
International Journal of Database Theory and Application

Vol.7, No.4 (2014), pp. 237-248

http://dx.doi.org/10.14257/ijdta.2014.7.4.19

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

RSSCube: A Content Syndication and Recommendation

Architecture

Zijie Tang
1
, Kun Ma

*1,2

1
School of Information Science and Engineering, University of Jinan, Jinan 250022,

Shandong, China
2
Shandong Provincial Key Laboratory of Network Based Intelligent Computing,

University of Jinan, Jinan 250022, China

ise_mak@ujn.edu.cn

Abstract

Content syndication is the process of pushing the information out into third-party

information providers. The idea is to drive more engagement with your content by wiring it

into related digital contexts. However, there are some shortages of current related products,

such as search challenges on massive feeds, synchronization performance, and user

experience. To address these limitations, we aim to propose an improved architecture of

content syndication and recommendation. First, we design a source listener to extract feed

changes from different RSS sources, and propagate the incremental changes to target

schema-free document stores to improve the search performance. Second, the proposed

recommendation algorithm is to tidy, filter, and sort all the feeds before pushing them to the

users automatically. Third, we provide some OAuth2-authorization RESTful feed sharing

APIs for the integration with the third-party systems. The experimental result shows that this

architecture speeds up the search and synchronization process, and provides friendlier user

experience.

Keywords: Content syndication; content recommendation; RSS; information push; NoSQL;

big data

1. Introduction

As one form of Web 2.0 technology, really simple syndication (RSS), known as rich site

summary, uses a family of standard web feeds to publish frequently updated information,

such as blog articles and news headlines [1]. An RSS document (called feed or channel),

including full or summarized text and metadata of information, enables publishers to

syndicate data automatically [2]. In this way, subscribing to an RSS source removes the need

for the user to manually check the web site for new content [3].

Although RSS aggregator is commanded to automatically download the new data, there are

still some challenges of this approach. First, RSS feed is organized within the form of

formatted XML item. Therefore, the search becomes a bottleneck issue when encountering

massive data. Furthermore, current RSS products have weak ability to support cross-source

search. Second, RSS is a hard-to-replicate source of information [4]. Some RSS products are

designed to enable asynchronous synchronization of new and changed items amongst a

variety of data sources. For example, some products implement timestamp-based incremental

synchronization with some challenges [5]. Therefore, a set of algorithms followed by all

endpoints to create, update, merge, and conflict resolve all items are a pressing need to handle

the synchronization issue [6]. Third, although the content syndication has replaced traditional

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

238 Copyright ⓒ 2014 SERSC

search through various categories of a website in order to find interesting articles

successfully, users find it difficult to obtain the useful information along with an increasing

number of subscribed RSS feeds. An intelligent recommendation algorithm is designed to

filter and sort the massive feeds before pushing to users [7]. However, current RSS products

lack of automatic collection and classification. To address these limitations, we propose a

new architecture (called RSSCube) of content syndication and recommendation.

In the rest of the paper, we focus on the architecture of content syndication and

recommendation system (RSSCube). The contributions of this paper are into several folds.

First, we create a user-friendly content syndication and recommendation architecture. This

can actively push valuable information that users are interested in instead of traditional

pulling technology. This push technology enables that the feeds are filtered and sorted by the

interests and hobbies of users. Second, we design an RSS source listener to capture the

incremental feed changes of multiple RSS sources in a very short time. Third, we design

schema-free documents to persist the feeds to speed up the search efficiency. Finally, we

design OAuth2-authorization RESTful feed sharing APIs to be integrated with the third-party

system.

The remainder of the paper is organized as follows. Section 2 discusses the background

and related work, and Section 3 presents the requirements and objective of our content

syndication and recommendation architecture. Section 4 introduces the architecture in detail.

To reduce the complexity of this system, it is divided into source listener, feed search, feed

recommendation, and OAuth2-authorization RESTful feed sharing APIs. Section 5 gives the

experimental evaluation of the performance of our system. Brief conclusions are outlined in

the last section.

