
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.31-40

http://dx.doi.org/10.14257/ijdta.2014.7.3.04

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Efficient Query Integrity Protection for Multi-tenant Database

Li Lin
1,2

, Li Qingzhong
1,2*

, Kong Lanju
1,2

 and Shi Yuliang
1,2

1
School of Computer Science and Technology, Shandong University,

Jinan, P.R. China
2
Shandong Provincial Key Laboratory of Software Engineering

ducklilin@126.com, lqz@sdu.edu.cn，klj@ sdu.edu.cn, syl@sdu.edu.cn

Abstract

In SaaS, since the service provider may be un-trusted, it is essential for tenants to enable

query result correctness and completeness. However, existing data authentication methods

can not fit well with the customized multi-tenants sharing storage mode. This paper put

forward a multi-tenant data authentication model (TCDA). TCDA is a composite structure

that constructs pivot authentication tree (α-tree) on the pivot table and combines it with

signature set (β-set) built on sparse table to ensure that malicious insiders can't modify the

data in pivot table and sparse table. The main contribution of TCDA is it can guarantee the

tenant query result in one tree travels and return the verification object corresponding to the

result on pivot table and sparse table. And in this paper, we propose an improved TCDA

model to minimize the processing overhead through appending aggregation signature of the

node descendants to the internal α-tree node. We demonstrate effectiveness of our model

compare with MHT and DSAC through the experiment.

Keywords: SaaS , Multi-tenant, Shared database, Query integrity

1. Introduction

Software-as-a-Service, i.e., SaaS[1]is a software delivery model in which software and

associated data is centrally hosted on the cloud. By leasing the service and putting the data to

the service providers, the tenants can be relieved of the burden of computation and storage

and pay more attention to their business. However, the service provider may not be trusted, or

may be compromised, it is essential to enable verification of the results by the tenants. In

particular, tenants should be able to guarantee that the returned results are both correct and

complete. Correctness implies that the result data records indeed the tenant's legitimate source

data, and that they have not been tampered with in any way. Completeness requires that no

qualifying records have been omitted.

Among existing query result authentication methods, Merkle hash tree based approaches

[2-5] in which the MHT was embedded into the data index and the VO is created during

query processing shown the advantage compared to the other approaches. However, there are

some obstacles for the index authentication approaches such as MB tree [4] to apply suitably

on tenant data authentication in SaaS for the following reasons:

First, because most SaaS service providers adopt the single instance multi-tenancy strategy

to take full advantage of resources such as hardware and database, multiple tenants’ data is

stored in one physical table such as sparse table in which different data types are stored into a

flex column based on tenants’ customization [6]. While the MB tree needs to set up the index

* Corresponding author

mailto:lqz@sdu.edu.cn

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

32 Copyright ⓒ 2014 SERSC

on the query attribute that should be the same data type and MB tree lacks the ability to

discern the tenant identifier. Although we can include the tenant identifier into the search key,

the MB tree contains plenty of duplicate messages and can't support the isolation storage

needs of tenant index.

Second, in a real-world scenario tenants may customize different integrity demand based

on their needs, e.g., some tenant applications may favor a fast response over a verified one.

While the query processing and VO computation imposes conflicting requirements on the MB

tree. For instance, a high fanout is desirable in order to reduce the query evaluation cost, but

that leads to a large VO [7]. And MB tree propagates every data update up to the root digest,

so an update transaction must lock the entire index in exclusive mode and block all other

updates and queries[8],which are not conform to the performance isolation requirements of

the multi tenants.

Third, in order to guarantee performances of query operations in large multi-tenants

database, adequate pivot table [9] for tenant data are set up to speed up the query process.

Those data stored in pivot table should also be included in the integrity consideration of

tenants’ data integrity protection.

Based on the above reasons, it is improper to use the index authentication schemes directly

in SaaS for their poor isolation performance between multi tenants. Besides MHT based

approaches, signature aggregations [10] is another technique for query answer authentication.

And signature aggregation offers an important advantage; since a record update affects only

its own signature (and that of its immediate left/right neighbors in some schemes), it is easier

to guarantee isolation between tenants and multiple updates can be executed simultaneously.

