
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.63-72

http://dx.doi.org/10.14257/ijdta.2014.7.3.07

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Enabling Access Control in Partially Honest Outsourced Databases

Lanju Kong, Qingzhong Li and Lin Li

School of Computer Science and Technology, Shandong University

{klj,lqz,lilin@sdu.edu.cn}

Abstract

With the growing popularity of outsourced databases (ODBs), access control for multiple

users with different privileges in outsourced environments is required in more and more

applications. Under the assumption that ODBs may be interested in the original data value,

or delay the update operations when end users cannot verify the results, this paper attempts

to enhance ODBs with finegrained access control for multiple users with less impact on their

other functionalities. Our work can be divided into two parts. In the first part, we propose a

method to enforce the access control rules by encrypting the original table and using the keys

to distinguish various rights. In addition to read/non-read rights, read/update rights can be

distinguished in our encrypted table. We also implement validation-only rights for ODBs and

oblige them to fulfill any update validation without knowing the original data. In the second

part, we study the query evaluation over the encrypted table. Two kinds of B+ tree indexes on

each column are designed, which can accelerate the selection in ODBs.

Keywords: Access Control, Outsourced databases, Query evaluation

1. Introduction

ODBs have drawn extensive attention from both academia and industry. In this

environment, customers outsource their data to a third-party service provider, which not only

offers scalable and stable service at a low price, but also migrates tedious administrator tasks

from them. Nowadays commercial ODBs are available [1, 2]. These products are mature

enough to satisfy the application requirements. Hence, it becomes an important trend for end

users to build their enterprise information management systems on ODBs.

ODBs bring many benefits to end users, but also raise new security issues. On the one

hand, to fully exploit the functionalities of OBDs, such as query evaluation and data

backup/restore, and the like, all the data including sensitive information need be outsourced.

On the other hand, end users have little control over the outsourced data. The administrator of

the ODB can easily access the data they manage without the data owner’s awareness. In order

to cope with such a dilemma, many methods have been proposed. When ODBs are assumed

curious, the data is always encrypted before being outsourced. Hence the query friendly

encryption method or index strategy over the encrypted data has been studied in [3, 6, 9].

When ODB is assumed not fully honest, the correctness and completeness of query results

from ODB are studied in [8, 11, 14, 15].

This paper assumes that ODBs are “curious” and “partially honest”. We make the same

assumption as existing work that ODBs are “curious” about the original data. The measure of

the honesty of ODBs is whether they perform instructions correctly. Rather than assuming

that ODBs are “honest” in [16], we assume ODBs are “partially honest”. Since ODBs

promise service quality in their contract with users, they face a penalty if users can find

evidences to prove that ODBs work incorrectly. Consequently, ODBs are trusted when they

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

64 Copyright ⓒ 2014 SERSC

are aware that the results can be verified by end users. Otherwise, ODBs may delay or even

deny the operations.

The access control is an important component of database and is greatly desirable in most

applications. It is not trivial work to implement access control in “curious” and “partially

honest” ODBs. First, various privileges, not only read/non-read right, but also the read/update

right and validate-only right, need be distinguished. The users with read-only right can access

the original data. If they write the modified data back to the ODBs, the next reading is

required to discover the unauthorized write. In addition, even if the next reading can find the

error, the database has been damaged. Hence, we need to support a validate-only privilege for

ODBs and force them to check the unauthorized update, even if they cannot access the

original data. Second, key management becomes more complex when different privileges are

considered. In order to support specified privileges for different users, data items will

inevitably be encrypted with different keys. To free users from the burden of key

management, a simple but effective key-derivation mechanism is desired. Last but not least,

the implementation of the access control cannot seriously degrade the query performance over

ODBs. The query evaluation should consider both the query predicates and the user’s access

rights. Certain kinds of indexes to speed up the processing are therefore highly desirable.

