
International Journal of Database Theory and Application

Vol.7, No.5 (2014), pp.145-160

http://dx.doi.org/10.14257/ijdta.2014.7.5.11

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Testing and Evaluation of a Hierarchical SOAP based Medical

Web Service

Abhijit Bora and Tulshi Bezboruah

Department of Electronics and Communication Technology, Gauhati University,

Guwahati-781014 Assam, India

Tel:+91-361-2671262(O); Fax: +91-361-2700311(O);

abhijit.bora0099@gmail.com / zbt_gu@yahoo.co.in

Abstract

Performance testing of hierarchical web service communications is essential from the

perspective of users as well as developers, since it directly reflects the behavior of the service.

As such we have developed a SOAP based research web service, suitable for online medical

services to study the performance and to evaluate the technique used for developing the

service. We call the service as MedWS (prototype research medical web service). Load and

stress testing have been carried out on MedWS using Mercury Load Runner to study the

performance, stability, scalability and efficiency of the service. The performance depends on

metrics such as hits/sec, response time, throughput, errors/s and transaction summary. These

metrics are tested with different stress levels. The statistical analysis on the recorded data has

been carried out to study the stability and quality of the application. The present study reveals

that the SOAP based web service which has been developed with Java programming

language is stable, scalable and effective. We present here the architecture, testing

procedure, results of performance testing as well as the results of statistical analysis on

recorded data of MedWS.

Keywords: Web Service, RDBMS, Java API, performance measurement

1. Introduction

The Web Service (WS) is a modular and self contained software application that can be

invoked over the World Wide Web (WWW) [1]. The WS can provide a service for specific

business logic (BL). It is similar to the activity of remote procedure call using client server

application. Professionally, a WS supports machine-to-machine interoperable interaction over

an internet. It contains Web Service Description Language (WSDL) file as WS interface.

Other systems interact with the WS using Simple Object Access Protocol (SOAP) [2]. The

WS can be used alone for a particular operation or may be aggregated by other WS for the

enhanced flexibility in operation. It has a potential to enhance Business to Business (B2B)

collaboration by integrating compatible services to a service of higher dimension [3]. Every

service may assume one or more roles such as: (i) being a service provider, (ii) a broker or

(iii) a user [4]. The WS can be invoked by a client, such as, browser, mobile or other software

based devices, typically which are the consumers of a WS in general. The main three

platforms of WS are SOAP, WSDL and Universal Description, Discovery and Integration

(UDDI).

tel:+91-361-2671262(O)
mailto:zbt_gu@yahoo.co.in

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

146 Copyright ⓒ 2014 SERSC

1.1 Related Work

In the year 2005, N. Hashmi, D. Myung, M. Gaynor, S. Moulton [5] presented a WS based

medical service for collecting sensor based network responses using Java and Microsoft .NET

platform.

 In the year 2005, M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, M. Hericko [6]

illustrated an analysis on performance and an in depth comparison of WS and remote method

invocation using Windows and Linux platform.

 In the year 2009, B. Abdelkader and B. Samia [7] introduced a hierarchical model to

represent different scenario of WS composition with constraint management such as time,

duration and time interval.

In the year 2010, V. Stoicu-Tivadar, L. Stoicu-Tivadar, D. Berian, V. Topac [8] presented

a WS based system architecture called as TELEASIS, that insures support for medical and

social tele-assistance for elderly people.

 In the year 2012, K. Mohamed, D. Wijesekera [9] studied the comparative analysis for

hosting RESTful WS versus SOAP-based WS.

 In the year 2014, Lorenzo Bianchi, Federica Paganelli, Maria Chiara Pettenati,

Stefano Turchi, Lucia Ciofi, Ernesto Iadanza, and Dino Giuli [10] proposed PHARMA,

a WS based information system to support healthcare staff in cooperative execution of

drug prescription, transcription and registration tasks and discussed the results of the

usability evaluation carried out in a hospital.

2. The Objective and Methodology

The main objective of the proposed work is to design, develop, implement and test a proto

type hierarchical SOAP based WS considering pharmacological data [11] to study various

attributes like load, performance and scalability of the service.

