
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.201-218

http://dx.doi.org/10.14257/ijdta.2014.7.3.18

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

The Hierarchical Structure and Bridging Member of k-Clique

Community
1

Kaikuo Xu
1
, Changan Yuan

2
 and Xuzhong Wei

3

1
College of Computer Science, Chengdu University of Information Technology,

ChengDu, 610225, China
2
Guangxi Teachers Education University, Nanning 530001, Chinas

3
School of Computer Science, Sichuan University

1
kaikuoxu@gmail.com,

2
yca@gxtc.edu.cn

Abstract

Community detection is widely applied in many fields and k-clique community detection is

one important detection method. There are many works on k-clique community detection.

However, the work on analyzing the structure of k-clique community is rare. In this paper, we

first give the definition of k-clique community tree and closed l-s-clique community, which

could be used as the index of analyzing k-clique community. Then we give the definition of l-

s-clique community pivot to describe the members playing the bridging roles in k-clique

community. We analyze the properties of l-s-clique community and propose KCliqueTree

algorithm based on the properties. This algorithm could efficiently generate k-clique

community tree whose leaf nodes represent closed l-s-clique community. We also propose

LSBridge algorithm to search l-s-clique community pivot. At last, we conduct case study on

DBLP (Digital Bibliography & Library Project) dataset, which shows the availability of our

definitions and algorithms.

Keywords: k-Clique Community Tree, l-s-clique community, k-Clique Community,

Community Detection

1. Introduction

Graph is an abstract of real world data: the nodes indicate the information of entities while

the edges indicate the links between entities [1]. To store the detailed information of the link,

the edges could be abstracted as weighted directed or weighted undirected or unweighted

directed or unweighted undirected. For example, in the research of scientific bibliography like

DBLP [2], the authors are abstracted as nodes while the co-authorships between them are

abstracted as edges. The time authors co-authored could be abstracted as the weight of the

edges; the citation relationship between authors could be abstracted as edges.

Many concepts are proposed to study the properties of graph data [3, 4]. Among them,

community is of great interest to the research community and many algorithms are proposed

for community detection [5-9]. Since both the assumption and the algorithms are relatively

simple for unweighted undirected graph comparing with those for weighted and directed

graph, the results on unweighted undirected graph is the basis for further analysis on the other

1 This work was supported the Natural Science Key Foundation of Guangxi under Grant

No.2011GXNSFD018025, the Development Foundation of CUIT under grant No. KYTZ201108, the Natural

Science Foundation under Grant No. 61363037 and Haikou city key science and technology program (2012-027).
2 Corresponding author.

mailto:kaikuoxu@gmail.com
mailto:2yca@gxtc.edu.cn

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

202 Copyright ⓒ 2014 SERSC

two types of graphs [10, 11]. K-clique community detection is for unweighted undirected

graph. There is extended work on k-clique community detection [12-17]. However, the work

on analyzing the structure of k-clique community is rare. Let us look at the definition first.

Definition 0: A k-clique community is a union of all k-cliques (complete subgraphs of size k)

that can be reached from each other through a series of adjacent k-cliques (where adjacency

means sharing k-1 nodes).

Figure 1. K-clique Communities with Different k

Example 1: Assume a tiny subset of DBLP is abstracted as the graph (unweighted

undirected) in Figure 1. When k is set to be 2, all the vertices are in a 2-clique community.

When k is set to be 3, a, b, e and f are in a 3-clique community while c, d, g, h and i are in

another 3-clique community. When k is set to be 4, c, d, h and i are in a 4-clique community.

In Fig.1, the 2-clique community could be viewed as the first level community in describing

the strength of the vertices connections; the two 3-clique communities could be viewed as the

second level communities and the 4-clique community could be viewed as the third level

community. They together form a hierarchical structure. Furthermore, through bc and fg, {a,

b, e, f} and {c, d, g, h, i} are in the same 2-clique community. Then b, f in {a, b, e, f} and f, g

in {c, d, g, h, i} could be viewed as playing the role of bridging different communities.