But it needs additional means to guarantee the completeness of the query result such as

using the continuity of the query attribute to set up signature chaining[11], which

introduces a lot of supporting work for the result correctness and completeness

checking.

The objective of our work is to devise a scalable query answer authentication mechanism

for multi-tenant databases. In order to protect data integrity and ensure the performance

isolation between tenants, we put forward a tenant composite data authentication model

(TCDA). In order to meet the different integrity requirement of different tenants, TCDA is

independent with the index structures built on pivot table. The main idea of TCDA is a

composite structure that constructs pivot authentication tree (α-tree) on the pivot table and

combines it with signature set β-set built on sparse table to ensure that malicious insiders can't

modify the data in pivot table and sparse table. TCDA can guarantee the tenant query result in

one tree travels, while return the VO (verification object) corresponding to the result on pivot

table and sparse table. And in this paper, we propose an improved TCDA model to minimize

the processing overhead through appending aggregation signature of the node descendants to

the internal α-tree node. By the aggregate information at the intermediate nodes of the α-tree

we can authenticate the query results without having to traverse the tree all the way to the

leaves to get the VO. We demonstrate effectiveness of our model compare with applying the

MHT and DSAC [11] directly on pivot table and sparse table through the experiment.

The rest of this paper is organized as follows. The next section covers related works. In

Section 3 we present the secure system model. Section 4 introduces the TCDA model and

Section 5 presents an improved TCDA model and Section 6 shows the experiment. Section 7

gives the conclusion of this paper.

2. Related Work

Integrity protection is research hot spot in outsourced database and cloud computing.

Reference [12] proposes a partially materialized digest scheme in which split the

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 33

authentication structure from the data index and they extend their work to the spatial

database, but it also did not apply for the multi-tenant circumstance. In [13] iBigTable

provides data integrity assurance for BigTable and designed a set of security protocols to

verify the integrity of data returned by BigTable. For secure data storage in cloud computing,

[14] proposed an effective and flexible distributed schema by utilizing the homomorphic

token with distributed verification of erasure-coded data. Reference [15] inserted certain fake

tuples into the real data and verified query integrity by checking the fake tuple in the result.

Reference [16] presented the dual encryption approach, where certain data are encrypted with

different keys and query integrity could be checking by “cross examination”. Reference [17]

proposed PORs model, which enables an archive or back-up service to produce a concise

proof that a user (verifier) can retrieve a target file. Reference [18] presented a formal security

definition of query integrity in outsourced dynamic databases. All those works well in their

scenario but could not apply to the multi-tenant storage ideally. Reference [19] focuses on the

case that service providers are not always trustworthy and promote a meta-data driven data

chunk based secure data storage model for SaaS to ensure the data integrity. But it also did

not give an appropriate solution on how to guarantee both the pivot table and tenant data.

3. Secure System Model for SaaS

This section give the over view of system model, attack model and storage model in SaaS.

System Model. The system model includes three entities: tenant, trusted third party and

service provider.

Tenant T: T is a client that customizes and consumes SaaS applications. In SaaS, tenants

rely on the service provider for data maintenance and computation.

The trusted third party (TTP): The trusted third party is used to assist tenants for their

secret key and integrity policy information management. TTP can prohibit unauthorized

parties from getting tenant’s privacy information.

Service provider (SP): Service provider is responsible for the operation of SaaS platform.

SaaS platform is a mechanism that has significant computing resource and storage space to

maintain the tenants' applications and data storage and provides public SaaS applications.

Attack Model. We assume that the SP are not necessarily trusted because the malicious

insiders. Based on the research on trust platform [20], we assume that the SaaS platform can

be trusted, and we explore an integrity protection module(IPM) in platform, IPM can assist

tenants for their data integrity customization and verify the data integrity with the help of the

trusted third party. Besides, we assume that all communications go through a secure channel

between the SP, TTP and tenants.

Based on the above assumptions, we concentrate on the analysis of malicious behavior

from the SP malicious insiders. For example, insiders may delete the record of a tenant in

universal table, change the data item in pivot table or universal table or forge some non-

existence record to tenants’ data hosted by SP storage, which violates tenant data integrity.