2. Related Work

Currently, there are some open-source and commercial RSS products (also called reader or

aggregator). Google Reader was a web-based aggregator, capable of reading RSS feeds online

or offline. Due to declined usage, Google powered down this product. Feedly [8] is another

alternative RSS reader, which is a better way to organize, read and share the content of RSS

sources. It weaves the content from the RSS feeds of your favorite websites into a fun

magazine-like experience and provides seamless integration with social networks. Reeder [9]

is an RSS reader and client for Feedly, which caches articles and images from your feed.

However, the cache will encounter the bottleneck issue in the case of massive feeds.

Recently, some emerging RSS readers have supported the integration with social networking

application researching on the recommendation algorithm [7, 10]. But the storage of this

method to support millions of feeds is not clear.

However, there are some deficiencies of current RSS products. First, since it is not a

good method to search the feeds in the XML file, most of current RSS products adopt

the relational database as the storage engine. This will improve the query performance

in the case of small data quantity. When the amount of data is large, search in a

traditional relational database encountered the bottleneck. Although some RSS products

enable cache to optimize the storage, the effect is not obvious in the case of big data.

The query of feeds is always in the single RSS source, while it is not clear to support

the cross-source search. The second limitation is lack of pre-processing before

presenting to the users. Once a user subscribes to several RSS sources, it means all the

untreated information is pushed to the user. This information consists of

advertisements, advertorials and fake information. To improve user experience, the

information should be sorted and filtered by the interest of users first.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 239

2.1. Feed Synchronization

Currently, there are some patents on feed synchronization. The first is timestamp-based

feed synchronization [5]. The RSS source listener intercepts RSS feed changes to extract the

timestamp, and determine whether this feed is updated from the last synchronization

timestamp to this current timestamp. However, this method takes much spaces to store

massive time records for the subsequent synchronization. Although this method can shorten

the synchronization time, it records too much timestamps in the case of frequent updates.

Another is clock-based feed synchronization [11]. The publisher creates the feed by including

a media content associated with therewith. The first virtual clock value is provided to the

subscriber to modify the first virtual clock value when the subscriber modifies the media

content associate with the web syndication item. However, this additional attribute of RSS

feed does conform to RSS specification. On the contrast, we propose the synchronization

method based on the unique key (composition of guid and pubDate of a feed) of the feed.

2.2. RSS Recommendation

Currently, researchers have focused on the recommendation algorithm on social

networking [12-13]. Since RSS is content-centered rathen than social networking system,

research on RSS recommendation is scarce. InterSynd [14] is simple Web client to

recommend new RSS feeds to users based on what their neighbors have subscribed to.

FeedMe [15] is another system that filters alerts with a combination of collaborative filtering

technique and naive Bayes classifier. Moreover, Cui et al., [16] firstly used probabilistic

latent semantic analysis (PLSA) to discovery the topics of blog posts, then adopted Naive

Bayesian algorithm to classify the blog posts. The goal is to reduce the noise caused by

unwanted interruptions. In contrast, our goal is to recommend feeds to users and we focus on

matching the feed contents with users' interest. In our previous work [17], we have proposed

an online social mutual help architecture to recommend help feeds to the experts.

3. Requirement and Objective

We have the following requirements while designing a content syndication subscription

architecture.

 Cross-source search: We want to ensure that the system has the ability to support

search on cross RSS sources.

 High efficient search: Except supporting heterogeneous RSS sources, we want to

improve the performance of feed search, but not limited to cache technology.

 Feed recommendation: We want to push the feeds most concerned to the users, and

other useless information is discarded.

 Open internetwork: Since the content syndication and recommendation system we

design provides the API for different clients, we want to provide an OAuth2-

authorization RESTful feed sharing solution to be integrated with different

heterogeneous systems.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

240 Copyright ⓒ 2014 SERSC

4. Architecture

Figure 1. Architecture of RSSCube

In this section, we talk about the architecture of this content syndication and

recommendation system, which is shown in Figure 1. The source listener, feed search, feed

recommendation, and OAuth2-authorization RESTful feed sharing APIs and some key

techniques are discussed in detail. First, multiple RSS sources generate a set of RSS feeds,

and then source listener captures the feed updates to propagate them to the schema-free

document stores. Second, we utilize TF-IDF algorithm to conclude the keywords. They are

matched with the users' interest to re-rank all the recommended feeds. Finally, the results are

pushed to the users.