In order to overcome these challenges, this paper proposes an approach to enforce access

control for multiple users. Specifically, our contributions can be summarized as follows:

 We propose a method to support the access control mechanism in an outsourcing

environment. The access control rules can be specified at the granularity of table

cells. For each table cell, symmetric encryption is used to prevent the unauthorized

read, and the asymmetric encryption technique is introduced to distinguish the read

and update privileges. ODBs are also assigned keys for unauthorized update

checking. In order to lower the encryption overhead on each table cell, we devise a

cell grouping optimization strategy. (See Section 3)

 We discuss the query evaluation over the encrypted table. Specifically, we propose

two kinds of B+ tree indexes on each column in the table to accelerate query

evaluation. One tree for encrypted values, named EVT, is to support the evaluation of

query predicates. Another tree for tuple ID, named IT, is to locate the data item via

tuple ID. (See Section 4)

The remainder of the paper is organized as follows: Section 2 reviews preliminary

knowledge and shows the framework of our method. Section 3 presents the method to enforce

the access control rules. Section 4 discusses the query evaluation over the encrypted table.

Section 5 reviews the related work and Section 6 concludes the paper.

2. Preliminary Knowledge

In this section, we review the access control rules and the attack model, and finally sketch

out the framework of our method.

2.1. Access Control Rules

The access control rule in this paper is specified at the granularity of table cells. This is an

extension to that in the traditional relational DBMS, where the access control can only be

assigned on specific columns. The access control rule can be described as follows [7]:

Definition 1 Access Control Rule. An access control rule is a 5-tuple of the form (subject,

object, condition, right, sign), where subject is the user to whom the authorization is granted

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 65

or revoked, object is a table, condition is expressed by a SQL selection statement,
 , right and is (for grant statement) or (for revoke statement).

The subject in our paper represents the user. In order to simplify the expression, the user

with the update privilege is referred as the writer, and the user who can only read is referred

as the reader. Apart from these, we refer to the user with no privilege on the cell as the

intruder. In addition, the data owner is a special kind of user. The data owner is responsible

not only for the initial allocation of the data blocks under the access control rules, but also for

the maintenance of the shared data structure for other users used in ODBs.

Then we use ()for the right (read or update) on of a user under the

rules . The evaluation of the access rules will transform the original table to an encrypted

table. The transformation is correct when the cells which users can access from the encrypted

table is the same as the cells which are specified by rules.

Definition 2 Accessible Cells Under Rules. Let be the access control rules, be the

users, be a right, for each , () { () }

2.2. Attack Model

The enforcement of the access control rules should protect the data from any unauthorized

read or update attack. An unauthorized read attack occurs when an intruder attempts to read

the original data they are not authorized to see. Recall the assumption that ODB is partially

honest; it might return data blocks to intruders without validating their privileges. To counter

such an attack, we should make sure that even the intruders receive these blocks, and they are

unable to view the data.
The second kind of attack, unauthorized update attack, is issued by readers or intruders.

They may attempt to modify the data blocks they have no right to read or can only read. As

we know, each user can obtain the (original) block via get operation, modify the data and

send the modified data back to ODB using put operation. Even if the user can detect that the

data has been modified incorrectly at the next visiting, the original valid data may have been

overwritten. A promising method to defeat against this kind of attack is to empower ODB to

validate each update operation without knowing the original data, and oblige ODB to fulfill

the validation.

2.3. Framework of Access Control

Enforcement of

Access Control Rules

RulesTable Users

Key

Put

Key

PutGet

Outsourced

Database

Data

Owner

User
Query

Evaluation

SQL

Update

Query

Evaluation

PutGet

SQL MetaData

Index

Data

Figure 1. The Framework of Access Control Implementation in ODB

The framework of our method is illustrated in Figure 1. The client in the left part can

communicate with the ODB in the right part via get/put commands and SQL statements. ODB

stores all the data and responds to clients’ requests. The data stored in ODB are organized

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

66 Copyright ⓒ 2014 SERSC

into three layers, namely the meta data layer, the index layer and the encrypted data layer.