Storage Model. In this paper, we mainly discuss the scenario that multiple tenants share a

single application with logical view R(A1, A2, ..., An),and tenant custom A1 as the search

attribute and register query on it (Here we mainly aim at the case that searching key data

type is numeric type and does not have duplicates). The physical view in shared table

corresponding to R containing records as r(guid, T, value1, value2, ..., valuen), while value1,

value2, ..., valuen corresponding to A1, A2, ..., An. The values of A1 are stored in pivot table as

record t(indexID, value, guid).

In this paper we consider equality and range selections. Equality selections are treated as a

special case of range selections, so we focus on the latter. Suppose tenant T request a query Q

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

34 Copyright ⓒ 2014 SERSC

such as (SELECT * FROM R WHERE ql< A1<qu), where ql(qu) is the lower(upper) bound

of Q. The set of tuples that satisfy the query predicate is denoted by Set(Q), and the final

answer returned is ANS(Q). The process of queries of tenant in SaaS can be defined as

follows: When tenant pose queries Q to SP, the data engine takes charge of query

transformations and submit those queries to the data node: first data engine register query QP

on the pivot table to get the middle result set Set(QP) ; then data engine register query QS on

the sparse table based on Set(QP) and get the result set ANS(Q). So the IPM gets the ANS(Q)

along with the VO. VO enables the data engine to verify the correctness and completeness of

ANS(Q). If the result set is legitimate, the data engine returns those data to the tenant though

application , else the data engine reject the result set.

4. Tenant Composite Data Authentication Model

In this section we present the tenant composite data authentication model(TCDA) and

verification method for tenant data. We analyze its performance and security.

4.1. The TCDA Approach

In this section, we proposed a solution for tenant data authentication in SaaS called tenant

composite data authentication model (TCDA). Conceptually, TCDA is a composite tree.

Letting N be the number of record in R.

Definition 1 Tenant Composite Data Authentication model (TCDA) TCDA consists two

layers, TCDA = {α-tree, β-set}，where:

α-tree is authentication structure built for pivot table. α-tree=<root, Lnode, Inode>, root is

the root node of α-tree . The root of the α-tree is built on top of the N leaf nodes and signed

with the tenant’s private key. Lnode presents leaf node. Every leaf node stores the hash value

of the pivot table ordered by the searching attribute. Lnode=<k,h,pr,ps> , where k is the

searching key of α-tree , h is the hash value corresponding to k in pivot table h=

H(tj)=H(idxID|k|guid), pr is a sibling pointer to the next leaf node and ps is pointed to the

signatures of the records in the sparse table corresponding to the searching attribute. Inode is

internal nodes and Inode=<k,h,pl,pr>, where k is the searching key, h is the digest of its

children hash concatenation h = hj|k=H(H(tj)|H(tk)) and ,pl,pr indicates the pointers to the Inode

children.

β-set is signature set corresponding to the records in the sparse table. β-set= {<TenantID,

GUID, SN>i} (i=1…N), where the TenantID indicates the owner of the signature, GUID is

the search key value and SN represents the digital

signature, 1 2(()) ((| | |))i ii ini guidSN sig h r s R a a aig h where | denotes string

concatenation.

VO Construction and Authentication To prove authenticity and completeness, in

addition to Set(QP) and ANS(Q), the two boundary leaves ql-and qu+, falling immediately to

the left and to the right of ql and qu. DE proves if (i) ANS(Q) between ql and qu have not been

tampered with, (ii) all records between ql and qu are returned. To prove (i) and (ii), we

compute a VO using the TCDA.

Figure 1 illustrates an example of the TCDA in a scenario where the tenant T's logical view

R contains N = 8 records and A1 is the search attribute. The records corresponding to R in

sparse table is ri(i=1...8) and the records corresponding to A1 is in pivot table tj(j=1...8) here.