The WS has been developed and implemented by using Java Application

Programming Interfaces (APIs), apache tomcat web server and MySQL database server.

It has three different services, namely: (a) the parent WS (b) the client WS and (c) the

child WS. The data set for the service is 10000. The WS is hosted at apache tomcat web

server. A virtual user (VU) script is generated using Mercury Load Runner to access the

WS and to monitor the load and performance test. The data mapping in between

diseases, medicines, components, manufacturer and clinical remarks is prepared. The

flowchart and entity relationship (ER) diagrams are prepared to present the basic

working principle of the WS. The architecture for the WS is developed. The testing is

performed up to 1500 virtual users by deploying the WS on Mercury LoadRunner. The

responses of the different testing are recorded. Statistical testing of the recorded

responses has been performed to study different aspects of the WS. Figure 1 elaborate

the basic methodology that we have used in developing the WS.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Stoicu-Tivadar,%20V..QT.&searchWithin=p_Author_Ids:37304159600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Stoicu-Tivadar,%20L..QT.&searchWithin=p_Author_Ids:37545365000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Berian,%20D..QT.&searchWithin=p_Author_Ids:37569889300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Topac,%20V..QT.&searchWithin=p_Author_Ids:37304158500&newsearch=true

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 147

Figure 1: Methodology for Prototype Hierarchical SOAP based WS
Communications

3. Software Aspects of MedWS

The Java programming language is an open source choice for developing web applications.

It guarantees concurrency control and makes it relatively easy to create SOAP based WS. The

most important features of APIs for XML are that they all support industry standards,

ensuring interoperability [12]. The WS application can be developed and implemented using

Java APIs with Spring framework which is Model-View-Controller Model 2 (MVC2)

architecture [13] and tools provided by an integrated WS Stack called Metro. The Metro stack

enables any one to create and deploy secure, reliable, transactional, interoperable WS and

clients [14]. Different software specifications for the proposed work are: (i) web server:

Apache Tomcat version 7, (ii) the database server: MySQL 5.0, (iii) platform: NetBeans 7.0

IDE and (iv) web browser: Mozilla Firefox. Along with these, Java Development Kit version

7 (JDK 7) and Java Runtime Environment version 7 (JRE 7) is also used. The WS and its

client applications have been run on servers with hardware specifications: Intel® Xeon®

CPU E5620; Processor speed: @2.40 GHz; RAM: 8 GB and Memory space: 600 GB. The

operating system is 64-bit Windows Server 2008 R2 Standard.

3.1 The Architecture

The architecture of the propose WS is shown in Figure 2. This architecture represents the

basic functionality of all the three WS.

3.1.1 The Client WS: The client WS contains the user interface and presentation code, such

as, Java Server Page (JSP) pages, Hyper Text Markup Language (HTML) form controls,

server side class files etc. The HTML form controls are provided in Client WS for capturing

the end user data. The role of this client is to capture data and forward it to parent WS.

3.1.2 The parent WS: The parent WS is responsible for capturing and forwarding the request

from the client WS to child WS. The parent WS is also responsible for informing the client

WS about the response of child WS.

10.10.170.14

Child

SOAP

WS MySQL

database
engine

Apache Tomcat web server

Server 3 Server 2 Server 1

10.10.170.1

3

Parent

SOAP

WS

10.10.170.8

9

Client

of

WS

SOAP

request

SOAP

response

VU1

VUn

VU2

Mercury

LoadRunner

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

148 Copyright ⓒ 2014 SERSC

3.1.3 The Child WS: The child WS holds the required BL functions, validations and

calculations related to the data. The parent WS acts as a mediator between the client WS and

the child WS. The child WS manages the physical storage and retrieval of data from the

database. It receives the data from the parent WS and sends it to the database and vice versa.

The child WS holds the database queries for performing necessary operation.

