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Abstract 

With the growing popularity of outsourced databases (ODBs), access control for multiple 

users with different privileges in outsourced environments is required in more and more 

applications. Under the assumption that ODBs may be interested in the original data value, 

or delay the update operations when end users cannot verify the results, this paper attempts 

to enhance ODBs with finegrained access control for multiple users with less impact on their 

other functionalities. Our work can be divided into two parts. In the first part, we propose a 

method to enforce the access control rules by encrypting the original table and using the keys 

to distinguish various rights. In addition to read/non-read rights, read/update rights can be 

distinguished in our encrypted table. We also implement validation-only rights for ODBs and 

oblige them to fulfill any update validation without knowing the original data. In the second 

part, we study the query evaluation over the encrypted table. Two kinds of B+ tree indexes on 

each column are designed, which can accelerate the selection in ODBs. 

 

Keywords: Access Control, Outsourced databases, Query evaluation 

 

1. Introduction 

ODBs have drawn extensive attention from both academia and industry. In this 

environment, customers outsource their data to a third-party service provider, which not only 

offers scalable and stable service at a low price, but also migrates tedious administrator tasks 

from them. Nowadays commercial ODBs are available [1, 2]. These products are mature 

enough to satisfy the application requirements. Hence, it becomes an important trend for end 

users to build their enterprise information management systems on ODBs. 

ODBs bring many benefits to end users, but also raise new security issues. On the one 

hand, to fully exploit the functionalities of OBDs, such as query evaluation and data 

backup/restore, and the like, all the data including sensitive information need be outsourced. 

On the other hand, end users have little control over the outsourced data. The administrator of 

the ODB can easily access the data they manage without the data owner’s awareness. In order 

to cope with such a dilemma, many methods have been proposed. When ODBs are assumed 

curious, the data is always encrypted before being outsourced. Hence the query friendly 

encryption method or index strategy over the encrypted data has been studied in [3, 6, 9]. 

When ODB is assumed not fully honest, the correctness and completeness of query results 

from ODB are studied in [8, 11, 14, 15].  

This paper assumes that ODBs are “curious” and “partially honest”. We make the same 

assumption as existing work that ODBs are “curious” about the original data. The measure of 

the honesty of ODBs is whether they perform instructions correctly. Rather than assuming 

that ODBs are “honest” in [16], we assume ODBs are “partially honest”. Since ODBs 

promise service quality in their contract with users, they face a penalty if users can find 

evidences to prove that ODBs work incorrectly. Consequently, ODBs are trusted when they 
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are aware that the results can be verified by end users. Otherwise, ODBs may delay or even 

deny the operations.  

The access control is an important component of database and is greatly desirable in most 

applications. It is not trivial work to implement access control in “curious” and “partially 

honest” ODBs. First, various privileges, not only read/non-read right, but also the read/update 

right and validate-only right, need be distinguished. The users with read-only right can access 

the original data. If they write the modified data back to the ODBs, the next reading is 

required to discover the unauthorized write. In addition, even if the next reading can find the 

error, the database has been damaged. Hence, we need to support a validate-only privilege for 

ODBs and force them to check the unauthorized update, even if they cannot access the 

original data. Second, key management becomes more complex when different privileges are 

considered. In order to support specified privileges for different users, data items will 

inevitably be encrypted with different keys. To free users from the burden of key 

management, a simple but effective key-derivation mechanism is desired. Last but not least, 

the implementation of the access control cannot seriously degrade the query performance over 

ODBs. The query evaluation should consider both the query predicates and the user’s access 

rights. Certain kinds of indexes to speed up the processing are therefore highly desirable. 

