
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.83-90

http://dx.doi.org/10.14257/ijdta.2014.7.3.09

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Modeling Software Maintainability and Quality Assurance in the

Agile Environment

Priyanka Upadhyay, Abhishek Singh and Naveen Garg

Department of Information Technology

Amity School of Engineering and Technology

Amity University Noida, Uttar Pradesh, India

{priyanka.upadhyay0991, singhabhishek.0815,er.gargnaveen}@gmail.com

Abstract

Software Maintainability is the ability of the system to undergo changes with a degree of

ease and Quality assurance refers to planned and systematic production that provides

confidence in a product. This paper describes the different issues of software maintainability

and quality assurance in the agile environment. This paper also presents the different metrics

that improve the overall quality of the software maintainability in the agile environment. This

paper proposes the model of software maintainability and quality assurance in the agile

environment. The approach that is used is based on the customer requirements by iterative

interaction with customers to provide the best requirement with assured quality.

Keywords: Software maintainability, Software quality Assurance, Agile Environment

1. Introduction

Agile software development is a well known concept these days. The existing software

development life cycle involves an efficient lookout for best efficiency of a software

development. But despite all these efforts still the software’s fail and give us undesired

outputs. In this regard agile testing comes out with a very effective mechanism where the

software is tested at each and every step as per the user specifications. Agile testing

completely relies on the feedback that is provided from various stakeholders. Visualization is

most critical to communicating the outcome of a simulation to a non-technical audience such

as decision makers or the user itself. When it comes to maintainability and quality assurance

in Agile software development it becomes one of the primary goal to deliver an efficient

product to the customer by removing problems such that the code quality is not affected.

Software Maintenance is the most important phase of the software development life cycle

which requires rigorous efforts to satisfy the customer by delivering the best product with

efficient maintenance. Maintainability also includes the very basic requirement that comes up

in need with time i.e. the flexibility at the time of upgrading a software and system

requirements as per the user needs. As we know that user requirements change with time and

at any time interval it might change, so a developer should design the software such that it is

maintainable at any phase of software development life cycle.

Quality of the software product has always been the ultimate goal of every company. But

when talking about the Agile environment we need a strong collaboration between the

customer and designer to best meet up with quality which can be easily done by involving the

customer onsite so that useful feedback can be utilized efficiently[6].Constructing a 100%

correct system is difficult task. Also better quality never always means that the product

developed is free from all bugs or errors but might be it is acceptable by the customer if

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

84 Copyright ⓒ 2014 SERSC

meeting the specified requirements. It is considered that a software system is of better quality

if the frequency of fault is acceptable while execution of a software. Agile software testing is

a complete new approach that works towards providing a more maintainable and high quality

software systems by testing it with agility and providing best results.

2. Issues of Software Maintainability and Quality Assurance in the Agile

Environment

2.1. Delivery over Quality: It focuses the gradual development of the software focussing on

its quality aspects. Also early visibility and recognizing errors at an early stage help us to

redefine our software with best quality and developing best customer relationship. Continuous

software development is little challenging task but merging it in the agile testing environment

it ensures us to make better relationship with our customer by continuously interacting with

them[4].

2.2 Development over Planning: The second shortcoming that targets the principle of

responding to change over the plan is major concern. Practically, the designers code while

referring the need of their customers and stakeholders to define overall design and testing

specifications [5].

2.3 Prioritization: It is essential to prioritize the scheduling tasks of various programs in the

agile environment so as to deliver best product quality in terms of quality assurance and

maintainability.

2.4 Modularity: It is the key to support extended development process in the agile

development over extended periods of time. If we can isolate our software product and its

lines of code into small groups that can independently communicate with each other then we

can easily enhance the features at any development stage of the product.

2.5 Quality Management: Quality management is a major concern in the agile development

and can be easily enhanced when testers come up with stable requirements i.e. less test cases

as less rework and maintenance has to be done.

2.6 Degree of Change of Requirements: As we move to the agile testing environment we

come across rapid changes in the requirements of the customer which imposes a more

challenging task on the testers. As the Agile environment welcomes the change in

requirements even late in the development phase [2].