The metadata layer and encrypted layer are discussed in Section 3. The index layer is

introduced in Section 4.

Initially, the data owner specifies access control rules for other users on one table, and

evaluates the rules over the table. The encrypted blocks are put into the server, and each user

u is assigned with a distinct key . It can be used to derive the other nested keys

outsourced in ODB. Users can issue privilege-related statements and select/update statement

against the ODB. The query evaluation may involve multiple interactions with ODB. A user

should first get the meta data block, decrypt it, and then visit the corresponding index with get

command to locate the data blocks required. Finally, he can get the encrypted data blocks. By

performing decryption with his initial key and the nested keys derived, he can obtain the final

results. When a writer attempts to update the data item, he need not only change the data, but

also update the validation information.

3. Enforcement of Access Control Rules

In this section, we propose a method to enforce access control rules over a table. We first

discuss the encryption form for each table cell, then extend it to the cluster with the same

accessibility for all users, and finally introduce the encrypted table.

3.1. Encrypted Cell for Multiple Users

The encrypted form of the cell is the basis of the encrypted table, since the access rules are

specified at the granularity of the cell. The encrypted cell should allow authorized access and

prevent the unauthorized access both. The users here include readers, writers, intruders, and

ODBs. Although neither can view the original data, the former will be forced to check the

unauthorized update on the data item. Hence, we need to distinguish four kinds of privileges,

namely the update, the read, the validation and no right.

As in the existing work, the symmetric encryption function can be used to prevent any

unauthorized read. The data is encrypted with a symmetric encryption function before being

uploaded into the ODB. The key will be distributed to the reader and writer. The other two

roles cannot access the data without the key. Formally, the encrypted cell for multiple users is

defined as follows:

Definition 3 Encrypted cell for Multiple Users. Let for the content of in a table

 , be users, each user with one key , be ODB, be the access control

rules, be a hash function known to users and ODB, we generate a public/private key

pair for the update verification by users, a key for update verification by ODB,

a key for the encryption of the content. is assigned with . The encrypted form

 () takes a 4-tuple form () () () () ,
(1) () 𝐸𝑘𝑐

𝑠 (c);

(2) () 𝐸 𝑟 𝑐
𝑎 ((());

(3) () 𝐸𝑘𝑜

𝑠 ((());

(4) () () () 𝐸 𝑘𝑒𝑦
𝑠 () 𝑤 () ;

 () 𝐸 𝑘𝑒𝑦
𝑠 () 𝑤 () ;

We illustrate relationships among components in an encrypted cell in Figure 2. Basically,

the original cell is encrypted into ()by a symmetric function with a key . In order to

distinguish the read/update rights, () is introduced for update verification, in which

asymmetric encryption runs on a result over (). A writer can update () and a reader

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 67

can verify (). () is introduced to allow ODB to detect any unauthorized update without

knowing the original value. Notice that hash is also known to ODB. In order to reduce the

burden of key management for each user, an encrypted cell takes the nested key strategy for

each user. Writers can get 4 nested keys and readers can get 2 nested keys from () with

their initial keys.

cell

e(c)=Ekc(cell) vu(c)=Epric(e(c))

vo(c)=Eko (hash(e(c))) Reader

Writer

kc, pubc

kc,ko,pubc, pric

User Key

KU(c)
s

s a

Figure 2. Relationships between Keys

We further explain the interaction between different components in an encrypted cell

during reading and updating operation in Figure 3. Suppose a user attempts to read a cell

 in the left part of Figure 3. When u has no right, () returns empty and () does

not contain the nested key for , so cannot access the data. When () returns read,

u can obtain and from (), and then can further decrypt () with . After the

original content of is reproduced, detects whether

 (()) equals (()). If it

does, the data decrypted from () is a correct value. Otherwise, will know ODB allowed

an unauthorized update, which is an evidence to show that the ODB works incorrectly.

