
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.255-264

http://dx.doi.org/10.14257/ijdta.2014.7.3.22

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Research on Consistency Maintenance of Right Management

Operations in Real time Collaboration Environments

Liping Gao
1
, Qiongqiong Fu

1
, Lili Gao

2
, Yuben Zhang

1
 and Qingkui Chen

1

1
School of Optical-Electrical and Computer Engineering, University of Shanghai for

Science and Technology, Shanghai, 200093, China;
2
Pre-school and Special

Education Normal School, WeiFang University, Shandong, 261021, China

lipinggao@fudan.edu.cn;qiongqiongfu@usst.edu.c;snowgao@163.com;yubenzhang

@usst.edu.cn;qingkuichen@usst.edu.cn

Abstract

As for the lack of the constraint on operations in traditional real-time collaborative

environment, the paper introduces to adopt right allocation technique to support the

document management of the shared document of different work groups. The paper gives

formal definition of the Tree Document Model supporting role management, describes the

configuration process of the roles, defines the formats of the right operations, proposes

conflict detection and resolution strategies for Apply/Apply, Apply/Delete and Apply/Update

conflicts. Besides, the paper improves the address space transformation strategy to guarantee

the correct execution of the right operations in the distributed sites. Efficiency analysis of the

improved algorithm is given and the application of this strategy in the Co-AutoCAD system

proves the validity of the whole strategy.

Keywords: Real-time Collaboration; Right Management; Layered Document; Address

Space Transformation

1. Introduction

Real-time collaborative editing systems adopt a replicated architecture to build a P2P

connection between the distributed sites [1-5]. And the copies of the shared document are

replicated at all sites in the architecture. The operation produced on the local site are executed

immediately on the local document copy, whose effect is fed back to users at once, which

ensure response time of the groupware systems is comparable with that of the single-user

application. Positive concurrency control techniques such as Operation Transformation (OT)

[3, 5] or Address Space Transformation(AST)[4] etc. are adopted in real-time collaborative

editing systems to guarantee the consistency of the distributed documents. The system

achieves high concurrency by discarding negative concurrency control strategies such as

locking, token, transaction etc. However, if the architecture was used for collaborative design

environment to support the collaboration and communication among different design

members, the following problems will appear:1) Since every user owns the equal editing right

of the sharing documents, operational disturbance among different teams may occur

frequently (e.g., Pipeline designers make modification on structure design); 2)Transforming

the document into linear document, and implementing concurrent control on the entire

document increases the complexity of the consistency maintenance algorithm;3)unpublicized

documents cannot be provided confidentiality support. That is to say, if some designers don’t

want to share some parts of the document, the only way he/she can do is to delete them.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

256 Copyright ⓒ 2014 SERSC

This paper firstly proposes a tree document model to describe a document structure of

CAD editing field, analyzes the necessity of right allocation in the process of collaborative

design and gives definitions for right operations as well as tree document model supporting

right operation. The Address Space Transformation strategy is improved to support

consistency maintenance of concurrent right operations with other editing operations. Conflict

definitions and resolutions of Apply/Apply, Apply/Delete and Apply/Update are detailed.

Processes of the set-up of the site ids are also discussed.

The following of the paper is organized as follows. Section 2 analyses the related work and

Section 3 describes the tree document model which supports right allocation. Section 4 gives

definitions for right operations. Section 5 details the improved AST strategy to achieve

consistency maintenance of concurrent operations while Section 6 describes the definitions

and resolution strategies of Apply/Apply, Apply/Delete and Apply/Update conflicts. Section

7 concludes the paper and discusses the future work.

2. Related Work

Right management is hot spot in the field of information system, network security, etc. In

recent years, domestic and foreign scholars do a lot of work in the field of the access control

policy (RBAC, TBAC, etc.) [6, 7], supporting technology (based on Hibernate, based on

SOA, etc.) [8-10], uniform structure[10], etc. But these studies are mostly based on C/S or

B/S structure whose right allocation usually has been completed by one or more super-users,

which cannot satisfy the requirements of fast responsiveness in replicated architecture who

can provide access to fine-grained entity in collaborative systems.