Figure 2. The Proposed Architecture for the MedWS

4. Design Aspects of MedWS

The SOAP based research WS using Java as programming language which we have

developed is suitable for online health advices along with support for medicines that are

available in the market. We have taken into account the disease related clinical details,

namely: (a) the medicine name for a particular disease, (b) the manufacturing company name,

(c) the medicine, and (d) the available medicine package in the form of tablet, syrup,

injection, and lotion. We combine them together to produce an arrangement for implementing

MedWS. The service is developed by taking into account of a pharmacological book

published in India as sample data [11]. The Create, Read, Update, Delete (CRUD) operations

are performed to generate the responses. When users open the client application, the end user

interface will open. The interface contains one text box and one submit button. The users can

enter a particular disease name in the text box and then can click “submit” button to submit

query for required information. The clinical details against the entered data in the text box

will appear on the browser. The response is in a tabular format with header columns labeled

as disease name, component name, medicine name, company name and remarks. The

response will be generated based on the records available in the dataset. If there is no

matching found then a message as “No Existing Records Available” will appear on the

browser.

4.1 The ER Diagram

The Flowchart of the program developed for the proposed work is presented elsewhere

[15]. The ER diagram of the database is presented in Figure 3. The database is a MySQL

solution which contains relevant information about the medicine, available components,

company and clinical details. The database contains 5 tables. The data that the tables contain

refer to:

Medicine: This table contains medicine names

Component: This table contains component name of the medicine

Disease: This table contains disease list

Company: This table contains company names of the medicine

Capture parent WS data,

Process BL functions

Client

Application Parent WS Child WS

Medicine

Disease

Database

Capture user data Capture client data and

forward it to child WS

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 149

Disease-medicine mapping: This table contains clinical details for particular disease

Figure 3. ER Diagram for Disease Medicine Dataset

5. Testing of MedWS

The MedWS is tested using an automated testing tool Mercury Load Runner version 8.1 to

predict the systems’ behavior and performance. It stresses the system, records the systems’

performance metrics and analyzes it accordingly [16]. During the experiments, a user think

time of approximately 30sec is incorporated in performing the transaction and an average

steady-state period of 5min is set for all the experiments. The stress level is gradually varied,

so that it can saturate the server. Each WS request causes an execution of SQL SELECT

query to retrieve disease related clinical data from the database table. We follow the various

steps for the test discussed and presented elsewhere [17, 18, 19]. The test case for select

method invocation is given in Table 1 below.

Table 1. Test Case for Select Method Invocation

Step Step description Expected outcome

1 Open URL

http://server1:8080/t22P_Client/i

ndex.jsp

Child WS index page will be displayed with the

form elements:

a) “Enter keyword” text field

b) “Submit” button

2 Enter valid disease name and

click “Submit” button

a)Enter “Cold” in “Enter

keyword” text field

Pass the parameter to child WS through parent

WS for necessary SQL Select operation and wait

for the response.

1

N

N

N

N

1

Company Name

Component

 Disease

Disease Medicine
Mapping

Medicine Having

For Having

For

1

1

Med_id
Med_Name

Comp_id
Comp_Name

Disease_id
Disease_Name

C_id
C_name

Sl_no Instruction

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

150 Copyright ⓒ 2014 SERSC

3 Child WS response is displayed

Response page http://server1:8080/

t22P_Client/result.jsp is displayed with a result

set containing following data

a) Disease name

b) Component name

c) Medicine name

d) Company name

e) Remarks/Instruction

5.1. Testing Parameters

The various parameters that we set during the testing procedure includes: (i) the stress

level, which defines the number of virtual users accessing the WS, (ii) the think time, which

defines the maximum time taken by the user in thinking before requesting a parameter, (iii)

the network speed, which specifies the bandwidth (BW) that the virtual user will use in the

network.

5.2. Test Responses

The metrics of the load and stress test that we have monitored include: (a) the response

time in seconds, (b) the throughput in bytes/sec, (c) the hits/sec and (d) the number of

successful virtual users allowed for transaction.

6. Experimental Results

The test is performed for 50, 100, 150, 200, 250, 350, 500, 600, 700, 800, 1000, 1200,

1500 virtual users. We measure all the performance parameter in maximum BW. The entire

performance tests are conducted with ramp up schedule with 1 virtual user operating every

15sec. The steady-state measurement period is set at 5min duration. Then they are exiting the

system simultaneously after the completion of the steady-state period.