The hierarchical clustering method [18] was proposed to detect communities with

hierarchical tree and was widely applied since then [19-21]. It requires manually definition on

the distance between vertices and the hierarchical tree generated by the algorithms are for the

graph instead of k-clique communities. There is also extended work on assessing a vertice’s

involvement in the walk structure of a graph [22-24]. Its focus is not on the k-clique

communities either.

This paper focuses on k-clique community. The main contributions include (a) giving the

definition of k-clique community tree and closed l-s-clique community as the index of

analyzing the hierarchical structure of k-clique community; (b) giving the definition of l-s-

clique community pivot to describe the members bridging k-clique communities; (c)

proposing KCliqueTree algorithm to efficiently generate k-clique community tree whose leaf

nodes represent closed l-s-clique community; proposing LSBridge algorithm to search l-s-

clique community pivot. (d) conducting case study on DBLP datasets.

The rest of the paper is organized as follows. Section 2 gives some related work. Section 3

introduces the basic idea of k-clique community tree and closed l-s-clique community.

Section 4 describes our algorithms KCliqueTree and LSBridge. Section 5 conducts case study

on DBLP dataset. Section 6 concludes the paper.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 203

2. Related Work

Community detection has gained great focus since the last decade. And there are extended

work in this field [5-9]. Several milestone definitions are given to describe the concept of

community. And Clique community [25] is one of the earliest definitions, which is widely

used in social network analysis. Clique community is directly from the concept of clique in

discrete mathematics. Recently, Palla [26] gave the definition of k-clique community based

on the definition of k-clique. K-clique community is a definition focusing on the overlapping

regions between communities. There is extended work on the detection of k-clique

community [12-17]. However, the research on the hierarchical structure of k-clique

community and its bridging member is rare.

A well known community detection method called hierarchical clustering [18] is

commonly used to explore the hierarchical structure of graph. A definition on the distance

between vertices is given first. Then the distance between all vertice pairs is computed. At

last, a hierarchical tree is generated according to the distance with a agglomerative algorithm

or divisive algorithm. The hierarchical tree displays several levels of grouping of the vertices

with small clusters included within large clusters [27]. Note that in this paper, we explore the

hierarchical structure of k-clique community and cluster indicates k-clique community in our

work. There is no manually defined similarity (distance) either.

3. K-clique Community Tree and Closed l-s-clique Community

a b

fe

c

g

h

d

i

j

2
1

2

2

1

2

1

2

1

1

2

1

2

1

2

1
1

a b

fe

c

g

h

d

i

j

a b

fe

c

g

h

d

i

j

weight

>=2

weight
>=1

(1)

(2)

(3)

Figure 2. Graph Generated by Constraint with Constraint Dimension

Before further discussion, let us look at example 2. Note that a specified constraint (The

papers should be published in 2003) is used during the abstraction in example 1. In this paper,

a constraint is a set of constraint dimensions. A constraint dimension is an atomic rule for

generating the graph. The constraint in example 1 is composed only one constraint dimension:

‘The papers should be published in year Y’. To make the specified constraint ‘The papers

should be published in 2003’ tighter, constraint dimension ‘the authors co-published at least N

times’ could be appended. Then if N is set to be 2, they together compose a new specified

constraint ‘The papers should be published in 2003, the authors co-published at least 2 times’.

Example 2: Given the constraint ‘The papers should be published in 2004’, a tiny subset of

DBLP is abstracted as graph (1) in left Figure 2. Here the number on an edge indicates the

times for the coauthorship of the vertices for the edge. Then constraint dimension ‘the authors

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

204 Copyright ⓒ 2014 SERSC

co-published at least N times’ is appended to construct a new constraint. If N is set to be

larger than or equal to 2, the subset of DBLP is abstracted as graph (2) in right upper Figure 2;

if N is set to be larger than or equal to 1, the subset of DBLP is abstracted as graph (3) in right

bottom Figure 2. In graph (2), b, c and f are in a 3-clique community; c, g and h are in a 3-

clique community. In graph (3), b, c, d, f, g, h, i, j are in a 3-clique community. The 3-clique

community in graph (3) could be viewed as the first level community in describing the

strength of the vertices connections; the two 3-clique communities in graph (2) could be

viewed as the second level communities in describing the strength of the vertices connections.