Few researches have been done in the real-time collaborative environment as for right

management. Fang etc.[11] puts forward a multi-level security access control strategy of

CAD model for the collaborative environment. The strategy uses a model of multi-level right,

simplifies the definition of right and transfer procedure, which enriches the ability of right

expression and achieve multi-granularity access control of the product model. However, the

work is focused on solving the right division and dynamic migration issues during

downstream passing of the product models during working stream. Fu etc. [12] has proposed

the access control strategy based on RBAC in collaborative environment. This strategy

introduces the role mechanism to the complex granting issue of shared resource access

control strategy and the coarse-grained granting issue. And the strategy takes the role of

concurrent access control strategy applied in the system. However, the method needs to make

the pre-allocated right before collaboration, whose dynamic property is poor. Jiang etc. [13]

have proposed the flexible management strategy and dynamic allocation technology of the

user’ right so that the right of members are be dynamically adjust when the enterprise

organization or the staff need some adjustments. Though the strategy provides dynamics, it

still cannot meet the demand of the dynamical right allocation for the entity in real-time

system adopting replicated architecture. Feng etc. [14] have put forward to use the Lock

scheme combined with the AST technology to achieve the semantic maintenance of editing

operations in the field of collaborative editing, with Lock ensuring that parts of document

cannot be modified by other users so as to realize the right control of modifying. Though this

method can provide the access control in the replicated architecture, whose functions are

simple(only the right management of modification operations) and can only fit in the

environment with sequential addresses of the entities and cannot fit in the CAD environment

with discrete addresses of the entities in the same group. Moreover, the Lock scheme also

reduces the concurrency of the real-time collaborative system.

Our research group [15] has proposed the real-time collaborative mechanism to support the

team allocation in the previous work. The mechanism divides the document to mutual disjoint

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 257

task areas according to editing requests from different teams and through modifying the

broadcast procedure of local operations the and receiving procedure of remote operations for

the consistency maintenance of sub-documents. The strategy is better to meet the needs of

allocation and cooperation among different members, however, it can be used to handle with

only linear document model, and the way the document division is based on to realize

cooperation cannot be suitable for the CAD environment with the feature of discrete address

of the entity. Besides, we [16] have ever proposed the hierarchical structure document model

supporting the right division for the features of document model in the CAD field. But the

solution is just to solve the conflicts of the part of the users’ operations, and the concurrency

of real-time collaborative system has not been improved obviously.

3. Tree Document Model Supporting Right Allocation

3.1. Tree Document Model

The OT and AST strategies in the real-time collaborative field both format the document

model into a linear structure [2-5]. This linear document model does not accord with the

characteristics of the document in the design field, and may lead to high complexity of the

algorithm (Sine the Insert/Delete operations can lead to the position changes of document

elements from the current node). For this, according to the characteristics of CAD document

model, we abstract it into the tree structure (as shown in Figure 1). Each node consists of

several elements. Each element are appended with a linear history buffer storing the executed

operations targeting at the element by the order of the time-stamps[2-3] of the operations. The

node elements in the first layer can be marked with its positions in the linear table. The node

elements in the i
th
 layer can be marked by the form of <P1,P2,…Pi>（1<=i<=5）, with

Pj(1<=j<=i-1) indicating the sequence number of its ancestor on the j layer , and Pi indicates

the sequence number of the node element located in the current node. Take Figure 1 as the

example, P1 indicates the sequence number of the Document node, P2 indicates the sequence

number of the Layer node, P3 indicates the sequence number of the block node, P4 indicates

the number of the entity node, P5 indicates the sequence number of the vertex node. The node

element of V 2,1,1,2,4 indicates a node element who is the 4
th
 vertex of the 1

th
 block in the 1

th

layer of the 2
th
 document. The true structure model of Tree-Doc is described in Definition 1.