4.1. Source Listener

Source listener is an important part of this system, which is responsible for propagating

feed changes to the schema-free feed repository incrementally. We propose an optimized

source listener to capture the increment. Initially, our source listener reads the latest

information of an RSS source, and then store them in the schema-free repository for the first

time. Next, this source listener only intercepts the changes to complete an incremental

synchronization. In RSS 2.0 specification [1], there is an optional "guid" attribute to indicate

the unique string of an RSS feed. If the feed of RSS source has this attribute, we take this as

the unique key. If the feed of RSS source does not have this attribute, we take the composite

source identity and timestamp as the unique key. After the RSS listener intercepts a new item,

we make the incremental changes on the target schema-free repository according to this

unique key. We call this source incrementality. We take polling monitoring method to

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 241

intercept the frequent changes of multiple different RSS sources. We adjust the interval time

on the basis of the update frequency.

4.2. Second and Following Pages

Table 1. Structure of an RSS Feed

Field Description

guid

title

description

link

author

category

comments

enclosure

pubDate

source

A string that uniquely identifies the item.

The title of the item.

Description & The item synopsis.

The URL of the item.

Email address of the author of the item.

Includes the item in one or more categories.

URL of a page for comments relating to the item.

Describes a media object that is attached to the item.

Indicates when the item was published.

The RSS channel that the item came from.

The intercepted feeds from RSS sources are stored in the form of schema-free documents.

The RSS feed has two required attributes (guid, title and description), and several optional

attributes (author, pubDate, link, et al.,). With the rapid development of Web 2.0 sites,

traditional relational databases in dealing with Web 2.0 sites encounter the bottleneck

problem in the context of search. Therefore, we adopt schema-free documents to store all the

updated feeds. A JSON-like document with dynamic schema is designed to store an RSS

feed. The structure of this schema-free document is shown in Table 1. On one hand, separate

index entry is created for each keyword (title, pubDate or category). On the other hand, full-

text index is created on the large field (description) of a collection. Due to the difference of

feed structure, it is difficult to implement the search on cross sources directly. Therefore, the

captured feeds are stored in schema-free documents to keep a unified structure. The search

issue might converted into the query on the target schema-free documents.

4.3. Feed Recommendation

Feed recommendation adopts a content-based recommendation technique, by mining the

keywords of the contents, and matching them with the interests of subscribers'. The process

by which this architecture generates a set of ranked RSS feeds is presented in detail in Figure

2.

Since there is no keyword in the feed structure, we adopt classical text-based TF*IDF

algorithm [18] to conclude the keyword from the feeds automatically. The keyword extraction

is conducted exploiting the TF*IDF weight of the term. It is calculated according to the

formula: TF*IDF(term)=TF(term) * log(1+N/DF(term)), where TF(term) is the frequency of

a te rm in the given feed, N is the total number of feeds in the collection, DF(term) is the

number of feeds that contain this term.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

242 Copyright ⓒ 2014 SERSC

Next, we rank RSS feeds to the subscriber. First, the keywords of each subscriber are

compared the calculated keyword in the last step. We adopt Levenshtein distance algorithm

[19] to measure the difference of the keywords. The objective is to find matches for short

strings in many longer descriptions of the feed.

Finally, we the ranked feeds are sorted out by the Levenshtein distance to push to the users.

Figure 2. Process of Feed Recommendation

4.4. OAuth2-authorization RESTful Feed Sharing APIs

We provide an OAuth2-authorization RESTful feed sharing APIs for the third-party

system to access RSS feeds on behalf of a subscriber. Using this integration solution, users

simply issue access tokens rather than the password to access their subscribed feeds for

sharing. The RESTful Service is designed to obtain the subscribed feeds of a subscriber. This

allows for easy integration with existing third-party system. The communication uses the

form in API with the JavaScript Object Notation (JSON) format to communicate with each

other. Table 2 summarizes this interface.

