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Abstract 

This paper presents a self-organized fuzzy neural network (SOFNN) surface reconstruction 

algorithm suitable for point clouds without normal. It overcomes the defect of traditional 

Delaunay triangulation which is difficult to reconstruct point clouds with noises and implicit 

function which is limited to the number of point clouds and point clouds are required very 

strict. The SOFNN is based on the fuzzy clustering method optimizing training data before 

learning fuzzy rules, in order to remove noise data and resolve conflicts in data. The 

approach not only reduce computational burden of neural network, but also make it easy to 

fit the surface for point clouds without normal and suitable for mass point clouds. The feature 

of the SOFNN has dynamic self-organized structure, fast learning speed and flexibility in 

learning. The experiment results show that is very fine. 

 

Keywords: surface reconstruction; self-organized fuzzy neural network; normal of point 

clouds; implicit function 

 

1. Introduction 

Surface reconstruction for point clouds has been applied widely in CAD, medical 

imaging, archaeology and so on. Many existed algorithms can get shape of the object 

perfectly, but point clouds are required very strict, especially normal is essential during the 

reconstruction process. Actually, normal of point clouds is not often accuracy or even is 

absent.  

While surface reconstruction continues to be an important application of computer 

vision, the estimation of oriented normal field is fundamental to reconstruction as 

oriented normal provide the first-order approximation and identify outside/inside of the 

underlying sharp. At present, few literatures have been devoted to reconstruct from 

point clouds without normal. One possible reason is that normal can be obtained from 

the laser scanner. Actually, the noises during scanning and discontinuities make normal 

unreliable or absent for rendering and reconstruction. How to reconstruct the surface of 

model for point clouds without normal is always a hot problem. 

In this paper, we shall proposed Self-Organized Fuzzy Neural Network (SOFNN) to 

reconstruct the surface for point clouds without normal. These include: off-line extract 

fuzzy if-then rules from normal of point clouds which is clustered from mass original 

point clouds, online self-organized structure and parameter learning for unknown 

information of point clouds. 
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This paper is organized as follows. We firstly review the related work of surface 

reconstruction and normal estimation in Sections 2. In Section 3, we give the structure of 

SOFNN, off-line extract fuzzy if-then rules from typical datum which is clustered from 

mass original point clouds, online self-organized structure and parameter learning. The 

Section 4 calculates the normal vector by SOFNN and the procedure of surface reconstruction 

from point clouds in detail. The results are illustrated feasibility of the proposed approach in 

Section 5. Conclusions are given in the following. 
 

2. Related Work 

Three kinds of surface reconstruction are mainly MC, Delaunay triangulation, and implicit 

surface. The interested readers are referred to [1] for a survey. Allegre et al. [2] reconstructed 

the simplified mesh surfaces from large unstructured point clouds to work on dynamic surface 

that dynamically refined or coarsened the reconstructed surface. Julie et al. [3] developed a 

scale space strategy for orienting and meshing exactly a raw point. The scale space was based 

on mean curvature motion that could smooth scale of denture. However, these methods are 

sensitive to noise. Moreover, inserting thousands of points into triangulation is 

computationally expensive. 

Implicit ones can deal with models of arbitrary topology, blend and perform Boolean 

operations on surface primitives, and fill holes automatically. This kind of approach has 

two parts to realize. One is to compute a signed distance function [4]. The other is to 

represent the reconstructed implicit surface by iso-contour [5] of implicit function. At 

last, the reconstructed surface can be obtained by solving the linear equations. The gain 

in vision depends on the normal accuracy of point clouds largely. Radial Basis Function 

(RBF) is a popular technique of implicit. Samozino [6] used compactly-supported RBFs 

to achieve local control and reduce computational costs by solving a sparse linear 

system. But the robustness of method was not good for non-uniform point clouds. 

Surface reconstruction from raw point clouds could be cast as a spatial Poisson problem 

in [7]. The Poisson formulation considered all the points without resorting to heuristic 

spatial [8] partitioning or blending and was therefore highly resilient to data noise. But 

Poisson needed to solve global spare linear equations and requested the accuracy of 

normal of point clouds. 

The normal at the sample point is the furthest Voronoi vertex in the point’s Voronoi cell, 

named Voronoi Pole. Dey et al., [9] presented a provable surface reconstruction, which 

extend the idea of Voronoi Pole. However, Delaunay method is more sensitive to noise than 

other method. Voronoi Pole and PCA are consolidated and can achieve better effects for 

noise. Because it must compute for the same data twice, the approach costs CPU much time. 

The implicit surface is suitable to describe reconstructed surface during the process of volume 

visualization. When the representation equation of implicit surface is determined, the 

common method is radical basis function (RBF) [10] which has higher precision and stability 

to solve interpolating scatter data for tasks. Many methods for deriving normal information 

from unorganized points take the strategy of estimating a normal field and trying to propagate 

the normal of a seed point that must be given in advance over the model to align the 

individual normal vectors [11]. Jalba et al., [12] proposed a method that it attracted the 

evolving surface towards the data points in a velocity field generated by Coulomb potentials. 

