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Abstract 

In SaaS, since the service provider may be un-trusted, it is essential for tenants to enable 

query result correctness and completeness. However, existing data authentication methods 

can not fit well with the customized multi-tenants sharing storage mode. This paper put 

forward a multi-tenant data authentication model (TCDA). TCDA is a composite structure 

that constructs pivot authentication tree (α-tree) on the pivot table and combines it with 

signature set (β-set) built on sparse table to ensure that malicious insiders can't modify the 

data in pivot table and sparse table. The main contribution of TCDA is it can guarantee the 

tenant query result in one tree travels and return the verification object corresponding to the 

result on pivot table and sparse table. And in this paper, we propose an improved TCDA 

model to minimize the processing overhead through appending aggregation signature of the 

node descendants to the internal α-tree node. We demonstrate effectiveness of our model 

compare with MHT and  DSAC through the experiment. 
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1. Introduction 

Software-as-a-Service, i.e., SaaS[1]is a software delivery model in which software and 

associated data is centrally hosted on the cloud. By leasing the service and putting the data to 

the service providers, the tenants can be relieved of the burden of computation and storage 

and pay more attention to their business. However, the service provider may not be trusted, or 

may be compromised, it is essential to enable verification of the results by the tenants. In 

particular, tenants should be able to guarantee that the returned results are both correct and 

complete. Correctness implies that the result data records indeed the tenant's legitimate source 

data, and that they have not been tampered with in any way. Completeness requires that no 

qualifying records have been omitted.  

Among existing query result authentication methods, Merkle hash tree based approaches 

[2-5] in which the MHT was embedded into the data index and the VO is created during 

query processing shown the advantage compared to the other approaches. However, there are 

some obstacles for the index authentication approaches such as MB tree [4] to apply suitably 

on tenant data authentication in SaaS for the following reasons: 

First, because most SaaS service providers adopt the single instance multi-tenancy strategy 

to take full advantage of resources such as hardware and database, multiple tenants’ data is 

stored in one physical table such as sparse table in which different data types are stored into a 

flex column based on tenants’ customization [6]. While the MB tree needs to set up the index 
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on the query attribute that should be the same data type and MB tree lacks the ability to 

discern the tenant identifier. Although we can include the tenant identifier into the search key,   

the MB tree contains plenty of duplicate messages and can't support the isolation storage 

needs of tenant index. 

Second, in a real-world scenario tenants may customize different integrity demand based 

on their needs, e.g., some tenant applications may favor a fast response over a verified one. 

While the query processing and VO computation imposes conflicting requirements on the MB 

tree. For instance, a high fanout is desirable in order to reduce the query evaluation cost, but 

that leads to a large VO [7]. And MB tree propagates every data update up to the root digest, 

so an update transaction must lock the entire index in exclusive mode and block all other 

updates and queries[8],which are not conform to the performance isolation requirements of 

the multi tenants. 

Third, in order to guarantee performances of query operations in large multi-tenants 

database, adequate pivot table [9] for tenant data are set up to speed up the query process. 

Those data stored in pivot table should also be included in the integrity consideration of 

tenants’ data integrity protection.  

Based on the above reasons, it is improper to use the index authentication schemes directly 

in SaaS for their poor isolation performance between multi tenants. Besides MHT based 

approaches, signature aggregations [10] is another technique for query answer authentication. 

And signature aggregation offers an important advantage; since a record update affects only 

its own signature (and that of its immediate left/right neighbors in some schemes), it is easier 

to guarantee isolation between tenants and multiple updates can be executed simultaneously. 

But it needs additional means to guarantee the completeness of the query result such as 

using the continuity of the query attribute to set up signature chaining[11], which 

introduces a lot of supporting work for the result correctness and completeness 

checking. 