Table 2. Feed Authorization API

Resources URL Parameters Description

List of sharing feeds listFeeds: /feeds/ uid=?&token=? find the sharing RSS feeds

As depicted in Figure 3, the sequence starts (1) with a user requesting some service from

the third-party system, and ends with the sharing feeds from our RESTful feed sharing

service. The third-party system responds by (2) redirecting the end user's browser to a URL of

OAuth2-authorization server. After verifying the identity of the user, the third-party system

request access token from the OAuth2-authorization server. And then the third-party system

can interactive with the resource server to exchange the sharing feeds.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 243

Figure 3. Sequence Diagram of Interaction with Our OAuth2-authorization
RESTful Feed Sharing Service

5. Experiments

Figure 4. Screenshot of our Content Syndication and Recommendation System

We have conducted a set of experiments to evaluate the efficiency of the proposed content

syndication and recommendation architecture on our physical machine: 4 core 2.80GHz Intel

Core (TM) machines with 8 GB RAM, 128G SSD and 100 Mbps Ethernet. The system was

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

244 Copyright ⓒ 2014 SERSC

configured with a Windows Server 2012 x64. We adopt MongoDB 2.4.9 x64 as the document

store. After a description of the experimental setup, we illustrate low latency of search,

incremental synchronization, and user experience. We have deployed the prototype system

with the link http://rsscube.duapp.com/. The screenshot of our content syndication and

recommendation system is shown in Figure 4.

5.1. Low Latency of Search

Figure 5. Searching Time

The first experiment is to measure the search time with different amounts of feeds. Figure

5 shows the average search time of RDBMS and document store. We issue a query "obtain

the feeds in the past three months by the keywords" for many times. With less than 50,000

feeds, the search time of document store is close to RDBMS. Along with the increasing

number of feeds, the average search time of document store rises more sluggishly than the

RDBMS solution. That is because document stores have powerful performance on the query.

5.2. Incremental Synchronization

Two experiments have been made to evaluate the performance of our proposed incremental

synchronization of RSS feed. First, we fix the frequency of feed updates by 1,000/s, and

measure the synchronization time of two approaches in different amounts of feeds. As shown

in Figure 6, the rate of synchronization time of our unique key-base method is slower with the

increase of amount of feeds. Second, we fix the amount of feed by 500,000, and measure the

synchronization time of two approaches in different update frequencies. As shown in Figure

7, the rate of synchronization time of our unique key-base method is slower with the increase

of frequency rate.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 245

Figure 6. Synchronization Time with the Increase of Amount of Feeds

Figure 7. Synchronization Time with the Increase of Frequency Rate

5.3. User Experience

We asked them to rank the two systems: one is a famous traditional RSS reader (Due to

licensing and copyright restrictions, we cannot disclose the identity of this product); the other

is our system. Figure 8 shows the feedback of user satisfaction. We have received 127 valid

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

246 Copyright ⓒ 2014 SERSC

feedback. 66.9% of users thought that our system is friendlier, 22.8% of users thought that the

traditional RSS reader is better, and 10.3% of them thought our system may be better after

some minor rectifications.

The approach of our solution has some advantages to user experiences. First, this

active push mechanism simplifies the process of finding useful information from

massive RSS feeds. Second, only the information of interest is pushed to the user.

Moreover, our system re-ranks the sequence of the feeds using proposed

recommendation algorithm.

Figure 8. User Satisfaction

6. Conclusions

In an era of Web 2.0 and big data, how to access the information efficiently and effectively

becomes a hot topic. Therefore, we have proposed an architecture of content syndication and

recommendation, which is composed of source listener, feed search, feed recommendation,

and OAuth2-authorization RESTful feed sharing APIs. Finally, experiments show that this

content syndication and recommendation architecture has some features: low latency of

search, incremental synchronization, and friendly user experience.

Acknowledgements

This work was supported by the Doctoral Fund of University of Jinan (XBS1237), the

Teaching Research Project of University of Jinan (J1344), and the Student Research Training

of University of Jinan (SRT13310).

References

[1] R. A. Board. (2007) RSS 2.0 speciation (version 2.0.10). [Online]. Available: http://www.rssboard.org/rss-

specification

[2] S. Ovadia, "Staying informed with really simple syndication (RSS)," Behavioral & Social Sciences

Librarian, vol. 31, no. 3-4, (2010), pp. 179–183.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 247

[3] M. Levy, "Web 2.0 implications on knowledge management," Journal of Knowledge Management, vol. 13,

no. 1, (2009), pp. 120–134.

[4] S. S. Shang, E. Y. Li, Y.-L. Wu and O. C. Hou, "Understanding web 2.0 service models: A knowledge-

creating perspective", Information & Management, vol. 48, no. 4-5, (2011), pp. 178–184.