The TCDA's work flow is defined as follow. Consider the paths that lead to the left and to

the right boundary leafs ql-and qu+. The VO for query Q contains (i) the signed α-tree root, (ii)

all left sibling hashes to the path of ql-, (iii) all right sibling hashes to the path of qu+ and (iv)

app:ds:root
app:ds:node

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 35

the aggregated signatures S of ris that satisfy the Q in β-set. Upon receipt Set(QP) and

ANS(Q), the IPM first combines Set(QP)with VO components (ii) and (iii), to reconstruct the

missing part of the α-tree between the paths of ql-and qu+, and verifies with the owner’s public

key whether the root of α-tree (i.e., component (i) of the VO) matches the computed root hash.

If they match, Set(QP) is deemed both complete and authentic; the collision-resistance ofthe

hash function ensures that it is computationally infeasible for the server to tamper with the

result and yetmanage to produce hashes that match the original ones. Then the DE verifies the

S with ANS(Q) by aggregated signature scheme.

Figure 1. An Example of TCDA

Security analysis The correctness of Set(QP) is guaranteed by α-tree due to the security of

collision-resistance hash functions and the public key digital signature for the hash value of

the root node. Completeness can be assured by the sorted leaves and the boundary leaves that

enclose the select range. Based on the β-set, the IPM can verify the correctness of ANS(Q),

but it can’t discover if the vicious insider delete the tenant record in sparse table for the

records of ANS(Q) may be scattered in the share table based on the query attribute.

Lemma 1 If the Set(QP) is correct and complete, any deletion on the sparse table of

ANS(Q) can be checked by compare Set(QP) with ANS(Q) on DUID, if {GUID|

Set(QP)}={GUID| ANS(Q)},we can say that ANS(Q) is complete.

Proof As the query process of QS can be treated as equal-join query between pivot table

and sparse table with join condition Pivottable.GUID= Sparsetable.GUID in their respective

attribute. And the GUID attribute is the globally unique identifier for record level rapid

positioning, it is a one-to-one correspondence between Pivot table and Sparse table. So, if

{GUID| Set(QP)}={GUID| ANS(Q)},we can say that ANS(Q) is complete.

Based on the α-tree we can ensure the correctness and completeness of Set(QP). And

according to Lemma 1 and aggregated signature, we can check the completeness and

correctness of ANS(Q).

5. An Improved TCDA Model

The TCDA model in Section 4.1 needs to travel to the α-tree leaf node to get the all the

corresponding signatures during the VO construction which may influence the performance

of VO construction. In this section, we present a method to authenticate IPM queries

efficiently using improved TCDA model. The basic idea is that the aggregate signatures at the

intermediate nodes of the tree can be used to answer the aggregated signatures of ANS(Q)

without having to traverse the tree all the way to the leaves to get signatures.

As shown in the Figure 2, we attach the internal node with the aggregation signature of its

descendants marked as the black diamonds. By the aggregate information at the intermediate

h1|4 h5|8

h2h1

h1|2

h4h3

h3|4

h6h5

h5|6

h8h7

h7|8

S1 S2 S3 S4 S5 S6 S7 S8

S（H1|8）

α-Tree

βSet

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

36 Copyright ⓒ 2014 SERSC

nodes of the α-tree we can authenticate the query results without having to traverse the tree all

the way down to the leaves to get the VO.

Figure 2. An Example of ITCDA

Here we first introduce the pre-existing concept of minimum covering set MCS [5]for the

range query in the tree. The MCS is a set of nodes with disjoint subtrees whose leaves are the

exact answer to the QP. Given a query Q with the lower(upper) bound ql(qu). MCS(QP) can

be computed by traversing the α-tree top-down and inserting all nodes contained in [ql, qu]

while its ancestors are not in MCS(QP). A node with its key value intersects with [ql, qu] and

its children key are contained in [ql, qu], the signature corresponding to the node is put into

the MCS(QP) , else downward to the next level. A node with its key value does not intersect

with [ql, qu] is ignored. Here, we discuss the algorithm for retrieving MCS(QP) in one pass of

the tree. The VO construction algorithm is shown in Table 1.