Then b, f, g, h could be viewed as playing the role of bridging different communities.

According to example 1 and 2, k-clique community could be viewed as the basis for

analyzing the hierarchical structure and bridging member of k-clique community: (1) the

value of k reflects the strength of the vertices connections inside a k-clique community: the

larger k is, the higher the strength is; (2) the value of k indicates a subset relationship, i.e., a

larger k-clique community is inside a smaller k-clique community; (3) Studying the k-clique

communities helps to find the vertices playing the bridging role.

3.1. Terminologies

Let pi(1in) be a constraint dimension where n is a positive integer. The domain for the

parameter θ of pi is a finite set {θ1, θ2, θ3,…, θi,…, θj,…θn}, where θi< θj if i < j. Then a

specified constraint could be denoted as SP={spi| spi =(θlow, θhigh)} (1in). SP is a finite

nonempty set. Here spi is a specified constraint on constraint dimension pi. With a specified

constraint SP, an unweighted undirected graph abstracted from real data is denoted as G = (V,

E), where V and E are both finite nonempty set. The subgraph induced by vertice set Vs is

denoted as G|Vs. Whether G|Vc is a k-clique community is judged by boolean function k-

Clique(Vs, G, k). If G|Vs is a k-clique community, k-Clique(Vs, G, k)=1; else k-Clique(Vs, G,

k)=0.

Now, let us revisit example 2. For graph (2) in example 2, SP={sp1, sp2}, sp1 = ‘The papers

should be published in 2004’, sp2= ‘the authors co-published at least 2 times’, p1=‘The papers

should be published in year Y’, p2= ‘the authors co-published at least N times’. We call graph

(2) is generated with sp2 from graph (1) or graph (2) is generated with constraint SP from

original data.

3.2. K-Clique Community Tree and Closed l-s-clique Community

Definition 1: A k-clique community tree is a tree structure generated with specified

constraint SP, whose vertices are k-clique communities. It could be constructed by the

following steps:

1) Generate a node for each k-clique community Ck detected with constraint SP;

2) For k-clique community Ck and k+1-clique community Ck+1, if Ck+1 is a subset of Ck, the

node for Ck+1 is a child of the node for Ck;

3) The root is the k-clique community with the smallest k. It limits the scope of the tree.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 205

a b

fe

c

g

h

d

i

j

A

CB

D

Figure 3. An Example for k-clique Community Tree
Example 3: The k-clique community tree in the right part of Fig. 3 is for the graph in the left

part of Fig.3.

Node A is the 2-clique community composed of {a, b, c, d, e, f, g, h, i, j}. Node B is the 3-

clique community composed of {a, b, e, f}. Node C is the 3-clique community composed of

{c, d, g, h, i, j}. Node D is the 4-clique community composed of {c, d, h, i}. B and D are both

leaves of the tree: the strength vertices connect to each other inside them is relatively strong.

Vertices b and c are members of two children of the same parent node: they play the bridging

role.

According to example 3, k-clique community tree could be used as an index for exploring

k-clique community: if users are interested in the communities inside which the strength of

vertices connections are strong, they could check the leaves of the tree; if users are interested

in the bridging members, they could check the nodes with many children.

To describe the bridging members of k-clique community, the concept of l-s-clique

community pivot is introduced.

Definition 2: Let lClique1(Vl1, El1) and lClique2(Vl2, El2) be two k-clique communities (k=l),

vertice v is a l-s-clique community pivot of lClique1 and lClique2 IFF there exists at least one

k-clique community (k=s and l>s) sClique1(Vs, Es) which has a connected subgraph

linkG(linkV, linkE) satisfying the following conditions:

(1) Vl1 Vs, Vl2 Vs;

(2) v∈linkV∩(Vl1∪ Vl2);

(3) linkV∩Vl1≠ and linkV∩Vl2≠;

(4) For each edge uw in linkE, neither {u, w} Vl1 nor {u, w} Vl2 holds.