Some of the sample responses of performance test are shown in Figure 4-6. Figure 4 shows

the response for hits/sec against number of users for 700 virtual users. In this case, hits/sec

increases with the increase in virtual users. It becomes maximum at 694 virtual users and then

the parameter decrease gradually. The recorded average hits/sec for 700 virtual users is 3.71

with a maximum of 7.125.

Figure 5 shows the response for throughput against number of users for 700 virtual users. It

is observed that throughput increases with the increase in virtual users. It becomes maximum

at 492 virtual users and then the parameter decrease gradually. The recorded average

throughput for 700 virtual users is 16627.857 with a maximum of 28358.25.

Figure 6 shows the response for response time against number of users for 700 virtual

users. It is observed that response time increases with the increase in virtual users. It becomes

maximum at 498 virtual users and then the parameter decrease gradually. The recorded

average response time for 700 virtual users is 11.71 with a maximum of 12.885.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 151

Figure 4. Hits/sec Against Number of
Users for 700 Virtual Users

Figure 5. Throughput Against Number
of Users for 700 Virtual Users

Figure 6. The Response Time Against Number of
Users for 700 Virtual Users

We observed various metrics provided by the LoadRunner. The virtual user levels up to

1500 are tested to force the client application in invoking the MedWS to work beyond its

capacity. The results are given in Table 2.

Table 2. Results for Select Operation on MedWS

Scenario No. of

users

Recorded parameters Average Connection

refusal in %

Select operation 50 Response time in sec

Throughput in bytes/sec

Hits/sec

10.520

2328.670

0.396

0

 100 Response time in sec

Throughput in bytes/sec

Hits/sec

10.020

2489.270

0.681

0

 150 Response time in sec

Throughput in bytes/sec

Hits/sec

10.412

4726.324

0.953

0

 200 Response time in sec

Throughput in bytes/sec

Hits/sec

10.624

6934.176

1.181

0

 250 Response time in sec 11.564 0

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

152 Copyright ⓒ 2014 SERSC

Throughput in bytes/sec

Hits/sec

8334.323

 1.455

 350 Response time in sec

Throughput in bytes/sec

Hits/sec

11.709

11015.608

 1.966

0

 500 Response time in sec

Throughput in bytes/sec

Hits/sec

11.991

 14135.344

2.638

0

 600 Response time in sec

Throughput in bytes/sec

Hits/sec

10.358

9425.305

 3.146

0

 700 Response time in sec

Throughput in bytes/sec

Hits/sec

11.816

16043.586

3.649

0

 800 Response time in sec

Throughput in bytes/sec

Hits/sec

11.776

16834.457

 11.776

0

 1000 Response time in sec

Throughput in bytes/sec

Hits/sec

 9.935

 9853.486

 4.990

1

 1200 Response time in sec

Throughput in bytes/sec

Hits/sec

10.734

11885.978

5.229

14

 1500 Response time in sec

Throughput in bytes/sec

Hits/sec

11.019

9049.034

2.969

61

7. Statistical Analysis of the MedWS

The statistical analysis for 50 users run for 5min in steady state is presented here. A sample

of 30 repeated tests is taken for analysis. The recorded 30 samples are divided into six classes

depending on their range. The class width and range for response time, hits/sec and

throughput are given in Table 3-5, respectively.

Table 3. Class Width and Frequency for Response Time

Response time (s) Observed frequency

10.424 1

10.9128 26

11.4016 0

11.8904 0

12.3792 0

>12.3792 3

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 153

Table 4. Class Width and Frequency for its/sec

Hits/sec Observed frequency

0.392 1

0.648 26

0.904 0

1.16 0

1.416 0

>1.416 3

Table 5. Class Width and Frequency for Throughput

Throughput

(bytes/s)

Observed

frequency

2114.236 1

3606.015 26

5097.795 0

6589.574 0

8081.354 0

>8081.354 3

7.1. Distribution for Response Time, hits/sec and Throughput

Our objective for statistical analysis is to determine the distribution of response time,

hits/sec and throughput. One of the ways of determination is to plot the histogram of the

observed parameters as shown in Figure 7-9 respectively. According to histograms, the

applied distribution is normal but slightly right skewed for response time, hits/sec and

throughput.