The objective of our work is to devise a scalable query answer authentication mechanism 

for multi-tenant databases. In order to protect data integrity and ensure the performance 

isolation between tenants, we put forward a tenant composite data authentication model 

(TCDA). In order to meet the different integrity requirement of different tenants, TCDA is 

independent with the index structures built on pivot table. The main idea of TCDA is a 

composite structure that constructs pivot authentication tree (α-tree) on the pivot table and 

combines it with signature set β-set built on sparse table to ensure that malicious insiders can't 

modify the data in pivot table and sparse table. TCDA can guarantee the tenant query result in 

one tree travels, while return the VO (verification object) corresponding to the result on pivot 

table and sparse table. And in this paper, we propose an improved TCDA model to minimize 

the processing overhead through appending aggregation signature of the node descendants to 

the internal α-tree node. By the aggregate information at the intermediate nodes of the α-tree 

we can authenticate the query results without having to traverse the tree all the way to the 

leaves to get the VO. We demonstrate effectiveness of our model compare with applying the 

MHT and DSAC [11] directly on pivot table and sparse table through the experiment. 

The rest of this paper is organized as follows. The next section covers related works. In 

Section 3 we present the secure system model. Section 4 introduces the TCDA model and 

Section 5 presents an improved TCDA model and Section 6 shows the experiment. Section 7 

gives the conclusion of this paper. 
 

2. Related Work 

Integrity protection is research hot spot in outsourced database and cloud computing. 

Reference [12] proposes a partially materialized digest scheme in which split the 
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authentication structure from the data index and they extend their work to the spatial 

database, but it also did not apply for the multi-tenant circumstance. In [13] iBigTable 

provides data integrity assurance for BigTable and designed a set of security protocols to 

verify the integrity of data returned by BigTable. For secure data storage in cloud computing, 

[14] proposed an effective and flexible distributed schema by utilizing the homomorphic 

token with distributed verification of erasure-coded data. Reference [15] inserted certain fake 

tuples into the real data and verified query integrity by checking the fake tuple in the result. 

Reference [16] presented the dual encryption approach, where certain data are encrypted with 

different keys and query integrity could be checking by “cross examination”. Reference [17] 

proposed PORs model, which enables an archive or back-up service to produce a concise 

proof that a user (verifier) can retrieve a target file. Reference [18] presented a formal security 

definition of query integrity in outsourced dynamic databases. All those works well in their 

scenario but could not apply to the multi-tenant storage ideally. Reference [19] focuses on the 

case that service providers are not always trustworthy and promote a meta-data driven data 

chunk based secure data storage model for SaaS to ensure the data integrity. But it also did 

not give an appropriate solution on how to guarantee both the pivot table and tenant data. 

 

3. Secure System Model for SaaS  

This section give the over view of system model, attack model and storage model in SaaS.  

System Model. The system model includes three entities: tenant, trusted third party and 

service provider. 

Tenant T: T is a client that customizes and consumes SaaS applications. In SaaS, tenants 

rely on the service provider for data maintenance and computation. 

The trusted third party (TTP): The trusted third party is used to assist tenants for their 

secret key and integrity policy information management. TTP can prohibit unauthorized 

parties from getting tenant’s privacy information. 

Service provider (SP): Service provider is responsible for the operation of SaaS platform. 

SaaS platform is a mechanism that has significant computing resource and storage space to 

maintain the tenants' applications and data storage and provides public SaaS applications. 

Attack Model. We assume that the SP are not necessarily trusted because the malicious 

insiders. Based on the research on trust platform [20], we assume that the SaaS platform can 

be trusted, and we explore an integrity protection module(IPM) in platform, IPM can assist 

tenants for their data integrity customization and verify the data integrity with the help of the 

trusted third party. Besides, we assume that all communications go through a secure channel 

between the SP, TTP and tenants. 

Based on the above assumptions, we concentrate on the analysis of malicious behavior 

from the SP malicious insiders. For example, insiders may delete the record of a tenant in 

universal table, change the data item in pivot table or universal table or forge some non-

existence record to tenants’ data hosted by SP storage, which violates tenant data integrity. 