Whether a vertice v in G is a l-s-clique community pivot is judged by boolean function l-s-

bridge(v, G, l, s). If v is an l-s-clique community pivot, l-s-bridge (v, G, l, s) = 1; else l-s-

bridge (v, G, l, s) = 0.

According to the definition of l-s-clique community pivot, for k-clique communities (k = l)

lClique1(Vl1, El1) and lClique2(Vl2, El2), the vertices in Vl1∪ Vl2 are all l-s-clique community

pivots. Let us look at an example.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

206 Copyright ⓒ 2014 SERSC

Figure 4. An Example for k-clique Community Pivot

Example 4: In Figure 4, a, b, c, d, e, f, g, h, i and j compose a 2-clique community; a, b, e and

f compose a 3-clique community; c, d, g, h, i and j compose a 3-clique community. The

vertice b could be viewed as a l-s-clique community pivot (l=3, s=2) between the 3-clique

community composed by {a, b, e, f} and the 3-clique community composed by {c, d, g, h, i,

j}: there exists a 2-clique community composed by {a, b, c, d, e, f, g, h, i, j} which has a

connected subgraph {{b, c}, {bc}} satisfying the 4 conditions above: 1) {a, b, e, f}{a, b, c,

d, e, f, g, h, i, j}, {c, d, g, h, i, j}{a, b, c, d, e, f, g, h, i, j}; 2) b{b, c}({a, b, e, f}{c, d, g,

h, i, j}) ; 3) {b, c}{a, b, e, f}≠ and {b, c}{c, d, g, h, i, j}≠; 4) for the edge bc in {bc},

{b, c}{a, b, e, f} does not hold, {b, c}{c, d, g, h, i, j} does not hold.

According to example 3 and example 4, on a k-clique community tree, l-s-clique

community pivot describes how children nodes connect to each other inside their parent node.

And according to example 3, the larger the k-clique community is, the higher level it has on

the k-clique community tree. To simplify the k-clique community tree while avoiding the loss

of information for k-clique community, l-s-clique community is introduced.

Definition 3: Given a graph G and a vertice set Vs, G|Vs is an l-s-clique community if it

satisfies the following conditions:

(1) There exists s2 satisfying k-clique(Vs, G, s)=1;

(2) There exists VlVs (l s) satisfying k-clique(Vl, G, l)=1;

(3) |Vl|/|Vs|>α (1α0, α is specified by the user manually).

Whether G|Vs is a l-s-clique community is judged by boolean function l-s-clique(Vs, G, l, s,

α). If G|Vs is an l-s-clique community, l-s-clique(Vs, G, l, s, α) = 1; else l-s-clique (Vs, G, l, s,

α) = 0.

Three conclusions could be drawn according to definition 3:

(1) An l-s-clique community is also a k-clique community and l-s-clique community could be

represented by a node of k-clique tree;

(2) When l is equal to s, a k-clique community is also an l-s-clique community;

(3) When l is larger than s, a k-clique community may be an l-s-clique community: the larger

α is, with the smaller possibility a k-clique community becomes an l-s-clique community. An

extreme case is when α is equal to 1, only clique community is l-s-clique community.

According to the conclusions above, the definition for l-s-clique community is more

relaxed than clique community while tighter than k-clique community. Therefore, given a

graph, the count for l-s-clique community may be large. And for some l-s-clique

communities, their sub-communities are also l-s-clique communities. To lay emphasis on the

extraordinary nature of the leaves for a k-clique community tree, closed l-s-clique community

is introduced.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 207

Definition 4: Given a graph G and a vertice set Vs, G|Vs is a closed l-s-clique community if it

satisfying the following conditions:

(1) l>s≥2 and l-s-clique(Vs, G, l, s, α)=1;

(2) If li>l, then l-s-clique(Vs, G, li, s, α)=0;

(3) If si<s, then l-s-clique(Vs, G, l, si, α)=0;

(4) There does not exist a vertice set Vc satisfying Vs Vc and l-s-clique(Vc, G, l, s, α)=1.

Note that definition 4 indicates only a leaf of k-clique community tree could be a closed l-s-

clique community.