Figure 7. Histogram of Response

Time

Figure 8. Histogram of hits/sec

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

154 Copyright ⓒ 2014 SERSC

Figure 9. Histogram of Throughput

However, there is a major drawback with histograms, that is, depending on the used bin

sizes; it is possible to draw very different conclusions. A better technique is to plot the

observed quantiles against the recorded data in a quantile plot [19, 20]. If the distribution of

observed data is normal, the plot is close to be linear. The resultant plots are shown in Figure

10-12. Based on the observed data, the response time, throughput and hits/sec do appear to be

normally distributed.

Figure 10. Quantile Plot of Response
Time

Figure 11. Quantile Plot of hits/sec

Figure 12. Quantile Plot of Throughput

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 155

The normal probability plot can be used to perform the test for normality. If the data

samples are taken from a normal distribution, the plot will be appearing to be linear [17, 18,

19]. The normal probability plot for the response time, hits/sec and throughput are shown in

Figure 13-15. The data follows a straight line, which predicts that the distribution is normal

one.

Figure 13. Normal Probability Plot for
Response Time

Figure 14. Normal Probability Plot for
hits/sec

Figure 15. Normal Probability Plot for Throughput

7.2. Chi Square Test for Goodness of fit: Testing for Appropriateness of Distribution

Chi square test is performed to verify how good the frequency distribution fits to its

expected distribution [21]. It enables us to test whether there is a significant difference

between an observed distribution and a theoretical distribution.

To determine the goodness of fit between expected and observed data, the chi square

equation can be expressed as [22]:


2
 = (fo - fe)

2
/fe (1)

Where 
2

is calculated chi square value, fo is frequency of observation and fe is expected

frequency. The bigger the value of 
2
 the greater will be the difference between the observed

and expected values. We compare the 
2

value with a theoretical chi-square value obtained

from the table presented elsewhere [23]. If the calculated 
2

value is greater than the

theoretical value then the fitness of good may be rejected.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

156 Copyright ⓒ 2014 SERSC

It is observed from Table 3 above that the sample contains 3% of response values that are

10.424, 87% in the range of >10.424 to , 0% in >10.9128 to , 0% in

>11.4016 to , 0% in >11.8904 to and 10% are >12.3792.

From Table 4, it is observed that the sample contains 3% of hits/sec that are , 87%

in the range of >0.392 to , 0% in >0.648 to , 0% in >0.904 to , 0% in

>1.16 to and 10% is >1.416.

From Table 5, it is observed that the sample contains 3% of throughput that are ,

87% in the range of >2114.236 to , 0% in >3606.015 to , 0% in

>5097.795 to , 0% in >6589.574 to and 10% are >8081.354.

We assume a null hypothesis Ho: the observed distribution fits the expected distribution.

The alternate hypothesis HA: the observed distribution does not fit the expected distribution.

Table 6. Chi Square Test for Response Values

Response

time

Observed (fo) Expected (fe) fo - fe (fo - fe)
2

(fo - fe)
2
/fe

10.424
1 3% of 30 =

0.9

0.1 0.01 0.011

>10.424 -

26 87% of 30 =

26.1

0.1 0.01 0.00038

>10.9128 -

0 0% of 30= 0 0 0 0

>11.4016 -

0 0% of 30= 0 0 0 0

>11.8904 -

0 0% of 30= 0 0 0 0

>12.3792 3 10% of 30= 3 0 0 0

The calculated chi square 0.011

The degree of freedom (DF) is obtained by subtracting 1 from the number of levels (k) of

the categorical variable: DF = k - 1. In our case it is 6-1=5. We test at the 0.05 confidence

level. It is observed that the critical chi square value is 11.0705 for degree of freedom 5 and

probability is 0.05.