Table 1. VO Construction Algorithm

 Algorithm 1ITCDAVO(Query Q; α-tree T ;Signature S)

Begin

Compute [ql, qu]from Q

Rangeα (T.root, VO, [ql, qu])

Push information for verifying ql-, qu+ into VO

// in the α tree
Rangeα (Node N, range R)

Begin

VO.push(node start);
If N intersects with R

 If N.leftchildren and N. rightchildren contained in R then

VO.push(N.S)
 If N is leaf node VO.push(N.S)

Rangeα (N.leftchildren, R1)

Rangeα (N.rightchildren, R2)
End

During the authentication, IPM first indicates the boundary entries, and with the returned

VO, the client can reconstruct the hash value of the root node and verify it against the

signature of α tree. If it fails, the client rejects the answer. Otherwise the IPM checks the

aggregated signature from MCS(QP), to ensure the correctness and completeness of ANS(Q).

6. Experiment

We make a simulation experiment to demonstrate our analysis of the multi-tenant data

authentication scheme approaches. The development environment is Eclipse-SDK-4.3.1-win

64 Bit, operating system is Windows XP Professional Service Pack 3, CPU is Inter Core

h1-4 h5-8

h1

h1|2

h4h3

h3|4

h6h5

h5|6

h8h7

h7|8

S1 S2 S3 S4 S5 S6 S7 S8

S（H1-8）

α-Tree

βSet

h2

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 37

(TM)2 2,33GHz, and the memory is 2G. We utilize RSA signatures that are typically 128

bytes in size and SHA-1 with 20-byte outputs.

In our experiment, we set up a Tenants T01 with data set 10k records, while T01 specify A1

as the searching key and stores T01-A1 into pivot table. We compare our models TCDA and

ITCDA with the case (1)that builds separate MHTs on sparse table and pivot table with

searching key <TenantID,A1> and case(2) builds separate DSAC on sparse table and pivot

table with searching key <TenantID,A1>. First we test the initial set up cost of MHT,TCDA,

ITCDA and DSAC, as shown in Figure 3. We can see that MHT approach has the minimal set

up cost on spares table and pivot table, while ITCDA has the maximum because he has to

attach the aggregation signature into his internal node.

Figure 3. Initial Set Up Cost Figure 4. The Query Performances
 Influence

We can see that the TCDA and ITCDA have a high time consuming at the initial set up

phase on sparse table, because they need to sign every record of the tenant in the sparse table.

However, they show a better performance on VO construction, shown in Figure 4. From the

experiment result MHT approach have to set up separate MHTs on sparse table and pivot

table which leads to double travels of tree and relative larger VO size of the sub path nodes,

while in TCDA and ITCDA, they only need to travel the tree once and combine with one

aggregated signature to verify tenants data. From Figure 4, we also found that DSAC

approach has the minimal VO size because he only needs to return two aggregated signature

and the boundary records.

Figure 5 shows the VO construction time. Since the DSAC and TCDA needs to access

every record signature, they have a high time consumption to construct the VO, while the

ITCDA have a much lower time consumption compared with the others. Because ITCDA

attaches aggregated signature into its internal node and does not need to access every record

signature until the leaf nodes. Figure 6 gives the verification time consumption. From all the

upper experiment, we can see TCDA and ITCDA show better efficiency on VO size,

verification and VO construction time compared with MHT and DSAC.

0

2

4

6

8

10

12

14

Sparse Table Pivot Table

I
n
i
t
i
a
l

s
e
t

u
p
(
s
) MHT

TCDA

ITCDA

DSAC

0

500

1000

1500

2000

2500

3000

3500

1000 2000 3000 4000 5000

VO
 s
iz
e(
By
te
)

MHT TCDA ITCDA DSAC

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

38 Copyright ⓒ 2014 SERSC

 Figure 5. VO Construction Time Figure 6. Verification Time

7. Conclusion

In this paper, we put forward a multi-tenant data authentication model TCDA. TCDA can

accommodate the multi-tenant properties perfectly by taking tenant identification into account

and establishing isolated authentication structures for each tenant based on their integrity

demands. And we give a improve TCDA to get a better performance. Besides, there remains

some problem of TCDA for the future work such as the tenant dynamic data operation and

multiple attribution query authentication. And beyond those how to combine data integrity

with data privacy in SaaS is a challenging problems which remains later to solve.