Example 5: After applying the concept of l-s-clique community, the k-clique community tree

on Fig. 3 is transformed into the one on right Figure 5. Node A is the 2-clique community

composed of {a, b, c, d, e, f, g, h, i, j}. Node B is the 3-clique community composed of {a, b,

e, f}. Node C is the l-s-clique (l=4, s=3, α<0.8) community composed of {c, d, g, h, i, j}. B

and C are both leaves of the tree: the strength vertices connect to each other inside them is

relatively strong. Vertices b and c are still members of two children of the same parent node:

they play the bridging role.

According to example 5, after introducing l-s-clique community, when l is bigger than s, α

is equal or close to 1, l-s-clique community is highly similar to the k-clique community

(lks) it contains. This keeps the index function of k-clique tree. Besides simplifying the k-

clique tree, l-s-clique community helps to avoid regenerating highly similar k-clique

communities, which reduces the time cost.

A

CB

D

A

CB

Figure 5. An Example for k-clique Community Tree after Introducing l-s-
Community

3.3. The Property of l-s-community

Properties similar to the famous Apriori property [31] exist for l-s-community. They are

expressed as the following two theorems.

Theorem 1: Given li, lj and s (li>lj >s) and given vertice set Vs (l-s-clique(Vs, G, li, s, α)=1),

there must exists a vertice set Vc satisfying Vc Vs and l-s-clique(Vc, G, lj, s, α)=1.

Proof: According to the definition of l-s-community, there musts exist a vertice set Vsk

satisfying Vsk Vs, |Vsk|/|Vs|>α and k-clique(Vsk, G, li)=1. For vertice set Vc (Vc Vs), there

exist two cases to be discussed:

a) if k-clique(Vc, G, lj)=0, then l-s-clique(Vc, G, lj, s, α)=0;

b) if k-clique(Vc, G, lj)=1, since li>lj, according to the definition of k-clique community, we

can get |Vc|>|Vsk| and |Vc|/|Vs|>α, thus l-s-clique(Vc, G, lj, s, α)=1.

The second case must exist. And Vsk=Vc is an example. Thus Theorem 1 holds.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

208 Copyright ⓒ 2014 SERSC

Theorem 2: Given k, si, sj (l>si>sj) and given vertice set Vs (l-s-clique(Vs, G, k, sj, α)=1),

there must exists a vertice set Vc satisfying Vc Vs and l-s-clique(Vc, G, k, si, α)=1.

Proof: According to the definition of l-s-community, there musts exist a vertice set Vsk

satisfying Vsk Vs, |Vsk|/|Vs|>α and k-clique(Vsk, G, si)=1. For vertice set Vc (Vc Vs), there

exist two cases to be discussed:

a) if k-clique(Vc, G, sj)=0, then l-s-clique(Vc, G, l, si, α)=0;

b) if k-clique(Vc, G, sj)=1, since sj> sj, according to the definition of k-clique community, we

can get |Vs|>|Vc| and |Vsk|/|Vc|>α, thus l-s-clique(Vc, G, l, sj, α)=1.

The second case must exist. And Vsk=Vc is an example. Thus Theorem 2 holds.

Theorem 1 and theorem 2 together provide a path to detect l-s-community. According to

theorem 1, given the s for k-clique community, the closed l-s-clique community could be

discovered by checking the k-clique community with specified l. The space is searched by

adjusting k (from bigger to smaller) and the search stops once discovering l-s-community or

ls; according to theorem 2, given the l for k-clique community, the closed l-s-clique

community could be discovered by checking the k-clique community with specified s. The

space is searched by adjusting s (from smaller to bigger) and the search stops once

discovering l-s-community or ls.

3.4. K-clique Community Dimension Tree

To describe the hierarchical structure of k-clique community on constraint dimension pi,

we introduce the concept of k-clique community dimension tree. The discussion is based on

the assumption that with the decreasing of θ from θn to θ1, the number of edges of G also

decreases.

Definition 5: A k-clique community dimension tree is a tree structure generated with

specified constraint SP and constraint dimension pi, whose vertices are k-clique communities.