In order to overcome these challenges, this paper proposes an approach to enforce access 

control for multiple users. Specifically, our contributions can be summarized as follows: 

 We propose a method to support the access control mechanism in an outsourcing 

environment. The access control rules can be specified at the granularity of table 

cells. For each table cell, symmetric encryption is used to prevent the unauthorized 

read, and the asymmetric encryption technique is introduced to distinguish the read 

and update privileges. ODBs are also assigned keys for unauthorized update 

checking. In order to lower the encryption overhead on each table cell, we devise a 

cell grouping optimization strategy. (See Section 3)   

 We discuss the query evaluation over the encrypted table. Specifically, we propose 

two kinds of B+ tree indexes on each column in the table to accelerate query 

evaluation. One tree for encrypted values, named EVT, is to support the evaluation of 

query predicates. Another tree for tuple ID, named IT, is to locate the data item via 

tuple ID. (See Section 4) 

The remainder of the paper is organized as follows: Section 2 reviews preliminary 

knowledge and shows the framework of our method. Section 3 presents the method to enforce 

the access control rules. Section 4 discusses the query evaluation over the encrypted table. 

Section 5 reviews the related work and Section 6 concludes the paper. 

 

2. Preliminary Knowledge 

In this section, we review the access control rules and the attack model, and finally sketch 

out the framework of our method. 

 

2.1. Access Control Rules 

The access control rule in this paper is specified at the granularity of table cells. This is an 

extension to that in the traditional relational DBMS, where the access control can only be 

assigned on specific columns. The access control rule can be described as follows [7]: 

Definition 1 Access Control Rule. An access control rule is a 5-tuple of the form (subject, 

object, condition, right, sign), where subject is the user to whom the authorization is granted 
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or revoked, object is a table, condition is expressed by a SQL selection statement,        
             , right  and      is   (for grant statement) or   (for revoke statement). 

The subject in our paper represents the user. In order to simplify the expression, the user 

with the update privilege is referred as the writer, and the user who can only read is referred 

as the reader. Apart from these, we refer to the user with no privilege on the cell as the 

intruder. In addition, the data owner is a special kind of user. The data owner is responsible 

not only for the initial allocation of the data blocks under the access control rules, but also for 

the maintenance of the shared data structure for other users used in ODBs.  

Then we use         (       )for the right (read or update) on        of a user   under the 

rules   . The evaluation of the access rules will transform the original table to an encrypted 

table. The transformation is correct when the cells which users can access from the encrypted 

table is the same as the cells which are specified by rules. 

Definition 2 Accessible Cells Under Rules. Let   be the access control rules,   be the 

users,   be a right, for each     ,       ( )  {                    ( )     }  
 

2.2. Attack Model 

The enforcement of the access control rules should protect the data from any unauthorized 

read or update attack. An unauthorized read attack occurs when an intruder attempts to read 

the original data they are not authorized to see. Recall the assumption that ODB is partially 

honest; it might return data blocks to intruders without validating their privileges. To counter 

such an attack, we should make sure that even the intruders receive these blocks, and they are 

unable to view the data. 
The second kind of attack, unauthorized update attack, is issued by readers or intruders. 

They may attempt to modify the data blocks they have no right to read or can only read. As 

we know, each user can obtain the (original) block via get operation, modify the data and 

send the modified data back to ODB using put operation. Even if the user can detect that the 

data has been modified incorrectly at the next visiting, the original valid data may have been 

overwritten. A promising method to defeat against this kind of attack is to empower ODB to 

validate each update operation without knowing the original data, and oblige ODB to fulfill 

the validation. 

 

2.3. Framework of Access Control 
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Figure 1. The Framework of Access Control Implementation in ODB 

The framework of our method is illustrated in Figure 1. The client in the left part can 

communicate with the ODB in the right part via get/put commands and SQL statements. ODB 

stores all the data and responds to clients’ requests. The data stored in ODB are organized 
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into three layers, namely the meta data layer, the index layer and the encrypted data layer. 

The metadata layer and encrypted layer are discussed in Section 3. The index layer is 

introduced in Section 4. 

Initially, the data owner specifies access control rules for other users on one table, and 

evaluates the rules over the table. The encrypted blocks are put into the server, and each user 

u is assigned with a distinct key       . It can be used to derive the other nested keys 

outsourced in ODB.  Users can issue privilege-related statements and select/update statement 

against the ODB. The query evaluation may involve multiple interactions with ODB. A user 

should first get the meta data block, decrypt it, and then visit the corresponding index with get 

command to locate the data blocks required. Finally, he can get the encrypted data blocks. By 

performing decryption with his initial key and the nested keys derived, he can obtain the final 

results. When a writer attempts to update the data item, he need not only change the data, but 

also update the validation information.  
 