h(c)'=Dko(vo(c))

h(c)'=hash(e(c))

No

Unauthorized

Update

Yes

Accept Update

Client writes a cell back to ODB

KU(c)

cell=Dkc(e(c))

Client Reads a cell from ODB

hash(e(c))=

Dpubc(vu(c))Yes

Unauthorized

Update
Return

cell

No

e(c)

vu(c)

vo(c)a

s

s

Figure 3. Read and Update of an Encrypted Cell

The right part of Figure 3 describes the updating operation. Suppose that is a writer,

 will get 4 keys by decrypting (). can then use kc to view the content of the data.

If wants to update , needs to regenerate both () and () according to the new ().

Each time the data is written back to the outsourced database, ODB accepts the update

operation only when

 (()) equals (()). Since readers have no key , they

cannot produce a valid ()and consequently ODB will find an unauthorized update. Notice

the reason that ODB checks the unauthorized update is that the next reading can also verify

the consistency of data if ODB does not, as illustrated in the left part of Figure 3.

3.2. Cells Grouping and Partition

Basically, an encrypted table can be the union of all encrypted cells. However, this

straightforward method will incur high time and space overhead. The encryption itself is a

time consuming operation, and the size of the encrypted data is always larger than that of the

plain text due to the padding strategy used in the encryption function.

An important observation is that some cells share the same accessibility for all users. These

cells provide an opportunity to implement the bulk encryption. That is, we can merge them

together, generate one public/private key pair and two symmetric encryption keys, and

encrypt them as one big cell. The validation in the reading and the verification in the updating

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

68 Copyright ⓒ 2014 SERSC

are the same as those in the cell operations. In this way, the space cost and computation cost

incurred by the asymmetric encryption can be greatly reduced. Formally, these cells are

described as follows:

Definition 4 Equivalent Access Class. Let be an ordered set of users,

 be the access control rules, be cell set, each is annotated with a n-dimensional

vector () () () . An equivalent access class 𝑒

meets the following two requirements:

(1)
 () ();

(2) There is no cell 𝑒 , where () is the same to (), 𝑒 .

The next key problem is how to place cells from one equivalent access class into different

blocks. Since the number of the blocks transferred is an important measure of query

performance, the minimization of blocks transferred for multiple queries is the objective of

the cell placement. The problem can be formulated as follows. Let be a query

workload, be an equivalent access class, for each , () be the frequency of a

query , () be the sum of the blocks sent back to the client side, where all cells

required in the evaluation of are in . The problem is how to lace the cell into the blocks,

so as to minimize the total evaluation cost ∑ () (). Since the block required

by query may contain cells unrelated to , the placement of cells greatly impacts on the total

evaluation cost of the query workload. This problem can be proven NP-hard, which can be

reduced from a set cover problem.

In this paper, we take a greedy method to implement the partition. We expect that the cells

in one block can be used in the same queries as often as possible. Let be an equivalent

access class, for each , be the queries whose evaluations require . We then

place each into blocks. When the current block is full, a new empty block b is allocated and

the cell with maximal is placed into . Otherwise, the benefit () of a

cell into b can be defined as ∑ ∑ () . In other words, if is

not put into , () indicates the maximal extra blocks required in the evaluation of the

query workload. After is selected and added into one block, is removed from . Such

processing continues until is empty.

3.3. Encrypted Table

After the cells are put into different blocks, the encrypted table is produced with all

encrypted blocks. In addition, the encrypted table also contains a metadata block for each user

to record the location of the blocks in ODB. The metadata block is stored in ODB, and its

location is stored at the client side.