2.7 Adequate Unit Testing: We often see two problems confronting in the unit testing that

conquers with Quality i.e. Unit testing has a limited bug finding and less effectiveness when

there is a huge lines of code to be tested.

2.8 Poor, Varying and Missing Test Oracles: Agile testing focuses on face to face

conversation with the customer. Even with sufficient test oracles Agile testing team requires

to embrace the change. These test oracle problems put upto 20% to 30% test inefficiencies.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 85

2.9 Long Hour Meetings and Sprint Durations: Sometimes when the commitment to

deliver the software product is short then it ultimately becomes a squeezing shot for the agile

testers as they have to work hard meeting the correct specifications and assuring best quality

and maintainability in the software product. To resolve this issue maturity of the team is

required.

3. Different Metrics and Their Effect on Software Maintainability in Agile

Environment

Different metrics help us to improve the overall quality of the software and enhance quality

of the software product. Implementation of the available and upcoming metrics will help us to

standardize the quality of the software product. Strict following of the metrics helps us to

prevent future errors in the software to improve software products maintainability and

reliability.

Metrics for the Maintainability

Table I. Metrics and Their Effect on Software Maintainability in Agile
Environment [1]

Reliability factor
The extent upto which the software gives best performance without any error or

failure.

Efficacy
The level upto which a software best uses its available resources with maximum

utilization.

Usability The ease of use of the software for a user defines the usability.

Testability
The ability of a software product to check the acceptance rate of errors supporting

the evaluation criteria of a software product.

Portability
The ability of the software to be used effectively in various operating

environments.

Complexity

The different path flows in the line of code of the program and its ease of

understanding to the user. More complex code increases more test cases and

becomes less efficient.

Modularity
Independent execution of the components in the program and their clarity of

usability increasing its reliability and efficiency.

Class Coupling

It can be quite difficult to maintain the Types and Methods of those that have a

relative high class coupling although it is a good practise having Methods and

types that function of low coupling and high cohesion.

Maintainability

Index

It can be defined as software metric which is capable of measuring the ease of

support and change in the source code. It can be calculated as a factored formula

that consists of SLOC i.e. source lines of code, cyclomatic complexity and

Halestead Volume.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

86 Copyright ⓒ 2014 SERSC

Lines of code

(LOC)

The source line of code denotes the size of a computer program. It is a metric to

depict the effort required to develop a program. It becomes the responsibility of

the programmer to design the program such that the complexity is reduced and the

testers find it easy to maintain and quality is achieved.

4. Model of Improvement in Software Maintainability and Quality

Assurance in Agile Environment

Agile software development has helped us to value the customer requirements by

iteratively interacting with the customer to best meet the requirements with assured quality.

If at any step we face any problem immediately agile software development adapts customer

requirements and respond to change in an efficient manner. This process focuses on iterative

efficient delivery of software processed in agile testing environment.

Figure 1. Agile Testing Software Development Model Assuring Maintainability
and Quality

In the above described Agile software development model the main emphasis is given on

the customer interaction and iterative analysis of the developed code. Initially the customer

requirements are gathered and the simple design code and prototype is generated. The built

prototype is sent for the customer feedback. If the developed plan is acceptable by customer

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 87

and only few other requirements are added further then the plan is released and sent for

iterative execution.

Then further in sprint execution it is sent for acceptance testing and Stand up meeting

where if still any error exists then again interaction with the customer is conducted for further

analysis to improve Quality of the developed software product. Further the code is given to

the pair programmers to further check if there is any error.

At the end to assure the Quality and improve the internal structure Refactored unit testing

is implemented which further removes errors if any.

This total framework is executed in extreme programming where the agile team has to

review whole software development [7].

In agile environment the plans are very short lived and iterative planning has a heavy

emphasis on the software construction activities.

4.1. Extreme Programming: It begins by creating user requirements and it is the duty of

every agile team to review whole software development and assign cost incurred. In Extreme

programming new versions are built several times per day and increments are delivered to

customers frequently [8].