3. Enforcement of Access Control Rules 

In this section, we propose a method to enforce access control rules over a table. We first 

discuss the encryption form for each table cell, then extend it to the cluster with the same 

accessibility for all users, and finally introduce the encrypted table. 
 

3.1. Encrypted Cell for Multiple Users 

The encrypted form of the cell is the basis of the encrypted table, since the access rules are 

specified at the granularity of the cell. The encrypted cell should allow authorized access and 

prevent the unauthorized access both. The users here include readers, writers, intruders, and 

ODBs. Although neither can view the original data, the former will be forced to check the 

unauthorized update on the data item. Hence, we need to distinguish four kinds of privileges, 

namely the update, the read, the validation and no right. 

As in the existing work, the symmetric encryption function can be used to prevent any 

unauthorized read. The data is encrypted with a symmetric encryption function before being 

uploaded into the ODB. The key will be distributed to the reader and writer. The other two 

roles cannot access the data without the key. Formally, the encrypted cell for multiple users is 

defined as follows: 

Definition 3 Encrypted cell for Multiple Users. Let   for the content of         in a table 

  ,   be users, each user     with one key      ,   be ODB,   be the access control 

rules,      be a hash function known to users and ODB, we generate a public/private key 

pair           for the update verification by users, a key    for update verification by ODB, 

a key     for the encryption of the content.    is assigned with    . The encrypted form 

      ( ) takes a 4-tuple form  ( )    ( )    ( )    ( ) ,  
(1)  ( )  𝐸𝑘𝑐

𝑠 (c); 

(2)   ( )  𝐸 𝑟 𝑐
𝑎 (    ( ( )); 

(3)   ( )  𝐸𝑘𝑜

𝑠 (    ( ( )); 

(4)   ( )     ( )         ( )  𝐸  𝑘𝑒𝑦
𝑠 (       ) 𝑤            ( )      ; 

   ( )  𝐸  𝑘𝑒𝑦
𝑠 (               ) 𝑤            ( )        ; 

We illustrate relationships among components in an encrypted cell in Figure 2. Basically, 

the original cell   is encrypted into  ( )by a symmetric function with a key   . In order to 

distinguish the read/update rights,   ( )  is introduced for update verification, in which 

asymmetric encryption runs on a      result over ( ). A writer can update   ( ) and a reader 
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can verify   ( ).   ( ) is introduced to allow ODB to detect any unauthorized update without 

knowing the original value. Notice that hash is also known to ODB. In order to reduce the 

burden of key management for each user, an encrypted cell takes the nested key strategy for 

each user. Writers can get 4 nested keys and readers can get 2 nested keys from   ( ) with 

their initial keys. 

 

cell

e(c)=Ekc(cell) vu(c)=Epric(e(c))

vo(c)=Eko (hash(e(c))) Reader

Writer

kc, pubc

kc,ko,pubc, pric

User Key
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s
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Figure 2. Relationships between Keys 

We further explain the interaction between different components in an encrypted cell 

during reading and updating operation in Figure 3. Suppose a user   attempts to read a cell 

  in the left part of Figure 3. When u has no right,          ( ) returns empty and   ( ) does 

not contain the nested key for  , so   cannot access the data. When          ( ) returns read, 

u can obtain     and      from   ( ), and then   can further decrypt ( ) with    . After the 

original content of   is reproduced,   detects whether     
 

 
 (   ( )) equals     ( ( )). If it 

does, the data decrypted from  ( ) is a correct value. Otherwise,   will know ODB allowed 

an unauthorized update, which is an evidence to show that the ODB works incorrectly. 
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Figure 3. Read and Update of an Encrypted Cell 

The right part of Figure 3 describes the updating operation. Suppose that   is a writer, 

  will get 4 keys by decrypting   ( ).   can then use kc to view the content of the data. 

If   wants to update  ,   needs to regenerate both   ( ) and   ( ) according to the new  ( ). 