Document Layer

Layer Layer

Block Layer

Entity Layer

Vertex Layer

D1 D2 D3

L1,1 L1,2 L2,1 L2,2

B1,2,1 B1,2,2 B2,1,1

L2,3

E1,2,2,2 E1,2,2,3E1,2,2,1 E2,1,1,2E2,1,1,1

V1,2,2,2,2V1,2,2,2,1 V2,1,1,2,2V2,1,1,2,1 V2,1,1,2,4V2,1,1,2,3

Figure 1. The Tree Document Model

Definition 1: Tree Document Model (Tree-Doc)

Tree document model (Tree-Doc) is a limited set of N nodes. It is either empty set (n=0) or

consists of a root Node and k mutually disjoint sub-trees. Tree-Doc is used to represent the

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

258 Copyright ⓒ 2014 SERSC

unique identifier of the Node in Document layer, and Tree-Doc<P1, P2, …, Pi> indicates the

unique identifier of the (i+1)
th
 layer(1<=i<=4), in which Pj(1<=j<=i) indicates the sequence

number of the ancestor of the Node on the j
th
 layer. For example, Block1,2,1 and Block1,2,2

are located in the Node whose unique identifier is Layer-Doc<1,2>.

3.2. Tree Document Model Supporting Right Allocation

Different parts of the document should be set different editing modes according to practical

requirements: visible/invisible, updateable/read-only. Because the confirmed editing results

are not allowed to be modified by the latter operations, their right modes are set to read-only

(i.e., editors are not allowed to modify these parts of the document); in addition, products

among different teams can only be allowed to refer to but not be changed mutually.

Moreover, if some products are confidential and do not want to be seen by other participants,

they should be set to be invisible. So, two right modes are designed: visible/invisible,

updateable/read-only.

First, two fields are added to every Node Element: Visible/invisible and Updateable/read-

only, which are used to represent whether the current Node is visible and Updateable

(including Delete) or not respectively. The modified structure of the Document Node Element

is shown in Figure 2.

4 A

Insert

Update

Update

Effective Visible Updateable

Figure 2. The Structure of Node Elements Attached with Right

4. Definition of the Right Operations

According to the previous analysis, we define two types of rights: Visible right and

Updateable right. The two parameters can be True or False. The meanings of which are

described as follows:Visible = True: element is visible; Visible = False: element is invisible.

It is important to note that the difference between Visible field and Effective field. Visible

field just indicates the visibility of entity object on the interface of the users; while Effective

field expresses the validity of entity in the real document space.Updateable = True: element

can be modified; Updateable = False: element cannot be modified. Updateable=false means

that the object can only be readable but not modified.The right operations have 2 types: Apply

and Grant. Users in the lower layer send Apply operations to users in the upper layer; users in

the upper layer send Grant operations to users in the lower layer. The rights reply Operations

responding to the Apply operations has 2 types: Accept and Deny. These four types are

described as follows:

 1) Apply([right], list[object], [role], Initiator, SV);The statement indicates the Initiator

site want to apply [right] on list[object] in site [role] in SV document status. E.g.,

Apply(Updateable=false，[<1,1>,<1,2>]，<1>，3,SV), shows that site3 requests to set the

entity in the 1
th
 and 2

th
 layer of the 1

th
 document at site1 as only readable.

 2) Grant ([right],list[object],[role],Initiator,SV); The statement indicates to execute the

[right] operation from Initiator site to the list[object] in SV document status. The definitions

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 259

of [right], [object], [role] are the same as that in Apply. E.g.,

Grant(Visible=False,<1,2>,<3>,2,SV) indicates that at site3 executes operation of setting

invisible in the 2
th
 layer of the 1

th
 document at site2.

3) Accept(Initiator, Grantor, Apply);Grantor site accepts the Apply operation from

Initiator site, namely, the Apply operation succeeds. E.g., Accept(3,1,Apply(…)) indicates

that site1 accepts the Apply operation from site3.

4) Deny(Initiator, Grantor, Apply);Grantor site denies the Apply operation from

Initiator site, namely, the Apply operation fails. E.g., Deny(3,1,Apply(…)) indicates that site1

denies the Apply operation from site3.