Definition 5 Metadata Block for Each User. Let be a user, be all cells, be all

accessrules, the metadata block () for is an encrypted block 𝐸 𝑘𝑒𝑦
𝑠 (), where is a

sequence of () ()
 𝑟𝑒𝑎 () 𝑎 𝑒 ()

4. Query Evaluation

In this section, we first discuss the straightforward method to evaluate a query, and then

propose two kinds of indexes used in the query evaluation.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 69

4.1. Basic Method to Evaluate Query

End users can evaluate SQL queries directly against the encrypted table. Suppose a

user issues a query SQL over an encrypted table , will get the meta data block ()
first. With ’s initial key , () can be decrypted and the locations of all accessible

blocks are recovered. Consequently, applies get operations to request all blocks return to the

client side. These blocks can be decrypted with the nested keys. Since each cell is annotated

with the column name and a unique tuple ID, the subset of table which can access is then

reconstructed. The SQL query runs on this subset of the table and gets the final results.

Although the meta data block for end users can prune the inaccessible blocks, the basic

method still incurs expensive time and space overheads, since all accessible cells, whether

used in the query evaluation or not, will be sent back to the client side and decrypted. In this

method, ODBs only provide a simple storage service and end users carry out all tasks in the

query evaluation.

4.2. EVT and IT Index over Encrypted Table

In order to overcome the limitations of the basic method, we try to enhance ODBs to

provide more query support. In the following, we design indexes in ODBs to reduce the

number of encrypted blocks required in the query evaluation, so to reduce both network

transfer and decryption overheads.

We first discuss what kinds of indexes are required. An SQL query mainly consists of the

query predicates and target list. The query predicate specifies the conditions on one or

multiple columns. The target list contains the columns returned to end users. The columns in

the target list may not be in the predicates. Since the cells in each tuple may not be in the

same block, the evaluation of a query firstly gets the tuple ID set I each of which is for a tuple

satisfying the predicates, and then locates the values of the target columns whose tuple IDs

are also in I. We observe that the location of ID set from predicates as well as the location of

data value set from ID set can be sped up by indexes. Due to arbitrary combinations of

columns in the query predicates or in the target list, it had better build two indexes for each

column.

The next key problem is how these indexes are organized for different users. We build one

index shared by all users and maintained by the data owner. Each user can access the index in

a read-only mode with the key assigned by the data owner. When the cell is updated by user

 need send a request to the data owner, who is responsible for the index adjustment. Since

the index is shared by all users, the verification on each index node is also needed to defend

against the unauthorized update on the internal nodes of the index.

Specifically, we introduce an encrypted B+ tree on each column to support an efficient

predicate evaluation. Intuitively, the encrypted B+ tree is the encryption version of the B+

tree on the plain data.

Definition 6 Encrypted Value B+ Tree. Let be a column in a table, be the B+ tree

for the plain values of , be a hash function known to all users and ODB. We generate

a public/private key pair , symmetric encryption function keys and . The data

owner has all keys, and other users only have and . The encrypted value B+ tree

𝐸 () can be converted from as follows:

(1) For each internal node , the encrypted () takes the form of () ()

 () () 𝐸

 () () 𝐸

((())) () 𝐸𝑘𝑜

𝑠 ((()));

(2) For each leaf node , consists of a value sequence 𝑘 . The leaf

node in EVT takes the form of () (𝑘) . Each ()() is

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

70 Copyright ⓒ 2014 SERSC

a 2-dimensional matrix, with the row as the cell whose value equals and the

column as the user whocan access a cell with the value . () containing the

nested key of for and its location is stored in the matrix correspondingly.

The encryption method and the verification action on the B+ tree node are similar to those

used in the encrypted cell or block. We omit any discussion due to space limitations.

 () is illustrated in Figure 4. The internal node is actually protected by the key

known to all users. Since the values in the column for B+ tree may be not unique, there exist

multiple cells with the same value. In addition, there may be multiple users to access the cell

with this value. Therefore, we use a matrix to store these relationships. The user ID sequence

in the leaf node can be open to ODB, from which ODB can return the blocks selectivity.