Each time the data is written back to the outsourced database, ODB accepts the update 

operation only when    

  (  ( )) equals      ( ( )). Since readers have no key    , they 

cannot produce a valid   ( )and consequently ODB will find an unauthorized update. Notice 

the reason that ODB checks the unauthorized update is that the next reading can also verify 

the consistency of data if ODB does not, as illustrated in the left part of Figure 3. 

 

3.2. Cells Grouping and Partition 

Basically, an encrypted table can be the union of all encrypted cells. However, this 

straightforward method will incur high time and space overhead. The encryption itself is a 

time consuming operation, and the size of the encrypted data is always larger than that of the 

plain text due to the padding strategy used in the encryption function. 

An important observation is that some cells share the same accessibility for all users. These 

cells provide an opportunity to implement the bulk encryption. That is, we can merge them 

together, generate one public/private key pair and two symmetric encryption keys, and 

encrypt them as one big cell. The validation in the reading and the verification in the updating 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

68   Copyright ⓒ 2014 SERSC 

are the same as those in the cell operations. In this way, the space cost and computation cost 

incurred by the asymmetric encryption can be greatly reduced. Formally, these cells are 

described as follows: 

Definition 4 Equivalent Access Class. Let                 be an ordered set of users, 

  be the access control rules,   be cell set, each       is annotated with a n-dimensional 

vector  ( )              ( )               ( )   . An equivalent access class  𝑒      

meets the following two requirements:   

(1)                         
       ( )     (   ); 

(2) There is no cell      𝑒 , where  (    ) is the same to ( ),    𝑒 . 

The next key problem is how to place cells from one equivalent access class into different 

blocks. Since the number of the blocks transferred is an important measure of query 

performance, the minimization of blocks transferred for multiple queries is the objective of 

the cell placement. The problem can be formulated as follows. Let    be a query 

workload,   be an equivalent access class, for each    ,     ( ) be the frequency of a 

query    ,     ( ) be the sum of the blocks   sent back to the client side, where all cells 

required in the evaluation of   are in  . The problem is how to lace the cell   into the blocks, 

so as to minimize the total evaluation cost ∑     ( )         ( ). Since the block required 

by query   may contain cells unrelated to  , the placement of cells greatly impacts on the total 

evaluation cost of the query workload. This problem can be proven NP-hard, which can be 

reduced from a set cover problem.  

In this paper, we take a greedy method to implement the partition. We expect that the cells 

in one block can be used in the same queries as often as possible. Let   be an equivalent 

access class, for each    ,          be the queries whose evaluations require  . We then 

place each   into blocks. When the current block is full, a new empty block b is allocated and 

the cell     with maximal            is placed into  . Otherwise, the benefit    (   ) of a 

cell     into b can be defined as ∑ ∑     ( )                         . In other words, if   is 

not put into  ,    (   ) indicates the maximal extra blocks required in the evaluation of the 

query workload. After   is selected and added into one block,   is removed from  . Such 

processing continues until   is empty. 

 

3.3. Encrypted Table 

After the cells are put into different blocks, the encrypted table is produced with all 

encrypted blocks. In addition, the encrypted table also contains a metadata block for each user 

to record the location of the blocks in ODB. The metadata block is stored in ODB, and its 

location is stored at the client side. 

 

Definition 5 Metadata Block for Each User. Let   be a user,   be all cells,   be all 

accessrules, the metadata block     ( ) for   is an encrypted block 𝐸  𝑘𝑒𝑦
𝑠 ( ), where   is a 

sequence of     ( )    ( )                                                                   
       𝑟𝑒𝑎    ( )           𝑎 𝑒   ( )   

 

4. Query Evaluation 

In this section, we first discuss the straightforward method to evaluate a query, and then 

propose two kinds of indexes used in the query evaluation. 
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4.1. Basic Method to Evaluate Query 

End users can evaluate SQL queries directly against the encrypted table. Suppose a 

user   issues a query SQL over an encrypted table  ,   will get the meta data block     ( ) 
first. With  ’s initial key      ,     ( ) can be decrypted and the locations of all accessible 

blocks are recovered. Consequently,   applies get operations to request all blocks return to the 

client side. These blocks can be decrypted with the nested keys. Since each cell is annotated 

with the column name and a unique tuple ID, the subset of table which   can access is then 

reconstructed. The SQL query runs on this subset of the table and   gets the final results. 