[5] J. Li, J. Shen, L. Yuan and F. Zhu, "Method, apparatus and system for improving synchronization efficiency

of really simple syndication service", US Patent Application Publication 13/697 795, (2013).

[6] J. Ozzie, G. Moromisato, M. Augustine, P. Suthar and S. Lees. “Feedsync for atom and RSS v1.0.2”,

[Online]. Available: http://feedsyncsamples.codeplex.com /wikipage?title=FeedSync20for%20Atom%20and

%20RSS%20%28v1.0%29%20specification, (2010).

[7] C. Ji and J. Zhou, “A study on recommendation features for an rss reader”, Proceedings of 2010 International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, (2010), pp. 193–198.

[8] E. Khodabakchia, “Feedly, a news aggregator”, [Online]. Available: http://feedly.com, (2014).

[9] S. Rizzi, Reeder. [Online]. Available: http://reederapp.com, (2014).

[10] O. Phelan, K. McCarthy and B. Smyth, “Using twitter to recommend real-time topical news”, Proceedings of

the third ACM conference on Recommender systems, (2009), pp. 385–388.

[11] M. Khosravy, M. Clark, O. Lee and N. Lev, “Two-way and multi-master synchronization over web

syndications”, US Patent Application Publication, vol. 10, no. 7, (2010), pp. 653-640.

[12] S.-Y. Yoo and O.-R. Jeong, “SNS based recommendation algorithm”, Proceedings of 2013 Information

Science and Applications, (2013), pp. 1–3.

[13] P.-H. Soh, Y.-C. Lin and M.-S. Chen, “Recommendation for online social feeds by exploiting user response

behavior”, Proceedings of the 22nd international conference on World Wide Web companion, (2013), pp.

197–198.

[14] A. P. ORiordan and M. O. OMahony, “Intersynd: a web syndication intermediary that makes

recommendations”, Proceedings of the 10th International Conference on Information Integration and Web-

based Applications & Services, (2008), pp. 299–304.

[15] S. Sen, W. Geyer, M. Muller and M. Moore, “Feedme: a collaborative alert filtering system”, Proceedings of

the 10th International Conference on Information Integration and Web-based Applications & Services,

(2006), pp. 89–98.

[16] C. Lin, C. Wang and X. Wu, “Blog posts recommendation based on plsa and naive bayesian classification

algorithm”, Journal of Chemical and Pharmaceutical Research, vol. 5, no. 12, (2013), pp. 851–858.

[17] K. Ma and Z. Tang, “An Online Social Mutual Help Architecture for Multi-tenant Mobile Clouds”,

International Journal of Intelligent Information and Database Systems, online, (2014).

[18] W. Zhang, T. Yoshida and X. Tang, “A comparative study of tf*idf, lsi and multi-words for text

classification”, Expert Systems with Applications, vol. 38, no. 3, (2011), pp. 2758C2765.

[19] V. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals”, Soviet Physics

Doklady, vol. 10, (1966), p. 707.

Authors

Zijie Tang, is an undergraduate student of Dr. Kun Ma, studying at

School of Information Science and Engineering, University of Jinan. His

research interests include software development of innovative

applications, data intensive computing, and big data management.

Kun Ma, received his Ph.D degree in Computer Software and Theory

from Shandong University, Jinan, Shandong, China, in 2011. He is a

senior lecturer in Provincial Key Laboratory for Network based

Intelligent Computing and School of Information Science and

Engineering, University of Jinan, China. He has authored and coauthored

over 30 research publications in peer-reviewed reputed journals and

conference proceedings. He has served as the program committee

member of various international conferences and reviewer for various

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

248 Copyright ⓒ 2014 SERSC

international journals. He is the Co-Editor-in- Chief of International

Journal of Computer Information Systems and Industrial Management

Applications (IJCISIM). He is the managing editor of Journal of

Information Assurance and Security (JIAS) and Information Assurance

and Security Letters (IASL). He is the editorial board member of

International Journal of Intelligent Systems Design and Computing and

Journal of Software. He is the guest editor of International Journal of

Grid and Utility Computing. His research interests include model-driven

engineering (MDE), data intensive computing, big data management, and

multi-tenant techniques.