Acknowledgement
This work is supported by National Key Technologies R&D Program No.2012BAH54F01;

National Natural Science Foundation of China under Grant No.61272241,No.61303085;

Natural Science Foundation of Shandong Province of China under Grant No.ZR2013 FQ014;

Science and Technology Development Plan Project of Shandong Province No.

2012GGX10134; Independent Innovation Foundation of Shandong University under Grant

No.2012TS075, No.2012TS074; Shandong Province Independent Innovation Major Special

Project No.2013CXC30201.

References

[1] wikipedia. Software as a service. http://en.wikipedia.org/wiki/Software_as_a_service.

[2] E. Mykletun, M. Narasimha and G. Tsudik, “Authentication and integrity in outsourced databases”, TOS, vol.

2, no. 2, (2006), pp. 107-138.

[3] S. Papadopoulos, Y. Yang and D. Papadias, “Continuous authentication on relational streams”, VLDB J.

(VLDB), vol. 19, no. 2, (2010), pp. 161-180.

[4] P. T. Devanbu, M. Gertz, C. U. Martel and S. G. Stubblebine, “Authentic Third-party Data Publication”,

DBSec, (2000), pp. 101-112.

[5] F. Li, M. Hadjieleftheriou, G. Kollios and L. Reyzin, “Dynamic authenticated index structures for outsourced

databases”, SIGMOD, (2006), pp. 121-132.

[6] S. Aulbach, T. Grust, D. Jacobs, A. Kemper and J. Rittinger, “Multi-Tenant Databases for Software as a

Service: Schema-Mapping Techniques”, SIGMOD, (2008).

[7] C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong and S. G. Stubblebine, “A general model for

authenticated data structures”, Algorithmica, vol. 39, no. 1, (2004), pp. 21-41.

[8] H. H. Pang, J. Zhang and K. Mouratidis, “Scalable Verification for Outsourced Dynamic Databases”,

PVLDB, vol. 2, no. 1, (2009), pp. 802-813.

[9] C. D Weissman and S. Bobrowski, “The Design of the Force.com Multitenant Internet Application

Development Platform”, SIGMOD, (2009).

[10] H. H. Pang and K.-L. Tan, “Authenticating Query Results in Edge Computing”, ICDE, (2004), pp. 560-571.

0

5

10

15

20

25

1000 1500 2000 2500 3000

V
O

c
o
n
s
t
r
u
c
t
i
o
n

t
i
m
e
(
m
s
)

MHT

TCDA

ITCDA

DSAC

0
50

100
150

200
250

300
350

400
450

10k 20k 30k 40k 50k

v
e
r
i
f
i
c
a
t
i
o
n

t
i
m
e
(
m
s
)

MHT

TCDA

ITCD
A
DSAC

http://en.wikipedia.org/wiki/Software_as_a_service
http://www.dblp.org/db/indices/a-tree/m/Mykletun:Einar.html
http://www.dblp.org/db/indices/a-tree/n/Narasimha:Maithili.html
http://www.dblp.org/db/indices/a-tree/t/Tsudik:Gene.html
http://www.dblp.org/db/journals/tos/tos2.html#MykletunNT06
http://www.dblp.org/db/journals/tos/tos2.html#MykletunNT06
http://www.dblp.org/db/indices/a-tree/p/Papadopoulos:Stavros.html
http://www.dblp.org/db/indices/a-tree/y/Yang:Yin.html
http://www.dblp.org/db/indices/a-tree/p/Papadias:Dimitris.html
http://www.dblp.org/db/journals/vldb/vldb19.html#PapadopoulosYP10
http://www.dblp.org/db/journals/vldb/vldb19.html#PapadopoulosYP10
http://www.dblp.org/db/indices/a-tree/d/Devanbu:Premkumar_T=.html
http://www.dblp.org/db/indices/a-tree/g/Gertz:Michael.html
http://www.dblp.org/db/indices/a-tree/m/Martel:Charles_U=.html
http://www.dblp.org/db/indices/a-tree/s/Stubblebine:Stuart_G=.html
http://www.dblp.org/db/conf/dbsec/dbsec2000.html#DevanbuGMS00
http://www.dblp.org/db/indices/a-tree/p/Pang:HweeHwa.html
http://www.dblp.org/db/indices/a-tree/z/Zhang:Jilian.html
http://www.dblp.org/db/indices/a-tree/m/Mouratidis:Kyriakos.html
http://www.dblp.org/db/journals/pvldb/pvldb2.html#PangZM09

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 39

[11] M. Narasimha and G. Tsudik, “Authentication of Outsourced Databases Using Signature Aggregation and

Chaining”, DASFAA, (2006), pp. 420-436.