Although the meta data block for end users can prune the inaccessible blocks, the basic 

method still incurs expensive time and space overheads, since all accessible cells, whether 

used in the query evaluation or not, will be sent back to the client side and decrypted. In this 

method, ODBs only provide a simple storage service and end users carry out all tasks in the 

query evaluation. 

 

4.2. EVT and IT Index over Encrypted Table 

In order to overcome the limitations of the basic method, we try to enhance ODBs to 

provide more query support. In the following, we design indexes in ODBs to reduce the 

number of encrypted blocks required in the query evaluation, so to reduce both network 

transfer and decryption overheads. 

We first discuss what kinds of indexes are required. An SQL query mainly consists of the 

query predicates and target list. The query predicate specifies the conditions on one or 

multiple columns. The target list contains the columns returned to end users. The columns in 

the target list may not be in the predicates. Since the cells in each tuple may not be in the 

same block, the evaluation of a query firstly gets the tuple ID set I each of which is for a tuple 

satisfying the predicates, and then locates the values of the target columns whose tuple IDs 

are also in I. We observe that the location of ID set from predicates as well as the location of 

data value set from ID set can be sped up by indexes. Due to arbitrary combinations of 

columns in the query predicates or in the target list, it had better build two indexes for each 

column. 

The next key problem is how these indexes are organized for different users. We build one 

index shared by all users and maintained by the data owner. Each user can access the index in 

a read-only mode with the key assigned by the data owner. When the cell is updated by user 

    need send a request to the data owner, who is responsible for the index adjustment. Since 

the index is shared by all users, the verification on each index node is also needed to defend 

against the unauthorized update on the internal nodes of the index.     

Specifically, we introduce an encrypted B+ tree on each column to support an efficient 

predicate evaluation. Intuitively, the encrypted B+ tree is the encryption version of the B+ 

tree on the plain data.   

Definition 6 Encrypted Value B+ Tree. Let     be a column in a table,    be the B+ tree 

for the plain values of   ,      be a hash function known to all users and ODB. We generate 

a public/private key pair          , symmetric encryption function keys    and   . The data 

owner has all keys, and other users only have     and   . The encrypted value B+ tree 

𝐸  (   ) can be converted from    as follows: 

(1) For each internal node     , the encrypted    ( ) takes the form of    ( )   ( )  

   ( )         ( )  𝐸  

 ( )   ( )  𝐸    
 

(    ( ( )))    ( )  𝐸𝑘𝑜

𝑠  (    ( ( ))); 

(2) For each leaf node       ,   consists of a value sequence          𝑘  . The leaf 

node in EVT takes the form of      (  )       ( 𝑘)   . Each  (  )(         ) is 
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a 2-dimensional matrix, with the row as the cell   whose value equals     and the 

column as the user   whocan access a cell with the value   .   ( ) containing the 

nested key of   for   and its location is stored in the matrix correspondingly. 

The encryption method and the verification action on the B+ tree node are similar to those 

used in the encrypted cell or block. We omit any discussion due to space limitations. 

   (      ) is illustrated in Figure 4. The internal node is actually protected by the key 

known to all users. Since the values in the column for B+ tree may be not unique, there exist 

multiple cells with the same value. In addition, there may be multiple users to access the cell 

with this value. Therefore, we use a matrix to store these relationships. The user ID sequence 

in the leaf node can be open to ODB, from which ODB can return the blocks selectivity. 
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Figure 4. EVT Tree 

EVT index can be used to accelerate the query predicate evaluation. Suppose a user   with 

keys    and      attempts to evaluate a query with a predicate on column    ,   locates the 

root node of    (   ) first, decrypts the root node with   , verifies the consistency of the 

node with     , and then obtains the location for the next internal node according to the 

predicate. This process repeats itself until the leaf node is reached.   then locates   ( ) in the 

matrix. When   ( )  is decrypted,   can obtain the location and the nested key for the 

encrypted form of  ( ), and further get the cell value. When the value of the cell meets the 

requirement of the predicate, the tuple ID for the cell is recorded. Compared with the 

straightforward method, only a small number of blocks need be processed in the presence of 

the EVT index. 