Since the calculated 
2

[Table 6] value is less than critical chi square value i.e.

0.011<11.0705, we accept the null hypothesis that is the data fits the expected distribution.

Figure 16 shows the acceptance region of the null hypothesis.

Similarly, the chi square value for hits/sec and throughput is calculated to be 0.011 which

is less than critical chi square value 11.0705 at degree of freedom 5 and probability 0.05.

Hence we also accept the null hypothesis for hits/sec and throughput.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 157

Figure 16. Goodness of Fit Test at 0.05 Level of Significance, Showing
Acceptance Region

7.3. Confidence Interval of Response Time, hits/sec and Throughput

The 95% confidence interval for the mean values of response time, hits/sec and throughput

are calculated using Microsoft Excel. We evaluate the number of sample size N, mean value

x and confidence level. The evaluated values are given in Table 7 that are made based on

different values for parameter obtained during load testing.

Table 7. Mean, Standard Deviation and Margin of Error

N Parameters
x

Standard

deviation

Confidence

level

30 Response time, s

Hits/sec

Throughput, bytes/s

10.8583

0.5333

3101.341

0.652273

0.374979

2110.863

0.233409

0.134182

755.3486

From Table 7, we can conclude that with 95% confidence level the mean of response time

lies between 10.8583  0.233409 that is 10.62489 and 11.09171, the mean of hits/sec lies

between 0.399118 and 0.667482 and mean of throughput lies between 2345.993 and 3856.69.

7.4. Regression Analysis

To examine whether the relationship between response time, hits/sec and throughput is

linear is to plot the relationship. The response time is assumed as response variable. Hits/sec

and throughput are assumed to be explanatory variable. The scatter plots of response time

against hit/sec and throughput are given in Figure 17 and Figure18. The two scatter plots are

having straight lines which reveals linear relationship. Greater the value of hits/sec, greater

will be the response time. Similarly, the greater the value of throughput more will be the

response time. As the graphs present straight line, we can conclude that the relationship is

linear. The combined effect of throughput and hits/sec on response time is examined by

multiple linear regression tests. The regression test is carried out at 95% confidence level. We

assumed the null hypothesis (H0): response time does not depend on hits/sec and throughput.

The alternate hypothesis (H1): response time is dependent on hits/sec and throughput.

The regression analysis is carried out in Microsoft Excel. The analysis of variance shows F

ratio to be 5388.135 which is greater than the critical value. The critical value from the F

table at significance 0.05 is (F2, 27) 3.35, where 2 and 27 are regression and residual,

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

158 Copyright ⓒ 2014 SERSC

respectively. So, we can conclude F ratio to be significant at 0.05. This provides evidence of

existence of linear relationship between response time, hits/sec and throughput. As such, the

null hypothesis may be rejected. It implies that the equation has 95% chance of being true.

The analysis also suggests that our model accounts for 99.73% variance on response time.

Thus we can conclude that the hits/sec and throughput have influence on response time.

Figure 17. Response Time Against
hits/sec

Figure 18. Response Time Against
Throughput

8. Results and Discussion

The objective of our present investigation is to monitor the overall performance of

hierarchical MedWS based on JAVA technique using tomcat web server and to predict the

influence of the hits/sec and throughput on response time. The experimental results of the WS

predict that up to 800 virtual users the service shows an ideal response without any refusal in

connectivity with an average response time of 11.776sec. As we increase the number of

virtual users above 800 the connection refusal is observed. For 1000 virtual users, the average

response time is 9.935 sec with a connection refusal of 1%. Similarly for 1200 virtual users,

the average response time is 10.734 sec and 14% connection refusal is observed. The highest

connection refusal is observed at 1500 virtual users with 61% refusal with an average

response time of 11.019 sec.

The increase in connection refusal at higher number of virtual users may be due to garbage

collected heap, because of improper release of memory in time. Which may in turn, can also

cause the decrease of server response. The sudden rise and fall of response time, throughput

and hits/sec in different virtual users may be for database engine or due to not releasing or

lately releasing server resources including memory for the consecutive request.