Here SP does not contain spi. It could be constructed by the following steps:

(1) Generate a node for each k-clique community Ck detected with constraint SP{spi =(θi,

θi)};

(2) For k-clique community Ci
k
 with constraint SP{spi =(θi, θi)} and k-clique community

Ci+1
1
 with constraint SP{spi =(θi, θi)}, if Ci+1

1
 is a subset of Ci

k
, the node for Ci+1

1
 is a child

of the node for Ci
k
;

(3) The root is the k-clique community generated with the smallest θ (θ1). It limits the scope

of the tree.

According to definition 5, the expression of k-clique community dimension tree is similar

to k-clique community tree. However, the semantic is different: the k value for k-clique

community dimension tree is permanent, the hierarchical structure is generated by the

different strength of the constraint; the hierarchical structure of k-clique community tree is

generated by different k

The algorithm to generate k-clique community dimension tree is the same as that to

generate k-clique community tree. Therefore, in the next section, we will only focus on the

algorithm for k-clique community tree.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 209

4. The k-clique Community Tree Construction Algorithm and the k-clique

Community Pivot Detection Algorithm

4.1. Sketch of KCliqueTree

According to the analysis above, KCliqueTree is proposed to construct k-clique community

tree, which is shown in Algorithm 1. Here both k-clique community and closed l-s-clique

community are considered excluding non-closed l-s-clique community. KCliqueTree is

roughly divided into two steps:

1) The first step is shown by line 1 to line 6. Through searching the maximum clique

community for kclique, it gives the upper limit for the search in KCliqueSubTree and

LSCliqueSubTree. If kclique is a clique community, the algorithm stops.

2) The second step is shown by line 7 to line 19. If the leaf does not indicate a closed l-s-

community, KCliqueSubTree is called; if the leaf indicates a closed l-s-community, both

KCliqueSubTree and LSCliqueSubTree are called; the nodes generated by

KCliqueSubTree indicate small k (here k is set to be smaller than 5) while the nodes

generated by LSCliqueSubTree indicate large k.

Algorithm 1 KCliqueTree

A CSV plot [17] based algorithm to construct k-clique community tree

Input: G, csvPlotK(CSV plot for G), kClique(a k-clique community), k(the value for k

of kClique), lsCal(the flag for the existence of l-s-community), α

Output: tree (a k-clique community tree with kClique as the root)

1. maxClique = MaxCliqueCSV(G, csvPlotK, k);

2. lmax = |maxClique|;

3. if lmax/|kClique |>α

4. treeRoot = {k, lmax, kClique}; return;

5. endif

6. store {k, lmax, {maxClique}, kClique} in a temporary buffer;

7. treeRoot = kClique;

8. if lsCal = false

9. tree = KCliqueSubTree(treeRoot, kClique, G, csvPlotK, k, lmax);

10. else

11. if k < 5

12. headTree = KCliqueSubTree(treeRoot, kClique, G, csvPlotK, k, 5);

13. else

14. headTree = treeRoot;

15. for each leafNode in headTree

16. LSCliqueSubTree(leafNode, the k-clqiue communities inside leafNode,

G, csvPlotK, k, lmax, α, True);

17. end

18. endif

19. endif

Here KCliqueSubTree is simple. It is divided into two steps:

1) The first step is to call KCliqueCSV [17], perform a transverse and check out all the k-

clique communities with different k.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

210 Copyright ⓒ 2014 SERSC

2) The second step is to construct a hierarchical tree according to subset relationship

between k-clique communities

We will lay emphasis on LSCliqueSubTree, which is shown in Algorithm 2.

LSCliqueSubTree is a recursive algorithm based on theorem 1 and theorem 2. It uses

the buffer to store the intermediate results of computation, reduces the computation by

calling subprocedure calOrLoad, saveRelation and reduces the search scope of the next

step by calling subprocedure subG, subCSVPlot.

Similarity computation is an essential step for memory based method. The most

commonly used similarity computation formulas are Pearson coefficient, cosine

similarity and adjust cosine similarity. Here Pearson coefficient is adopted for

improvement. Our method also works for other similarly computation formulas. It is

roughly divided into two steps:

1) The first step is shown by line 1 to line 6. It judges whether the recursive call should be

stopped.