In order to locate the target data items after the tuple IDs are determined, we also introduce 

another B+ tree on the tuple IDs of each column, named IT. Since tuple IDs are meaningless, 

we need not encrypt them and can rely on the functionality of ODB to build the IT index. 

Definition 7 ID B+ Tree. Let     be a column in a table, the B+ tree  (   ) is built with 

the tuple IDs as keys. For each value in the leaf node in   (   ), is linked to   ( ), where 

the tuple ID for cell is the same to and the column of is    .   ( ) contains the location of   

and the nested keys for  ( ). 

A user   can request ODB directly to return   ( ) from   (   ) with a tuple ID .   can 

then get the nested keys for the encrypted cell after the decryption of   ( ) with      . Then 

 locates the encrypted form of cell ( ), decrypts it and produces the final results. 

With the introduction of 𝐸   and  , the metadata block for each user needs be extended to 

record the root nodes of different index trees. Let be a user,      be the column set can 

access (read/update), the meta data block     ( ) is an encrypted block 𝐸  𝑘𝑒𝑦
𝑠 ( ), where B 

is a sequence of {(   𝑒  ,     ,   ,      )|   𝑒   is the location of 𝐸  (   ),      is the 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC   71 

public key to verify the content in 𝐸  (   ),    is the key to decrypt the node in 𝐸  (   ), 

      is the location of the root node for   (   ),         }. 

 

5. Related Work 

The query processing over the encrypted data in ODBs receives a great deal of attention. 

Sensitive data is always encrypted before uploaded into ODBs, and the straightforward 

method to query encrypted data is expensive. In order to overcome this limitation, a kind of 

method is to use some specific encryption methods, such as order preserving encryption [3] to 

let ODBs evaluate queries directly on the encrypted data. An encrypted B+ tree is proposed in 

[6], with which the data can be accessed in an interactive way. A privacy-preserving index 

based on the partition of sensitive attributes is proposed by [9]. Different from existing works, 

the query processing in our paper considers the access control rules, where different kinds of 

privileges need be distinguished.  

Another hot research line on ODBs is how to ensure the integrity of query results. Since 

ODBs are assumed not to be fully trustworthy, the client side has to combine the verification 

object along with the original data, and check the verification object when the results come 

from ODBs. According to different forms of verification objects, current methods can be 

classified into the MHT-based approach [8], the probabilistic approach [13], and the chain-

based approach [14, 15].  

The access control over the relational database has been extensively studied and 

incorporated into the commercial database. Discretionary access control is used to restrict 

access to objects based on the identity of subjects and their rights [10]. The distributed access 

control is studied in [5]. In our paper, we cannot rely on ODBs to check the rights since 

ODBs are not fully trustworthy. Our access control is also implemented in a distributed way 

due to the lack of the central support to the access control in ODBs. 

The access control on resources in the outsourced server is studied [16].They proposed a 

novel two-layer encryption, one performed by the data owner to enforce the initial policy and 

another performed by server provider to enforce the dynamic changes over the policy. The 

purpose of two-layer encryption is to avoid re-encrypting the original data when the rights for 

others have been changed. Different from our work, it assumes that ODBs can honestly carry 

out the instructions. In addition, our paper discusses the fine-grained access control over the 

table cell and provides SQL query support with two kinds of indexes. 

 

6. Conclusion 

In this paper, we study the problem of access control for multiple users in ODBs. The 

access control rules are specified at the granularity of the table cell. The basic idea is to 

compile the access control rules on each table cell inside the encrypted data, and rely on 

different encryption techniques to distinguish the various rights. The cell grouping strategy is 

used to reduce the impact of the encryptions. Two kinds of indexes, one for predicate 

evaluation and another for target item location, are proposed to speed up the query processing. 
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