[12] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially Materialized Digest Scheme: An Efficient Verification

Method for Outsourced Databases”, International Journal on Very Large Data Bases, vol. 18, no. 1, (2009),

pp. 363-381.

[13] W. Wei, T. Yu and R. Xue, “iBigTable: practical data integrity for bigtable in public cloud”, CODASPY,

(2013), pp. 341-352.

[14] C. Wang, Q. Wang, K. Ren and W. Lou, “Ensuring data storage security in cloud computing”, 17th IEEE

International Workshop on Quality of Service (IWQoS 2009), (2009), pp. 1-9.

[15] M. Xie, H. Wang, J. Yin and X. Meng, “Integrity Auditing of Outsourced Data”, Proceedings of the 33rd

International Conference on Very Large Data Bases (VLDB 2007), (2007), pp. 782-793.

[16] H. Wang, J. Yin, C. Perng and P. Yu, “Dual encryption for query integrity assurance”, Proceedings of the

17th ACM Conference on Information and Knowledge Management (CIKM 2008), (2008), pp. 863-872.

[17] A. Juels and B. Kaliski Jr, “PORs: proofs of retrievability for large files”, Proceedings of the 2007 ACM

Conference on Computer and Communications Security (CCS 2007), (2007), pp. 584-597.

[18] H. Liu, P. Zhang and J. Liu, “Public Data Integrity Verification for Secure Cloud Storage”, JNW, vol. 8, no.

2, (2013), pp. 373-380.

[19] Y. Shi, K. Zhang and Q. Li, “Meta-data Driven Data Chunk Based Secure Data Storage for SaaS”, JDCTA:

International Journal of Digital Content Technology and its Applications, vol. 5, no. 1, (2011), pp. 173-185.

[20] A. Brown and J. S. Chase, “Trusted platform-as-a-service: a foundation for trustworthy cloud-hosted

applications”, CCSW, pp. 15-20, (2011).

Authors

Li Lin, Born in 1981, PHD candidate. She is learning in Shandong

University and Shandong Provincial Key Laboratory of Software

Engineering. Her main research interests include cloud security and

privacy, cloud data management.

Li Qingzhong, Born in 1965, professor, Ph.D. supervisor. His research

interests include cloud computing, large-scale network data management

and web data integration.

Lanju Kong, Born in 1978, Ph.D. Her main research interests include

computer software and theory, software and data engineering, XML query and

access.

Shi Yuliang, Born in 1978, Ph.D. His main research interests include cloud

computing, software and data engineering, cloud security and privacy.

http://www.dblp.org/db/indices/a-tree/n/Narasimha:Maithili.html
http://www.dblp.org/db/indices/a-tree/t/Tsudik:Gene.html
http://www.dblp.org/db/conf/dasfaa/dasfaa2006.html#NarasimhaT06
http://www.dblp.org/pers/hc/w/Wei:Wei.html
http://www.dblp.org/pers/hc/y/Yu:Ting.html
http://www.dblp.org/pers/hc/x/Xue:Rui.html
http://www.dblp.org/db/conf/codaspy/codaspy2013.html#WeiYX13
http://www.dblp.org/db/conf/codaspy/codaspy2013.html#WeiYX13
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yin:Jian.html
http://www.dblp.org/pers/hc/l/Liu:Hongwei.html
http://www.dblp.org/pers/hc/z/Zhang:Peng.html
http://www.dblp.org/pers/hc/l/Liu:Jun.html
http://www.dblp.org/db/journals/jnw/jnw8.html#LiuZL13
http://www.dblp.org/db/journals/jnw/jnw8.html#LiuZL13

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

40 Copyright ⓒ 2014 SERSC