Storage Model. In this paper, we mainly discuss the scenario that multiple tenants share a 

single application with logical view R(A1, A2, ..., An),and tenant custom A1 as the search 

attribute and register query on it (Here we mainly aim at  the  case that searching key data 

type is numeric type and does not have duplicates). The physical view in shared table 

corresponding to R containing records as r(guid, T, value1, value2, ..., valuen), while value1, 

value2, ..., valuen corresponding to A1, A2, ..., An. The values of A1 are stored in pivot table as 

record t(indexID, value, guid). 

In this paper we consider equality and range selections. Equality selections are treated as a 

special case of range selections, so we focus on the latter. Suppose tenant T request a query Q 
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such as (SELECT * FROM R WHERE ql< A1<qu ), where ql(qu) is the lower(upper) bound 

of Q. The set of tuples that satisfy the query predicate is denoted by Set(Q), and the final 

answer returned is ANS(Q). The process of queries of tenant in SaaS can be defined as 

follows: When tenant pose queries Q to SP, the data engine takes charge of query 

transformations and submit those queries to the data node: first data engine register query QP 

on the pivot table to get the middle result set Set(QP) ; then data engine register query QS on 

the sparse table based on Set(QP) and get the result set ANS(Q). So the IPM gets the ANS(Q) 

along with the VO. VO enables the data engine to verify the correctness and completeness of 

ANS(Q). If the result set is legitimate, the data engine returns those data to the tenant though 

application , else the data engine reject the result set. 

 

4. Tenant Composite Data Authentication Model 

In this section we present the tenant composite data authentication model(TCDA) and 

verification method for tenant data. We analyze its performance and security. 

 

4.1. The TCDA Approach 

In this section, we proposed a solution for tenant data authentication in SaaS called tenant 

composite data authentication model (TCDA). Conceptually, TCDA is a composite tree. 

Letting N be the number of record in R.  

Definition 1 Tenant Composite Data Authentication model (TCDA) TCDA consists two 

layers, TCDA = {α-tree, β-set}，where: 

α-tree is authentication structure built for pivot table. α-tree=<root, Lnode, Inode>, root is 

the root node of α-tree . The root of the α-tree is built on top of the N leaf nodes and signed 

with the tenant’s private key. Lnode presents leaf node. Every leaf node stores the hash value 

of the pivot table ordered by the searching attribute.  Lnode=<k,h,pr,ps> , where k is the 

searching key of α-tree , h is the hash value corresponding to k in pivot table  h= 

H(tj)=H(idxID|k|guid), pr is a sibling pointer to the next leaf node and ps is pointed to the  

signatures of the records in the sparse table corresponding to the searching attribute. Inode is 

internal nodes and Inode=<k,h,pl,pr>, where k is the searching key, h is the digest of its 

children hash concatenation h = hj|k=H(H(tj)|H(tk)) and ,pl,pr indicates the pointers to the Inode 

children. 

β-set is signature set corresponding to the records in the sparse table. β-set= {<TenantID, 

GUID, SN>i} (i=1…N), where the TenantID indicates the owner of the signature, GUID is 

the search key value and SN represents the digital 

signature, 1 2( ( )) ( ( | | | ))i ii ini guidSN sig h r s R a a aig h   where | denotes string 

concatenation.  

VO Construction and Authentication To prove authenticity and completeness, in 

addition to Set(QP) and ANS(Q), the two boundary leaves ql-and qu+, falling immediately to 

the left and to the right of ql and qu. DE proves if (i) ANS(Q) between ql and qu have not been 

tampered with, (ii) all records between ql and qu are returned. To prove (i) and (ii), we 

compute a VO using the TCDA. 

Figure 1 illustrates an example of the TCDA in a scenario where the tenant T's logical view 

R contains N = 8 records and A1 is the search attribute. The records corresponding to R in 

sparse table is ri(i=1...8) and the records corresponding to A1 is in  pivot table tj(j=1...8) here.  