The histograms are slightly right skewed. However, the quantile plot and normal

probability plots of the MedWS for response time, hits/sec and throughput, show linearity and

normality which provides enough evidence for the scalability and acceptability of the MedWS

communication with large number of virtual users. The normal probability plots are of

straight line, which predict normality.

The chi square tests of goodness of fit using response time, throughput and hits/sec

resembles that the observed data meets the expected data and hence fits the expected

distribution.

From the statistical analysis it is observed that both hits/sec and throughput have individual

as well as combined influence to response time. Individually, hits/sec and throughput

influence approximately 98.5% and 99.3% to response time and together the effect is around

99.73%.

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

Copyright ⓒ 2014 SERSC 159

9. Conclusions

From our overall investigations it can be concluded that the connection refusal for the

service increases with the increase of number of virtual user. The tomcat web server along

with the hierarchical communications in between the WS seems to be stable up to 800 virtual

users, which is acceptable in case of scalability and stability. The system gives low

performance for 1500 virtual users. The collision in between request increases with the

increase in stress level. With the increase in virtual users the response time increases. The

throughput and hits/sec also increases gradually. The statistical analysis shows that the data

distributions are normal and the observed parameters are similar to the expected parameters.

The multiple regression analysis reveal that hits/sec and throughput have 99.73% combined

influence on response time. It is necessary to analyze the system thoroughly with different

possible test case environment and hardware resources, so that we can have an in-depth idea

of the factors hampering the WS in handling more users’ request.

From the above analysis we can conclude that the MedWS is stable, scalable and cost-

effective. As such it may be deployed for rural health services for online prescription to

inhabitants of such areas which may have very good societal impact.

Acknowledgements

The authors are thankful to the All India Council of Technical Education (AICTE), Govt.

of India for financial support towards the work (F.No. 8023/BOR/RID/RPS (NER)-84/2010-

2011 31st March 2011).

References

[1] Siddavatam, I., Gadge, J., “Comprehensive test mechanism to detect attack on Web Services”, IEEE

International Conference On Networks (ICON), (2008); India.

[2] http://www.w3.org/TR/ws-arch/

[3] D. Chenthati, H. Mohanty, A. Damodaram, “RDBMS for Service Repository and Matchmaking”, ISMS,

2nd International Conference., (2011), pp. 300-305

[4] P.P.W. Chan, M.R. Lyu, “Dynamic Web Service Composition: A New Approach in Building Reliable Web

Service”, AINA, 22nd International Conference, (2008) , pp. 20-25.

[5] Nada Hashmi, Dan Myung, Mark Gaynor, Steve Moulton, “A Sensor-based, Web Service-enabled,

Emergency Medical Response System”, Proceedings of the Workshop on End-to-End, Sense-and-Respond

Systems, Applications, and Services, (2005), pp. 25-29.

[6] Matjaz B. Juric, Ivan Rozman, Bostjan Brumen, Matjaz Colnaric, Marjan Hericko, “Comparison of

performance of Web services, WS-Security, RMI, and RMI–SSL”, The Journal of Systems and Software ,

Elsevier, vol.79, (2006), pp. 689–700.

[7] Belkhir Abdelkader, Bouyakoub Samia, “A Hierarchical Model for Web Services Composition”,

International Journal of Web Services Practices, vol. 4, no. 1, (2009), pp. 44-50.

[8] V. Stoicu-Tivadar, L. Stoicu-Tivadar, D. Berian, V. Topac, “Web Service-based solution for an intelligent

telecare system”, Intelligent Engineering Systems (INES), 14th International Conference on IEEE

Conference Publications, (2010) , pp. 313 – 316.

[9] K. E. Mohamed and D. Wijesekera, “Performance Analysis of Web Services on Mobile Devices”, The 9th

International Conference on Mobile Web Information Systems, Procedia Computer Science vol. 10 ,

(2012), pp. 744 – 751.