But surface features which are smaller than the smallest grid cells are not accurately 

reconstructed.  

Recently, hybrid control laws containing Neural Networks (NNs) have attracted more 

and more attention. NNs were used to adjust and optimize parameters of fuzzy 

conductor through offline or online learning and control performance was demonstrated 
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to be good. Takatoshi et al., proposed a model for the design of Fuzzy Inference Neural 

Network (FINN)[13]. In [14], Meng Joo Er et al., presented a D-FNNs controller 

suitable for industrial applications. In [15], nonlinear systems controller design is 

proposed. All of these methods proposed new adding, pruning techniques and a 

recursive learning algorithm, respectively. However, the methods mentioned above are 

limited in optimal structure and parameters of NNs and need too computational burden 

to real-time control in practice proceedings. 

 

3. SOFNN Structure and Learning Algorithm 

The architecture of SOFNN is shown in Figure 1 with six layers. This structure is 

similar to Gang’s[15] except for the clustering data in the second layer. 

The layer operation of the SOFNN is described briefly as follows. Each neuron 
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FCM [16] process, we can obtain c(<n) cluster centers as ciyvvV
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can be regarded as the typical data extracted from the original training data and is 

inputted into the EBF layer. Each neuron of the EBF layer is a T-norm of Gaussian 

fuzzy membership functions, which is employed in [15]. 

 

 

Figure 1. SOFNN Structure 

The learning process of the SOFNN includes off-line learning phase and on-line 

learning phase. In the following we explain each learning phase. 

 

3.1. Off-line Learning  

Consider the Fuzzy C-Mean (FCM) clustering algorithm with following functions. First, it 

resolves conflicts in the original point clouds due to the reasonable distribution of the typical 

data. Second, it removes the noise of data from the original data, because there is not be a 

cluster centre around any redundant datum. Third, it improves the computation size by 

reducing the number of the training data. Now we summarized FCM as follows [16]. 
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(d) Repeat (b) and (c) until ||U(t)-U(t-1)||<  .   is a positive and small enough real 

number, which is a terminal criterion. The matrix norm is taken as [9] 

})1()({max)1()(
,

 tttUtU
kiki

ik

                                              (6) 

Using FCM process, we can obtain c(<n) cluster centers. Then let c clusters be practical 

training data for the neuro-fuzzy learning process and the fuzzy rule base consists of a 

collection of fuzzy IF-THEN rules: 

R
j
: if   xknn is j

A
1

 and xcur is j
A

2
, then   y is Bm 

where x=
T

curknn
xx ],[ and y are input vectors and output value of FNN, respectively. 

j

i
A (i=1,2,..,n) and Bk (k=1,2,…,m) are linguistic variables of fuzzy sets in subspace 

i
U and 

k
V described by their membership functions )(

iA
xj

i

  and )(
kB

yj

k

 , j=1,2,…,M. M is total 

number of the fuzzy rules. By using product inference, singleton-fuzzifier, and center-average 

defuzzifier strategies, output of FNN can be expressed as  

)(ˆ

))((

))((

)ˆ|(ˆ)(

1 1

1 1
x

x

xy

xxy
M

j

n

i iA

M

j i

n

i A

j

j

i

j

i 







 

 

 

 
                           (7) 

where )(
iA

xj

i

 is membership function value of fuzzy variable 
i

x , 
j

y is the point at which 

)(
kB

yj

k

 achieves its maximum value, and it is assumed that .1)( 
j

B
yj

k

  



International Journal of Database Theory and Application 

Vol.7, No.4 (2014) 

 

 

Copyright ⓒ 2014 SERSC  213 





























M

mmm

M

M

yyy

yyy

yyy









21

2

2

2

1

2

1

2

1

1

1

ˆ                                               (8) 

Eq. (7) is adjustable parameter matrix and 
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Generation of these rules is the same as on-line learning algorithm. 

 3.2. On-line learning  

The on-line learning process of the SOFNN includes the structure learning and the 

parameter learning.  

The structure learning is consisted of generation and combination of neurons. There are 

two criteria to judge whether to generate an EBF neuron or not, that is system error and 

accommodation boundary. Consider the nth observation ),(
*

nn
yx , where 

n
x  is the input 

vector and *

n
y  is the desired output, the output of the network with the current structure is 

n
y . 

The system error E is the Euclidean distance between the vectors 
n

y  and *

n
y . If E is larger 

than predefined error tolerance, a new EBF neuron should be considered. The accommodation 

boundary is an EBF neuron of representations over a region defined in the input space. For 

the nth observation ),(
*

nn
yx , calculate the Euclidean distance d(j) between the observed 

n
x  

and the center vector of the jth EBF 
ij

c . Find the minimum distance 
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d among the d(j). If it 

is larger than a predefined value, a new neural unit should be considered. If (j+1)th EBF 

neuron is generated, its parameters is allocated with 
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where k∈ [1.06, 1.2] is a positive constant weight Φj+1 can be determined by  
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In the stage of combination neuron, if MFs are similar to each other, they can be combined 

into one new MF as [8]. In the stage of adjustment parameters, we apply to a gradient descent 

method [7]. In this way, we can reserve points in the larger curvature of area and express 

more complete detail. Therefore the least points be used, the most effective expression can be 

obtained. The detail is given in the algorithm 1. 