5. Intention Preservation of Grant Operations

Grant ([right], list [object], [role], Initiator,SV) should be executed in the corresponding

context, namely, we should also attach the SV to Grant operation. If there exists the

operations of editing document(Insert, Delete) that are concurrent with Gran operation, the

list[object] parameter of the Grant operation will be not explained correctly. So, before

executing Grant operation, the Retrace procedure must be called to retrace the document state

to the state when the Grant operation is released.

5.1. Tree-AST Algorithm

During the Retracing process of the document with the tree structure, there is no need to

retrace the statuses of all the entities but only retrace the ancestors of the NODE attached with

O and itself from top to down. The aim of the Retrace procedure is to retrace the ancestor

Nodes from 1 to level (NODE)-1 layer in the tree document to the timestamp SV of the

current operation. And then compare SV with the timestamp of operations attached on nodes,

determine whether the nodes are effective or not. This algorithm only need retrace the linear

table of one node at every layer, which improves the algorithm’s execution efficiency greatly.

Retrace procedure hides all execution effects of the concurrent Insert and Delete operations

(except Update and Grant operations, because Update and Grant cannot change the absolute

position of entity element and unique identifier for the element), and only preserve the

executing effect of operations causally preceding [2,5]the current operation O. For every

Element E of a Node, suppose that Insert and Delete operation in the operating history list are

timestamped by SVins and SVdel. The algorithm judges whether the node N is valid or not

under timestamp SVo [3, 4, 14] .Retracing procedure under the Tree-Doc is shown in

Procedure 1.

Procedure 1 Retracing_Tree-Doc (Tree-Doc, level, SVo, O)

Retracing Tree-Doc to the state of O produced

//check the effectiveness of each node in the tree document model

//If O.pos={p1,p2,…,pn-1, pn}

1: If level==length(O.pos)

2: Return;

3: for every element Ei of Layer-Doc {

4: Set Ei ineffective;

5: Consider the Insert Oins of Ei, if Oins is timestamped by SVOins and SVOins≤ SVo {

6: set Ei effective;

7: }

8: For each Delete Odel of Ei {

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

260 Copyright ⓒ 2014 SERSC

9: if Odel is timestamped by SVOdel and SVOdel ≤ SVo {

10: set Ei ineffective;

11: }

12: }

13: count No.p[level] effective element from left to right in Layer-Doc, marked E[p[level]];

14: Tree-Doc=E[p[level]].childPtr;

15: Retracing (Tree-Doc, level+1, SVo, O);

16: }

5.2. Intention Preservation of Grant Operation based on Tree-AST

When a Grant([right],list[object],[role],Initiator,SV) operation is received by local site

from upper site if there are Insert or Delete operations that are concurrent with it, the

document status may be different with that when the Grant operation is released. Thus, in

order to guarantee the correct execution of the Grant operation, the Retracing procedure

should firstly be invoked to retrace the document status to that of SV. Then Grant is executed

under SV and the document status is re-retraced to current status. Procedure 2 shows the

execution process of the Grant operation in remote sites.

Procedure 2 Execute(Grant, Tree-Doc, SV0),

Execute Grant with SV0

1. If Grant is not causally-ready {Queue(Grant);}

2. Else {

3. Retracing_Layer-Doc (Tree-Doc, 1, SVo, Grant)

4. Execute(Grant);

6. SV0[Grant.Initiator]= SV01[Grant.Initiator]+1;

7. Grant.SV=SVo;

8. Retracing_Tree-Doc(Tree_Doc, 1, SVo, Grant);

9. }

5.3. Efficiency Analysis

Function Retracing_TreeDoc (Tree-Doc, level, SVo, O) retrace the document status of

Tree-Doc to that indicated by SVo. During the Retracing process, only one node’s status in

the same level of Tree-Doc is needed to be compared rather than all nodes of the tree.

Therefore, the execution efficiency of this algorithm has been increased compared with AST

algorithm.

Assume that the average length of the linear table in the hierarchy document node is l. In

another word, the Retracing_TreeDoc process only needs to compare the operation statuses of

l elements in each layer so as to determine the effectiveness of the node elements. Suppose

that the number of operations attached with a node element is d, the time cost for checking the

node’s effective/ineffective status is O(d). Then the efficiency of the Retracing process on

each layer can be expressed as O(d·l). Therefore, the time complexity of Retracing is

O(l·level·d), and the value of level depends on the layer of O.