3000 4000 Vu Vo

M(v1) M(v2)

5

3000

M(v3)

u1

kU1(c1)

u2 u4

kU2(c1) kU4(c1)

kU2(c2)

kU4(c3)

Vu Vo

9

3000

.....

Figure 4. EVT Tree

EVT index can be used to accelerate the query predicate evaluation. Suppose a user with

keys and attempts to evaluate a query with a predicate on column , locates the

root node of () first, decrypts the root node with , verifies the consistency of the

node with , and then obtains the location for the next internal node according to the

predicate. This process repeats itself until the leaf node is reached. then locates () in the

matrix. When () is decrypted, can obtain the location and the nested key for the

encrypted form of (), and further get the cell value. When the value of the cell meets the

requirement of the predicate, the tuple ID for the cell is recorded. Compared with the

straightforward method, only a small number of blocks need be processed in the presence of

the EVT index.

In order to locate the target data items after the tuple IDs are determined, we also introduce

another B+ tree on the tuple IDs of each column, named IT. Since tuple IDs are meaningless,

we need not encrypt them and can rely on the functionality of ODB to build the IT index.

Definition 7 ID B+ Tree. Let be a column in a table, the B+ tree () is built with

the tuple IDs as keys. For each value in the leaf node in (), is linked to (), where

the tuple ID for cell is the same to and the column of is . () contains the location of

and the nested keys for ().

A user can request ODB directly to return () from () with a tuple ID . can

then get the nested keys for the encrypted cell after the decryption of () with . Then

 locates the encrypted form of cell (), decrypts it and produces the final results.

With the introduction of 𝐸 and , the metadata block for each user needs be extended to

record the root nodes of different index trees. Let be a user, be the column set can

access (read/update), the meta data block () is an encrypted block 𝐸 𝑘𝑒𝑦
𝑠 (), where B

is a sequence of {(𝑒 , , ,)| 𝑒 is the location of 𝐸 (), is the

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 71

public key to verify the content in 𝐸 (), is the key to decrypt the node in 𝐸 (),

 is the location of the root node for (), }.

5. Related Work

The query processing over the encrypted data in ODBs receives a great deal of attention.

Sensitive data is always encrypted before uploaded into ODBs, and the straightforward

method to query encrypted data is expensive. In order to overcome this limitation, a kind of

method is to use some specific encryption methods, such as order preserving encryption [3] to

let ODBs evaluate queries directly on the encrypted data. An encrypted B+ tree is proposed in

[6], with which the data can be accessed in an interactive way. A privacy-preserving index

based on the partition of sensitive attributes is proposed by [9]. Different from existing works,

the query processing in our paper considers the access control rules, where different kinds of

privileges need be distinguished.

Another hot research line on ODBs is how to ensure the integrity of query results. Since

ODBs are assumed not to be fully trustworthy, the client side has to combine the verification

object along with the original data, and check the verification object when the results come

from ODBs. According to different forms of verification objects, current methods can be

classified into the MHT-based approach [8], the probabilistic approach [13], and the chain-

based approach [14, 15].

The access control over the relational database has been extensively studied and

incorporated into the commercial database. Discretionary access control is used to restrict

access to objects based on the identity of subjects and their rights [10]. The distributed access

control is studied in [5]. In our paper, we cannot rely on ODBs to check the rights since

ODBs are not fully trustworthy. Our access control is also implemented in a distributed way

due to the lack of the central support to the access control in ODBs.

The access control on resources in the outsourced server is studied [16].They proposed a

novel two-layer encryption, one performed by the data owner to enforce the initial policy and

another performed by server provider to enforce the dynamic changes over the policy. The

purpose of two-layer encryption is to avoid re-encrypting the original data when the rights for

others have been changed. Different from our work, it assumes that ODBs can honestly carry

out the instructions. In addition, our paper discusses the fine-grained access control over the

table cell and provides SQL query support with two kinds of indexes.