 

Algorithm 1: Normal of point clouds estimation by SOFNN 

Step 1. Input sample point clouds; 

Step 2.Select , divide 3D space into grid,  

Establish the topology relationships between sample points and grid; 

Step 3. If  the numbers of points in real grid>=4 
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                   To fit plane and quadric using points in grid and estimate normal vectors 

n


and curvatures; 

          Else  goto Step 5; 

Step 4. Calculate centroid coordinates of points in real grid and the distance
21

pp ;  

          If  
21

pp   

Remain the point closest to the p’s centroid coordinates;  

          Else  goto Step 7; 

Step 5. Add up the number of the points in the 20 neighbor grids;  

If the totals of point<10    

Remove these point as noise; 

Else  fit plane and quadric, estimate normal vectors n


and curvatures,  

Calculate centroid coordinates of points  

Remain the point closest to the p’s centroid coordinates; 

Step 6. If  there are real grid can not be sampled   goto Step 3; 

           Else goto Step 8; 

Step 7. Grid was divided by Octree subdivision, goto Step 3; 

Step 8. End. 

4. Implicit Surface Reconstruction  
The simple greedy algorithm is proposed to progressive approximating local implicit 

surface fi according to the expected precision  . It improves multi-level partition of unit. 

At the beginning, there is only one point rough set C0 which is regarded as the center of 

RBF to compute fi. By estimating fi, the rest point is computed in the rough set, which is also 

the condition of loop. When the number of rest point is less than precision  , the loop stops. 

Otherwise, the rest point clouds are appended to the new queue Ci as the center of RBF. The 

detail of algorithm is described as follows. 

Restaurant 

 

Algorithm 2: Reconstruct Local Progressive Surface(RLPS) 

Step 1. If fi is not existing 

{  

Initial set C0 and compute fi 

Estimate the rest rj in point set Ci 

} 

Step 2. While ((max|ri|)>   &&size(Ci)< ) 

{    

Generate Ci+1, by appending the max rest points to new queue 

Recompute fi by equation(3) 

Update the rest ri 

} 

Step 3. If max(|ri |)>    

For each unit point data, reconstruct RLPS(Ci,  ,  ) 

This algorithm is similar to unit partition in which there exist partition space of input point 

clouds loop and approximate local RBF surface. The difference is the procedure of refinement 

in step 3. 
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5. Experimental Results  

The proposed framework is tested and validated by reconstructing two models. 

Experimental results presented in this section are generated on a PC equipped with an Intel 

Core 2 processor at 2.93GHz and 2GB main memory. The input data set including cutting and 

molar is from 3D laser scanner. Original point clouds are inputted the SOFNN. Then the 

normal of point clouds is extracted by SOFNN and compare with traditional algorithm, 

respectively. In Figure 2, we can see the number of offset points used traditional method 

increases twice than that of raw point clouds of this algorithm. Point clouds in this algorithm 

increase obviously slowly because the number of offset point has relation with the number of 

unit rather than the number of raw point clouds in this algorithm. 

Next, two kinds of point clouds are reconstructed by variational implicit surfaces and 

progressive one and refined until desired accuracy 
4

106


  is achieved in Figure 3, 

respectively. From the models it can be illustrated that our algorithm is as similar as the 

traditional one. Actually, this algorithm saves much time to reconstruct than traditional one in 

Table 1. The number of offset points in this algorithm is decreased greatly. 
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Figure 2. The Number of Points Adding Offset Points by Two Methods  

                  
(a) The Traditional Method                   (b) This Algorithm 

Figure 3. Surface Reconstruction for Cutting and Molar 

Table 1. Comparison of Running Time (s) between the Traditional and this 
Algorithm on the Two Kinds of Point Clouds of Denture 

Model Number size Traditional method This algorithm 

Cutting 3714 0.7869 0.3073 

Molar 6179 0.8973 04875 
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6. Conclusions 

The SOFNN surface reconstruction from mass point clouds is proposed. A key advantage 

of the scheme is the structure of SOFNN for estimation the normal of point clouds. By off-

line learning phase and on-line learning phase, the normal can be estimated accuracy. The 

global point clouds are divided into several smaller sub-domains and the problem of 

reconstruction is simplified. The sub-surface is fitted by progressive implicit function and the 

basis function is selected in each sub-domain. The overall surface is formed after repeatedly 

inferring normal along the sub-surfaces. In the future, this algorithm should be improved 

further in the selection of offset point in order to apply any arbitrary models. 
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