The Retracing procedure of AST need retrace all nodes in the last layer. According to

the former assumption about the average length of the linear table, we can infer that the

number of the node elements on the lowest hierarchical tree is supposed to be h
level-1

.

Therefore the time complexity of Retracing in AST algorithm is O(h
level-1

·d). Obviously,

the execution efficiency of Tree-AST is much higher than that of AST.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 261

6. Conflicts Resolution of Right Operations

As for Apply([right], list[object], [role], Initiator, SV), if more than one upper sites send

the Grant operations, there exists an unmentioned situation that different rights may be

required by the Apply operations. Moreover, the intention of the Grant operation may be

destroyed by that of the concurrent editing operations (such as Delete or Update). Thus, it is

necessary and urgent to maintain the operating intention in this situation. Firstly, the

definitions of two kinds of conflicts are expressed as follows:

Definition 2: Apply- Apply Conflict

If O1, O2 are both Apply operations, there will be a conflict between O1 and O2, iff:(1)

two operations are concurrent;(2)O1 and O2 apply to set different values of the same right of

the same object at the same site.

Definition 3: Apply-Edit Conflict

If O1 is an Apply operation，O2 is a Delete operation or an Update operation, there will

be a conflict between O1 and O2, iff: (1) two operations are concurrent; (2)O1 grant

(Updateable=false); (3)O1 and O2 aim at the same object, or an object in O1 is an ancestor

node of the object in O2.

6.1. Resolution Strategy

For the above two kinds of conflicts, the following three conflict resolution strategies(

Grant-Grant Conflict resolution strategy based on Upper-Role-Priority, Apply-Delete Conflict

resolution strategy and Apply-Update Conflict) are detailed in the following.

1) The Apply-Apply Conflict resolution strategy is based on Upper-Role-Priority

strategy. That’s to say, if two Apply operations are conflict with each other, the

operation released by Upper Roles will win. This procedure is described in Procedure

3.

Procedure 3 Solve_Apply-Apply (O1, O2, RoleTable)

Solve the conflict of two Apply operations

//Suppose two operations O1 and O2 are both Apply operations

1. For each object1 in O1list[object]，object2 in O2list[object]，role1 in O1[role]，role2

in O2[role]

2. {

3. If (object1=object2 & role1=role2 & O1[Updateable=true] & O2[updateable=false])

4. Then { compare the positions of initiator1(O1) and initiator2(O2) in RoleTable;

5. If (they are sibling nodes)

6. Then { Accept(O2)，Deny(O1);}

7. If (they are not sibling nodes)

8. Then { According to the principle of upper role priority, the upper receives an accept,

the lower receives a deny;}

9. }

10. }

2) The Apply-Delete Conflict resolution strategy is described in Procedure 4.

Procedure 4 Solve_Apply-Delete(O1,O2，HB),

Solve the conflict between a Apply and a Delete operation

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

262 Copyright ⓒ 2014 SERSC

//Suppose O1 is a Apply operation, O2 is a Delete operation, HB is history buffer of

operating sequence.

1. For each object1 in O1list[object], object2 is the object of O2{

2. If (object1=object2 || object1 is an ancestor node of object2) & O1[updateable=false])

3. Then { Retracing_Tree-Doc(O2);// the new value of the node is updated by

ineffective=true

4. Execute an inverse operation of O2(2O);

5. Append the HB of the target node element of O2 with { 2O ，O1;} // 2O indicates the

reverse operation of O2

6. }

3) The Apply-Update Conflict resolution strategy is described in Procedure 5.