[10] Lorenzo Bianchi, Federica Paganelli, Maria Chiara Pettenati, Stefano Turchi, Lucia Ciofi, Ernesto Iadanza,

and Dino Giuli, “Design of a RESTful Web Information System for Drug Prescription and Administration”,

IEEE journal of biomedical and health informatics, vol. 18, no. 3, (2014), pp. 885-895.

[11] Drug Index, Passi Publications, India, January-March, (2012).

[12] A.S. Christensen, A. Moller, M.I. Schwartzbach, “Extending Java for high level web service construction”,

ACM Trans. Program. Lang. Syst., vol. 25, no. 6, (2003), pp. 814-875.

[13] http://www.javasamples.com/showtutorial.php?tutorialid=350

[14] http://www.oracle.com/technetwork/java/index-jsp-137004.html

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Siddavatam,%20I..QT.&searchWithin=p_Author_Ids:38187720600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gadge,%20J..QT.&searchWithin=p_Author_Ids:38111703200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Stoicu-Tivadar,%20V..QT.&searchWithin=p_Author_Ids:37304159600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Stoicu-Tivadar,%20L..QT.&searchWithin=p_Author_Ids:37545365000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Berian,%20D..QT.&searchWithin=p_Author_Ids:37569889300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Topac,%20V..QT.&searchWithin=p_Author_Ids:37304158500&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5483823&queryText%3Dweb+service+based+solution+for+an+intelligent+telecare+system
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5483823&queryText%3Dweb+service+based+solution+for+an+intelligent+telecare+system
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5476373

International Journal of Database Theory and Application

Vol.7, No.5 (2014)

160 Copyright ⓒ 2014 SERSC

[15] A. Bora, M.K. Bhuyan, T. Bezboruah, “Investigations on Hierarchical Web Service based on Java

Technique”, Proc. World Congress on Engineering (WCE), London, U.K., vol.2, (2013) , pp. 891-896.

[16] Application-testing tool: Mercury LoadRunner 8.0, Available at:

http://pcquest.ciol.com/content/software/2004/104093002.asp

[17] M. Kalita, T. Bezboruah, “Investigation on performance testing and evaluation of PReWebD: a .NET

technique for implementing web application”, IET Softw., vol. 5, no. 4, (2011), pp.357-365.

[18] M. Kalita, S. Khanikar, T. Bezboruah, “Investigation on performance testing and evaluation of PReWebN: a

JAVA technique for implementing web application”, IET Softw., vol. 5, no. 5, (2011), pp. 434-444.

[19] M. Kalita and T. Bezboruah, “Investigation on implementation of web applications with different

techniques”, IET Softw., vol. 6, no. 6, (2012), pp. 474-478.

[20] A. Bogardi Meszoly, Z. Szitas, T. Levendovszky and H. Charaf, “Investigating factors influencing the

response time in ASP.NET web applications”, LNCS, (2005), pp. 223-233.

[21] http://fsweb.bainbridge.edu/dbyrd/statistics/goodnessfit.htm

[22] I. Levin, S. Richard, D. Rubin, Statistics for management, Pearson education, Inc., South Asia, (2009).

[23] http://www.statisticslectures.com/tables/chisquaretable/

Authors

Abhijit Bora, Research Scholar, Department of Electronics and

Communication Technology, Gauhati University, India received Master

of Computer Applications (MCA) degree from Jorhat Engineering

College (Under Dibrugarh University), India in 2008. His research

interests include web service, web security and software engineering.

Tulshi Bezboruah (M’12) received the B.Sc. degree in physics with

electronics from the University of Dibrugarh, Dibrugarh, India, in 1990,

and the M.Sc. and Ph.D. degrees in electronics and radio physics from

the University of Gauhati, Guwahati, India, in 1993 and 1999,

respectively. In 2000, he joined in the Department of Electronics Science,

Gauhati University, as a Lecturer. He is currently the Professor & Head,

Department of Electronics and Communication Technology, Gauhati

University. His current research interests include instrumentation and

control, distributed computing, and computer networks. Prof. Bezboruah

is a member of the IEEE Geoscience and Remote Sensing Society as well

as an Associate Member of the International Center for Theoretical

Physics, Trieste, Italy.