The TCDA's work flow is defined as follow. Consider the paths that lead to the left and to 

the right boundary leafs ql-and qu+. The VO for query Q contains (i) the signed α-tree root, (ii) 

all left sibling hashes to the path of ql-, (iii) all right sibling hashes to the path of qu+ and (iv) 

app:ds:root
app:ds:node
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the  aggregated  signatures S of ris that  satisfy  the Q in β-set. Upon receipt Set(QP) and 

ANS(Q), the IPM first combines Set(QP)with VO components (ii) and (iii), to reconstruct the 

missing part of the α-tree between the paths of ql-and qu+, and verifies with the owner’s public 

key whether the root of α-tree (i.e., component (i) of the VO) matches the computed root hash. 

If they match, Set(QP) is deemed both complete and authentic; the collision-resistance ofthe 

hash function ensures that it is computationally infeasible for the server to tamper with the 

result and yetmanage to produce hashes that match the original ones. Then the DE verifies the 

S with ANS(Q) by aggregated signature scheme. 

 

Figure 1. An Example of TCDA 

Security analysis The correctness of Set(QP) is guaranteed by α-tree due to the security of 

collision-resistance hash functions and the public key digital signature for the hash value of 

the root node. Completeness can be assured by the sorted leaves and the boundary leaves that 

enclose the select range. Based on the β-set, the IPM can verify the correctness of ANS(Q), 

but it can’t discover if the vicious insider delete the tenant record in sparse table for the 

records of ANS(Q) may be scattered in the share table based on the query attribute.  

Lemma 1 If the Set(QP) is correct and complete, any deletion on the sparse table of 

ANS(Q) can be checked by compare Set(QP) with ANS(Q) on DUID, if {GUID| 

Set(QP)}={GUID| ANS(Q)},we can say that ANS(Q) is complete. 

Proof As the query process of QS can be treated as equal-join query between pivot table 

and sparse table with join condition Pivottable.GUID= Sparsetable.GUID in their respective 

attribute. And the GUID attribute is the globally unique identifier for record level rapid 

positioning, it is a one-to-one correspondence between Pivot table and Sparse table. So, if 

{GUID| Set(QP)}={GUID| ANS(Q)},we can say that ANS(Q) is complete. 

Based on the α-tree we can ensure the correctness and completeness of Set(QP). And 

according to Lemma 1 and aggregated signature, we can check the completeness and 

correctness of ANS(Q). 

 

5. An Improved TCDA Model 

The TCDA model in Section 4.1 needs to travel to the α-tree leaf node to get the all the 

corresponding signatures during the VO construction which may influence the performance 

of VO construction. In this section, we present a method to authenticate IPM queries 

efficiently using improved TCDA model. The basic idea is that the aggregate signatures at the 

intermediate nodes of the tree can be used to answer the aggregated signatures of ANS(Q) 

without having to traverse the tree all the way to the leaves to get signatures.  

As shown in the Figure 2, we attach the internal node with the aggregation signature of its 

descendants marked as the black diamonds. By the aggregate information at the intermediate 
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nodes of the α-tree we can authenticate the query results without having to traverse the tree all 

the way down to the leaves to get the VO. 

Figure 2. An Example of ITCDA 

Here we first introduce the pre-existing concept of minimum covering set MCS [5]for the 

range query in the tree. The MCS is a set of nodes with disjoint subtrees whose leaves are the 

exact answer to the QP. Given a query Q with the lower(upper) bound ql(qu). MCS(QP) can 

be computed by traversing the α-tree top-down and inserting all nodes contained in [ql, qu] 

while its ancestors are not in MCS(QP). A node with its key value intersects with [ql, qu] and 

its children key are contained in [ql, qu], the signature corresponding to the node is put into 

the MCS(QP) , else downward to the next level.  A node with its key value does not intersect 

with [ql, qu] is ignored. Here, we discuss the algorithm for retrieving MCS(QP) in one pass of 

the tree. The VO construction algorithm is shown in Table 1.  