Procedure 5 Solve_Apply-Update(O1,O2，HB),

Solve the conflict between a Apply and an Update operation

//Suppose O1 is a Apply, O2 is an Update operation, HB is history buffer of operating

sequence

1. For each object1 in O1list[object]，object2 is the object of O2{

2. If (object1=object2 || object1 is an ancestor node of object2) & O1[updateable=false])

3. Then { Retracing_Tree-Doc(O2);

4. execute an inverse O2(2O);

5. Append the HB of the target node element of O2 with { 2O ，O1;} // 2O indicates the

reverse operation of O2

4. }

6.2. Example Analysis

According to the set-up of the user roles described in section 3, suppose that there is a

project director, several project leaders, who take charge of one team with some designers, an

example analysis is given to solve the Apply-Apply conflict as well as the Apply-Edit

conflict.

According to Figure 5, specific operation at each site is given as follows:

Site6: Og1=Apply(Updateable=true,[<2,1>,<2,2>],<5>,6,<0,0,0,0,0,1>);

Site5: Ob=Delete(<2,1,1>),SV=<0,0,0,0,1,0>;

Site3:Og2=Apply((Updateable=true,[<2,1>,<2,2>],<5>,6,<0,0,1,0,0,1>);

Site2: Or1=Apply(Updateable=false,<2,2>,<4,5>,2,<0,1,0,0,0,0>);

Or4,5=Grant(Updateable=false,<2,2>,<4,5>,2,<0,1,0,0,1,0>).

In Figure 4, the conflict resolution process is described as follows: since Og1 and Ob are

concurrent in Designer 6, they are detected as Apply-Edit conflict according to the Apply-

Edit definition. Ob will be retraced according to the conflict resolution strategy and the node

denoted by <2,1,1> is marked as inefficient. When designer 6 hands the Apply operation over

to Team Leader 3, sine there is also a concurrent conflict operation Ob, the conflict resolution

process will also be done just like that on Designer 6. Next, Team leader 3 hands Og2 over to

the Project Director, and at the same time, he receives Or1 from Team leader 2. The Apply-

Apply Conflict occurs on this site. Then Upper-Role-Priority strategy is used to solve this

conflict. Because Team Leader 2 is in the second layer while Designer 6 is in the third layer,

the Apply from Team Leader 2 will be accepted while that from Designer 6 will be denied.

Team leader3 sends Deny information to Designer 6. Meanwhile Ob has gotten to the site6,

since Ob is not conflict with Or1, Project Director sends a successful message for the Apply

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 263

and Ob is executed. In site2, the arriving of Ob and the generation of Or1 erupt

simultaneously but not conflict. Ob is executed, and after Team Leader 2 receives Accept

information, he is supposed to send Or4 and Or5 respectively to the Designer 4 and the

Designer 5. When two sites receive Grant from Team leader 2 after executing Ob, they will

achieve these requirements.

Project Director

Team Leader 2 Team Leader 3

Designer 4 Designer 5 Designer 6

Or1
Accept

Or4 Or5

Og1
Deny

Og2
Deny

Ob

Ob

Ob Ob

Ob

Figure 4. Resolution Processes of Apply-Apply Conflict and Apply-Edit Conflict

7. Conclusions and Future Work

Real-time collaborative systems usually adopts unlimited cooperative mode which

increases the concurrency of the system but each member has a unified standard of

permissions, which allow them to execute any edit operation for any object of the shared

document. Thus, the implementation of right allocation can only rely on external agreement

(for example: the oral agreement). If some users cannot execute the external agreement

rigidly, the efficiency of the whole project will be damaged, resulting in reduction of the

scope of the real-time cooperation. This paper proposes to maintain the relationships among

different designers by building the hierarchical RoleTable of users, defines the tree structure

model of the document supporting the right allocation and details the format of right

operation, discusses the set-up of the site IDs as well as the initiating process of the system,

and imposed optimized AST to preserve the intention of the right operation, discusses the

conflict resolution of Apply-Apply, Apply-Edit operations. The right allocation strategy has

been used in Co-AutoCAD real-time collaborative model we have ever developed, and the

execution effect has obtained the recognition and affirmation from the cooperative members.