The whole procedure is divided into sprints. Before programming starts it is better if we

opt for unit testing and encourage a healthy team of pair programmers to achieve better

quality product. Extreme programming focuses on daily execution of unit testing. Acceptance

testing is defined by having a strong collaboration with customer and designer.

4.2. Refactoring: It is a process of making changes to a software system in a manner that

while improving the internal structure it does not alter the external behaviour of the code.

Refactoring helps us to find faults, So as to make the development code efficient in our model

we apply the refactoring cycle in the designing phase and build prototypes. If any error is

occurred it is resolved and fixed the same moment which helps us reduce the efforts of the

testers at the end [3].

4.3. Refactoring Cycle: It basically frames with the very basic and simple to understand

coding and designing that can be easily tested upon and is less complex. The necessity of

refactoring arises from the fact that as the business environments are rapidly changing the

responding task becomes more challenging [12]. As the challenge increases often the

businesses may be willing to accept the lower quality product if all the functionality is

acceptable. So the refactoring cycle helps us to modify the system efficiently with high

quality by reworking on the simple design and prototypes.

4.4. Acceptance Testing: It is quite similar to the black box system testing and represents

some expected result from a software system. Then the customers verify the correctness of

acceptance testing and review test scores. We need to develop acceptance tests for every

iteration. Main focus of implementing acceptance testing in extreme programming is Quality

assurance [9].

4.5. Stand up Meeting: This meeting is scheduled for a very short period of time and are

intended for reviewing the work done. This meeting allows the team members to easily share

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

88 Copyright ⓒ 2014 SERSC

their own status and see others status as well. In these meeting discussions about quality

envisioning by following extreme programming is followed for efficient software

development.

4.6. Pair Programming: The mechanism of pair programming involves two programmers

working on a single task. As per the research made so far considering pair programming in

agile environment results show that short term productivity might decrease but due to the high

quality produced code the resulting long term productivity and quality goes high.[12]

4.7. Refector Unit Testing: Main aim of the refactored unit testing is to make smallest

possible refactoring to get the code into a testable state. Unit testing is the most important step

which makes small changes incrementally. Frequent refactoring makes the design code more

efficient and improves the quality.

5. Advantages of the Agile Testing Software Development Model Assuring

Maintainability and Quality:

5.1. Improved customer interaction by seeking customer assistance after short iterative

completion: As we can see in the above described model the customer interaction is deployed

at short iterations so that at any point customer requirements are fulfilled and customer gets the

product with assured maintainability and Quality.

5.2. Defects are Detected at an Early Stage: Due to customer interaction at various phases

of the model the defects that might creep in are detected at a very early stage and resolved so

as to deliver the product with quality in much lesser time.

5.3. Flexibility to new Requirements: After the testing team discusses with the customer and

the customer wants to add some more requirements then in this model we can easily add as per

the choice of customer and then again the testing cycle in the refactored way is executed with

extreme programming.

5.4. No Useless Meetings: This model also eliminates unnecessary meetings to discuss what

customer wants and meeting is done only when the prepared documentation is to be discussed

for customer approval if he is satisfied with the specifications. This further reduces the

documentations as well and only required work is done for faster product delivery [11].

5.5. Early Access to Software for Testing: This model gives the testers an early access to

the software product developed to be checked whether it meets the customer satisfaction and

is meeting the Quality standards.

5.6. Reduced Risk: As the customer is involved at various levels of the model so the chances

of not satisfying the customer are less which happens with other models where the customer

gets the product after it has been fully developed.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 89

5.7. Increased Transparency and Better Visibility: The above model has been designed

keeping in view the mutual coordination among the stakeholders and developing a bond of trust

so that when the product is being shaped up each stakeholder has a better visibility.

6. Conclusion

This paper deals with the software maintainability and quality assurance in agile

environment, the maintainability of the software depends on the several factors like size of

the projects, availability of the customers, knowledge of the projects personnel and various

different factors which affect the software maintainability and quality Assurance.

Agile methods provide an efficient software product by delivering it early to the Working

Software environment, simplifying communication and increasing the customer satisfactions.