Table 1. VO Construction Algorithm 

 Algorithm 1ITCDAVO(Query Q; α-tree T ;Signature S) 

Begin 

Compute [ql, qu]from Q 

Rangeα (T.root, VO, [ql, qu]) 

Push information for verifying ql-, qu+ into VO 

// in the α tree 
Rangeα (Node N, range R) 

Begin  

VO.push(node start);  
If N intersects with R 

 If  N.leftchildren and N. rightchildren contained in R then 

VO.push(N.S) 
      If  N is leaf node VO.push(N.S) 

Rangeα (N.leftchildren,  R1) 

Rangeα (N.rightchildren,  R2) 
End  

 

During the authentication, IPM first indicates the boundary entries, and with the returned 

VO, the client can reconstruct the hash value of the root node and verify it against the 

signature of α tree. If it fails, the client rejects the answer. Otherwise the IPM checks the 

aggregated signature from MCS(QP), to ensure the correctness and completeness of ANS(Q). 

 

6. Experiment  

We make a simulation experiment to demonstrate our analysis of the multi-tenant data 

authentication scheme approaches. The development environment is Eclipse-SDK-4.3.1-win 

64 Bit, operating system is Windows XP Professional Service Pack 3, CPU is Inter Core 
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(TM)2 2,33GHz, and the memory is 2G. We utilize RSA signatures that are typically 128 

bytes in size and SHA-1 with 20-byte outputs. 

In our experiment, we set up a Tenants T01 with data set 10k records, while T01 specify A1 

as the searching key and stores T01-A1 into pivot table. We compare our models TCDA and 

ITCDA with the case (1)that builds separate MHTs on sparse table and pivot table with 

searching key <TenantID,A1> and case(2) builds separate DSAC on sparse table and pivot 

table with searching key <TenantID,A1>. First we test the initial set up cost of MHT,TCDA, 

ITCDA and DSAC, as shown in Figure 3. We can see that MHT approach has the minimal set 

up cost on spares table and pivot table, while ITCDA has the maximum because he has to 

attach the aggregation signature into his internal node.  

Figure 3. Initial Set Up Cost                Figure 4. The Query Performances  
         Influence 

We can see that the TCDA and ITCDA have a high time consuming at the initial set up 

phase on sparse table, because they need to sign every record of the tenant in the sparse table. 

However, they show a better performance on VO construction, shown in Figure 4. From the 

experiment result MHT approach have to set up separate MHTs on sparse table and pivot 

table which leads to double travels of tree and relative larger VO size of the sub path nodes, 

while in TCDA and ITCDA, they only need to travel the tree once and combine with one 

aggregated signature to verify tenants data. From Figure 4, we also found that DSAC 

approach has the minimal VO size because he only needs to return two aggregated signature 

and the boundary records.  

Figure 5 shows the VO construction time. Since the DSAC and TCDA needs to access 

every record signature, they have a high time consumption to construct the VO, while the 

ITCDA have a much lower time consumption compared with the others. Because ITCDA 

attaches aggregated signature into its internal node and does not need to access every record 

signature until the leaf nodes. Figure 6 gives the verification time consumption. From all the 

upper experiment, we can see TCDA and ITCDA show better efficiency on VO size,   

verification and VO construction time compared with MHT and DSAC.  
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          Figure 5. VO Construction Time              Figure 6. Verification Time 

7. Conclusion 

In this paper, we put forward a multi-tenant data authentication model TCDA. TCDA can 

accommodate the multi-tenant properties perfectly by taking tenant identification into account 

and establishing isolated authentication structures for each tenant based on their integrity 

demands. And we give a improve TCDA to get a better performance. Besides, there remains 

some problem of TCDA for the future work such as the tenant dynamic data operation and 

multiple attribution query authentication. And beyond those how to combine data integrity 

with data privacy in SaaS is a challenging problems which remains later to solve. 
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