6. Conclusion

In this paper, we study the problem of access control for multiple users in ODBs. The

access control rules are specified at the granularity of the table cell. The basic idea is to

compile the access control rules on each table cell inside the encrypted data, and rely on

different encryption techniques to distinguish the various rights. The cell grouping strategy is

used to reduce the impact of the encryptions. Two kinds of indexes, one for predicate

evaluation and another for target item location, are proposed to speed up the query processing.

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant

No.61272241,No.61303085; Science and Technology Development Plan Project of Shandong

Province No. 2012GGX10134; Independent Innovation Foundation of Shandong University

under Grant No.2012TS075, No.2012TS074.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

72 Copyright ⓒ 2014 SERSC

References

[1] Microsoft sql server data service. http://www.microsoft.com/azure/data.mspx.

[2] Simple database in amazon. http://aws.amazon.com/simpledb/ .

[3] R. Agrawal,J. Kiernan,R. Srikant, andY. Xu. Order preserving encryption for numeric data. In Proc. of

SIGMOD, pages 563–574, 2004.

[4] Luc Bouganim, Francois Dang Ngoc, and Philippe Pucheral. Dynamic access-control policies on XML

encrypted data. ACMTrans. Inf. Syst. Secur, 10(4):1094–9224, 2008.

[5] BogdanCautis. Distributed access control: a privacy-conscious approach. In Proc. of SACMAT, pages 61–70,

2007.

[6] E. Damiani, S.D.C.Vimercati,andJajodiaS. et.al. Balancing confidentialityandefficiencyin untrusted

relational DBMSs. In Proc. of CCS, pages 93–102, 2003.

[7] E.Damiani, S.Vimercati, S.araboschi, and P.amarati. Afine-grained access control system for XML

documents. ACMTrans. Inf. Syst. Secur., 5(2):169–202, 2002.

[8] L.Feifei,M. Hadjieleftheriou,G.Kollios,andL.Reyzin. Dynamic authenticated index structures for outsourced

databases. In Proc. of SIGMOD, pages 121–132, 2006.

[9] B. Hore, S. Mehrotra, and G. Tsudik. Aprivacy-preserving index for range queries. In Proc. of VLDB, pages

720–731. VLDB Endowment, 2004.

[10] TeresaF. Lunt and EduardoB. Fernandez. Database security. SIGMOD Record, 19(4):90-97, 1990.

[11] Y. Man, Lin. Yimin, and K. Mouratidis. Efficient verification of shortest path search via authenticated hints.

In Proc. of ICDE, pages 237–248, 2010.

[12] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In Proc. of VLDB, pages

898–909, 2003.

[13] X. Min,W. Haixun,Y. Jian, andM. Xiaofeng. Integrity auditingof outsourced data. In Proc. of VLDB, pages

782–793, 2007.

[14] E.Mykletun, M.Narasimha, and G.Tsudik. Signature bouquets: Immutability for aggregated/condensed

signatures. In Proc. of ESORICS, pages 160–176, 2004.

[15] M.Narasimha and G.Tsudik. Authentication of outsourced databases using signature aggregation and

chaining. InProc. OfDASFAA, pages 420–436, 2006.

[16] S.D.Vimercati, S.Foresti, S. Jajodia, S.Paraboschi, andP. Samarati. Over-encryption management of access

control evolution on outsourced data. In Proc. of VLDB, pages 123–134, 2007.

Authors

Lanju Kong, born in 1978, Ph.D. She is an assistant professorin

Shandong University and Shandong Provincial Key Laboratory of

Software Engineering. Her main research interests include computer

software and theory, software and data engineering, XML query and

access.

Li Qingzhong, born in 1965, professor, Ph.D. supervisor. His research

interests include large-scale network data management and web data

integration.

Lilin, born in 1980, master. Her research interests include database.

