <x,tb> υ = <genExp[cmp(<e1>, <e2>)], nil>

where e1=if tb1≠nil then genExp[getNode(<var(tb1)>.<a1>)] else a1

 e2=if tb2≠nil then genExp[getNode(<var(tb2)>.<a2>) else a2

<a1, tb1>= ⟦arg1⟧Extr < x,tb > υ

<a2, tb2>= ⟦arg2⟧Extr <x,tb1> υ

(2)

⟦ axis (e, test [e1]…[en]) ⟧Extr <x,tb> υ=

if axis∈{child, descendant-or-self, attribute} then

 if tb’≠nil then <y, tb#>

 else <genExp[<y>with<tb#>], nil>

 where <e0, tb’> = ⟦ e ⟧Extr <x, tb> υ

 tb” = if tb’≠nil then tb’ else genTBind[<newVar()>=<e0>]

 y = newVar()

 <ei, tbi> = ⟦ei ⟧Extr <y,tb”> υ for i=1,…,n

 tn = newTNode(y, axis, test)

 pi = if tbi≠nil then Ø else genPred[ei]

 tn’ = addPred(tn, p1…pn)

 tb# = addTNode(tb”, y, tn’)

else < genExp[<a> with <tbn>], nil >

where <e0, tb’> = ⟦exp⟧Extr <x,tb> υ

 e’ = if tb’≠nil then genExp[<var(tb).<e0>] else e0

 y = newVar()

 tb0 = newTBind(y, e’)

 <ei, tbi> = ⟦ expi ⟧Extr <y,tb0> υ for i=1,…,n

 pi =if tbi≠nil then Ø else genPred[fun(d,p,s)ei]

 a = genExp[axis(<y>, <test><p1>…<pn>)]

(3)

Auxiliary Functions genExp represent generating expression based on template in

which its arguments are specified with symbol ‘< >’, and genTBind represent generating

tree pattern with representation of with clause. Function newTNode generates query

node. Function addTNode add sub-query node with its bind variable to the given query

node. Function addPred add predicates to the given query node. Function genPred

construct a representation of predicates in with clause.

7. Conclusion

For extended XML tree pattern GTP++, which covers optional relationship, logical

operators AND, OR, NOT, wildcard and various predicates, we develop a tree pattern

description language XTPL, and give its denotational semantics to present the

behavioral characteristics of tree pattern query. Meanwhile, in order to explain the tree

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

184 Copyright ⓒ 2014 SERSC

pattern extraction process, we present the semantics equations of rewriting rules for

extracting tree pattern from path expressions.

With the increasingly widespread application of XML data and the development of

XQuery, efficient processing of XML data need to be supported in many fields. This

paper focuses on XML tree pattern description language and its formalization. However,

tree pattern query is only a subset of XQuery. To support complete XQuery query, the

tree pattern query results are still need to be calculated with the help of other

expressions. The future work aims to develop a complete intermediate language which

contains XTPL and XML query algebra, and tree pattern extraction rules, so that we can

effectively organize XQuery queries into a query plan consisted of tree pattern query

and query algebra. Meanwhile, we will study various optimization techniques and

provide a complete solution for XQuery queries.

Acknowledgements

This work was both supported in part by the Beijing Nature Science Foundation under

Grant 4122011and the National Science Foundation for Young Scientists of China under

Grant 61202074.

References

[1] M. Hachicha and J. Darmont, “IEEE Trans”, Knowl. Data Eng., vol. 25, (2013)

[2] Y. W. Qu, Editor, “Formal semantics: Foundation and formal specification”, Science Press, Beijing, (2010).

[3] X. B. Zhang and H. S. Liao, “Front. Comput. Sci. Technol.”, vol. 4, (2010)

[4] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava and Keith et. al., “TAX: A Tree Algebra for XML”,

Database Programming Languages, Springer Berlin Heidelberg, (2001), pp. 149-164.

[5] N. Bruno, N. Koudas and D. Srivastava, “Holistic twig joins: Optimal XML pattern matching”,

Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison,

Wisconsin, (2002) June 3-6.

[6] J. Lu, T. Chen and T. W. Ling, “TJFast: Effective processing of XML twig pattern matching”, Proceedings

of the 14th International Conference of World Wide Web, Chiba, Japan, (2005) May 10-14, pp. 455-466.

[7] S. Chen, H. Li, J. Tatemura, W. Hsiung, D. Agrawal, et.al., “Twig2Stack:bottom-up processing of

generalized-tree-pattern queries over XML documents”, Proceedings of the 32nd International Conference

of Very Large Databases, (2006) September 12-15, Seoul, Korea.

[8] L. Qin, J. X. Yu and B. Ding, “TwigList: Make twig pattern matching fast”, Advances in Databases:

Concepts, Systems and Applications, Springer Berlin Heidelberg, vol. 4443, (2007), pp.850-862.

[9] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan and S. Paparizos, “From tree patterns to generalized tree

patterns: on efficient evaluation of XQuery”, Proceedings of the 29th International Conference of Very

Large Databases, Berlin, Germany, (2003) September 9-12.

[10] J. H. Lu, T. W. Ling, Z. F. Bao and C. Wang, “IEEE Trans.,Knowl. Data Eng.”, vol. 23, (2011).

[11] N. S. Alghamdi, W. Rahayu and E. Pardede, “Object-Based Semantic Partitioning for XML Twig Query

Optimization”, Proceedings of the 27th International Conference on Advanced Information Networking

and Applications, Barcelona, Spain, (2013) March 25-28.

[12] S. K. Izadi, T. Harder and M. S. Haghjoo, “Data Knowl. Eng.”, vol. 68, (2009).

[13] Q. Zeng, X. Jiang and Z. Hai, “Adding Logical Operators to Tree Pattern Queries on Graph Structured

Data”, Proceedings of the 29th International Conference of Very Large Databases, Istanbul, Turkey, (2012)

August 27 – 31.

[14] D. Che, T. Ling and W. Hou, “EEE Trans. Knowl. Data Eng.”, vol. 24, (2012).

[15] C. Re, J. simeon and M. Fernandez, “A Complete and Efficient Algebraic Compiler for XQuery”,

Proceedings of the 22nd International Conference on Data Engineering. (2006) April3-8, Atlanta, GA,

USA.

[16] P. Michiels, G. A. Mihaila and J. Simeon, “Put a Tree Pattern in Your Algebra. Proceedings of the 23rd Int.

International Conference on Data Engineering”, (2007) April 15-20, Istanbul, Turkey.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 185

Authors

Husheng Liao was born in Changchun in 1954. He is a professor and

doctoral supervisor at Beijing University of Technology in P.R.China.

His research interests include software automation methods and data

integration technology, etc.

Xiaoqing Li was born in Tangshan in 1983. She is a Ph.D. candidate

at Beijing University of Technology in P.R.China. Her research interest

is XML database technology.

Hang Su was born in Shenyang in 1978. He is a lecturer of computer

science at the Beijing University of Technology in P.R.China. His current

interests include XML technology, query languages and program

transformation.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

186 Copyright ⓒ 2014 SERSC