Further work in this paper includes applying the right management strategy to the

real-time collaborative environment to support the division of the work while not

destroying the high responsiveness and concurrency characteristics of the environment.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC)

under Grant No. 61202376 and No. 61003031, "Chen Guang" project sponsored by

Shanghai Municipal Education Commission and Shanghai Education Development

Foundation under Grant No.10CG49, and Innovation Program of Shanghai Municipal

Education Commission under Grant No. 13YZ075.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

264 Copyright ⓒ 2014 SERSC

References

[1] C. Sun Agustina and D. Xu, “Operational Transformation for Dependency Conflict Resolution in Real-time

Collaborative 3D Design Systems”, Proceedings of the Conference on Computer Supported Collaborative

Work, (2012), pp. 1401-1410.

[2] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems”, proceedings of the 1989 ACM

SIGMOD international conference, New York, (1989), pp. 399-407.

[3] D. Sun and C. Sun, “Operation Context and Context-based Operational Transformation”, Proceedings of the

2006 20th anniversary conference on Computer supported cooperative work, New York, (2006), pp. 279-

288.

[4] N. Gu, J. Yang and Q. Zhang, “Consistency maintenance based on the mark & retrace technique in

groupware systems”, proceedings of the international ACM SIGGROUP conference on Supporting group

work, New York, (2005), pp. 264-273.

[5] D. Li and R. Li, “An Admissibility-Based Operational Transformation Framework for Collaborative Editing

Systems”, Computer Supported Cooperative Work, vol. 19, no. 1, (2010), pp. 1–43.

[6] M. Fan, H. Fan and X. Wu, “Universal Priviledge Management System Based on RBAC in ASP.net.

Computer Engineering”, vol. 36, no. 1, (2010), pp. 143-146.

[7] Z. Jing, Y. Rui and J. Luan-sheng, “RBAC permission access control model based on data objects”,

Computer Engineering and Design, vol. 31, no. 15, (2010), pp. 3353-3355.

[8] Z. Lei, Z. Ming-Hui, L. Tian-Cheng and M. Hong, “A Permission Management Model in Service -Oriented

Architecture”, Chinese Journal of Computers, vol. 28, no. 4, (2005), pp. 677-685.

[9] Y. Fei and Y. Jian-hua, “Application of the Hibernate Based System of Acces Control”, Microelectronics &

Computer, vol. 24, no. 7, (2007), pp. 206-208.

[10] L. Wei-ju, L. Lie-gen and Z. Yu, “A Universal Scheme of Authority Management Model”, Microelectronics

& Computer, vol. 15, no. 1, (2009), pp. 1-3.

[11] F. Cui-Hao, Y. Xiu-zi, P. Wei and Z. Yin, “Multi-level and Dynamic Securtiy Access Control for CAD

Models in Collborative Environment”, Journal of Software, vol. 18, no. 9, (2007), pp. 2295-2305.

[12] F. Xi-mei, “Access Control Strategy Based on RBAC in Collaborative Environment”, Computer

Engineering, vol. 35, no. 11, (2009), pp. 140-142.

[13] J. Yong, J. Yu-ming and P. Si-da, “Research and Design of User Rights Management Model Based on

Workflow”, Computer Technology and Development, vol. 19, no. 1, (2009), pp. 161-164.

[14] Y. Feng, L. Gao, N. Gu and F. Wang, “Locking Intention Preservation Based on Address Space

Transformation Technique”, Proceedings of the Pervasive Computing and Applications, (2008), pp. 497-502.

[15] G. Li-ping, C. Qing-kui1 and Y. Yi-cheng, “Research on Consistency Maintenance Technique Supporting

Group Division in Real Time Collaborative Environment”, Journal of Chinese Computer Systems, vol. 34,

no. 1, (2013), pp. 33-40.

[16] L. Gao and T. Lu, “Achieving Transparent & Real-time Collaboration in Co-AutoCAD Application”, Journal

of Universal Computer Science, vol. 17, no. 4, (2011), pp. 1887-1912.

[17] Research on real time collaboration technique supporting right management of layer-based

document.Application Research of Computers, vol. 29, no. 5, (2012), pp. 1690-1694.

Authors

Liping Gao, Qiongqiong Fu, Lili Gao, Yuben Zhang, QingKui Chen