In Agile, there is a continuous interaction with the customer, so according to the need of

the customer, the new features are added to satisfy the customer which reduces the time and

cost which further help in modelling the software maintainability and quality assurance of

software.

References
[1] Osama Sohaib and Khalid Khan, “Integrating Usability Engineering and Agile Software Development::A

Literature Review” published in Computer Design and Applications (ICCDA), 2010 International

Conference page(s) V2-32 –V2-38, June 2010.

[2] Hans-Peter Samios, “Overcoming Traditional Project Release Reporting with an Agile Approach Focused on

Change” in Agile Conference (AGILE) 2012, page(s) 131-135, August 2012.

[3] Amani Mahdi Mohammed Hamed and Hisham Abushama, “Popular Agile Approaches in Software

Development: Review and Analysis” published in Computing, Electrical and Electronics Engineering

(ICCEEE), 2013 International Conference, page(s) 160-166, August 2013.

[4] Ahmed, A.; Ahmad, S. ; Ehsan, N. ; Mirza, E. ; Sarwar, S.Z., “Agile Software Development: Impact on

Productivity and Quality” published in Management of Innovation and Technology (ICMIT), 2010 IEEE

International Conference, page(s) 287-291, June 2010.

[5] Lagerberg, L. ; Skude, T. ; Emanuelsson, P. ; Sandahl, K. ; Stahl, D., “The Impact of Agile Principles and

Practices on Large-Scale Software Development Projects: A Multiple-Case Study of Two Projects at

Ericsson” published in Empirical Software Engineering and Measurement, 2013 ACM / IEEE International

Symposium, page(s) 348-356, October 2013.

[6] E. Mnkandla and B. Dwolatzky, “Defining Agile Software Quality Assurance”, published in international

conference Software Engineering Advances, October 2006.

[7] Gu Hongying and Yang Cheng, “A customizable agile software Quality Assurance model” published in

Information Science and Service Science (NISS), 2011 5th International Conference on New Trends in

(Volume:2), page(s) 382-387, October 2011.

[8] Andrew Marrington, James M. Hogan and Richard Thomas, “Quality assurance in a student-based agile

software engineering process”, published in Software Engineering Conference, 2005, page(s) 324-331, April

2005.

[9] Scharff, C., “Guiding global software development projects using Scrum and Agile with quality assurance”

published in Software Engineering Education and Training (CSEE&T), 2011 24th IEEE-CS Conference,

page(s) 274-283, May 2011.

[10] Sonali Bhasin, “Quality Assurance in Agile: A Study towards Achieving Excellence” published in AGILE

India (AGILE INDIA), 2012, page(s) 64-67, February 2012.

[11] Wang Xiaohua, Wu Zhi and Zhao Ming, “The Relationship between Developers and Customers in Agile

Methodology” published in international conference on Computer Science and Information Technology,

2008 page(s) 566-572, September 2008.

[12] Mauricio Finavaro Aniche, Guilherme de Azevedo Silveira, “Increasing Learning in an Agile Environment:

Lessons Learned in an Agile Team” published in Agile Conference (AGILE), 2011, page(s) 289-295, August

2011.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

90 Copyright ⓒ 2014 SERSC

Authors

Ms. Priyanka Upadhyay was born on February 9, 1991.She is

pursuing her Masters in Information Technology at Amity university

Noida, India. Her research interests include software engineering,

cloud computing, cyber security etc. She received her Bachelor’s of

technology from Gautam Budha Technical University Uttar Pradesh,

India where she was awarded with the "Chandrakanta Academic

Excellence Award 2013".

Mr. Abhishek Singh was born on August 15, 1987. He is pursuing

his Masters in Information Technology at Amity University Noida,

India. He completed his Bachelor’s of technology from Jaypee Institute

of Information Technology Noida, India. His area of interest is

Software Engineering, DBMS, and Algorithm. He qualified the GATE

exam conducted by IIT.

Mr. Naveen Garg completed his M.tech from Thapar University,

Punjab. Currently he is working as Assistant professor in Amity

University, Noida. He has published many papers in national and

international journals. His area of interest is software engineering and

software testing.