2) The second step is shown by line 7 to line 27, which could be divided into three sub-

steps:

Algorithm 2 LSCliqueSubTree

A CSV plot [17] based algorithm to construct k-clique community tree

whose leaves are closed l-s-clique community

Input: treeRoot, G, sClique(a k-clique community with s),

csvPlotS(CSV plot for sClique), s, l, α for l-s-clique community,

maxCal(flag)

Output: tree (a k-clique community tree with sClique as the root and

closed l-s-clique communities as its leaves)

1. if s>l

2. return;

3. endif

4. if (treeRoot is a l-s-clique community) or (treeRoot has children)

5. return;

6. endif

7. if s==l

8. treeRoot = {s, l, wclique}; return;

9. endif

10. if maxCal==true

11. sG = subG(G, sClique);

12. sCSVPlotS = subCSVPlot(csvPlotS, sClique);

13. maxClique = MaxCliqueCSV(sG, sCSVPlotS, s);

14. if |maxClique| < l

15. l = |maxClique|;

16. endif

17. endif

18. lKCliques = calOrLoad(sClique, l);

19. calContinue = true;

20. for each lClique in lKCliques

21. if |lClique|/|sClique| >α

22. make {s, l, sClique} as a child of treeRoot;

23. calContinue = false;

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 211

24. endif

25. endfor

26. if calContinue == false

27. return;

28. endif

29. lKCliques = calOrLoad(sClique, s+1);

30. for each sPlusClique in sPlusKCliques

31. saveRelation(sPlusClique, lKCliques, s+1, l);

32. make sPlusClique a child of treeRoot and denote it as subRoot;

33. LSCliqueSubTree(subRoot, sPlusClique, sG, sCSVPlotS, s+1, l,

α, true);

34. endfor

35. nextL = findNextMax(csvPlotS, lmax);

36. LSCliqueSubTree(treeRoot, sClique, sG, sCSVPlotS, s, nextL, α,

false);

① The first step is shown by line 10 to 17. If maxCal is true, the search the maximum

clique community inside sClique and update the upper limit for the searching.

 ② The second step is shown by line 18 to 28. It first judges whether there exists a l-s-

clique community with s and l inside sClique. If it is true, this community is a closed l-

s-clique community according to theorem 2; the results are stored and the recursive call

is stopped.

③ The third step is shown by line 29 to 36. It updates sClique as a k-clique

community (k=s+1), s as s+1 for the l-s-clique community and performs recursive

call; or updates l as nextL for the l-s-clique community and performs recursive

call.

The subprocedure calOrLoad appears twice on line 11 and line 19 respectively. On line 11,

it checks whether there exists the information for k-clique community with l inside sClique in

the buffer, if the result is true, it gets the information from the buffer; or call KCliqueCSV

[32] and store the results into lKCliques and store {sClique, lKCliques, s, l} into the buffer.

The subprocedure saveRelation appears on line 21. It first searches the parent-child

relationship k-clique communities with s+1 and l inside sClique, then store them into the

buffer.

Algorithm 3 LSBridge

A CSV plot [17] based algorithm to detect l-s-clique community pivot

Input: G, csvPlotK(CSV plot for G), kClique(a k-clique community),

k(the value for k of kClique), lsCal(the flag for the existence of l-s-

community), α

Output: tree (a k-clique community tree with kClique as the root)

1. lsBridge = ;

2. if l>s

3. lCliqueG1=subG(G, lClique1);

4. lCliqueG2=subG(G, lClique2);

5. sCliqueG=subG(G, sClique) ;

6. LSBridge=LSBridge∪(lClique1∩ lClique2);

7. deleteSubG(sCliqueG, lCliqueG1∪lCliqueG2) ;

8. linkedGraphs=subLinkedG(sCliqueG);

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

212 Copyright ⓒ 2014 SERSC

9. for each linkedG in linkedGraphs

10. if (linkedG∩ lCliqueG1≠)&&(linkedG∩ lCliqueG2≠)

11. LSBridge=LSBridge ∪ Vertice(linkedG) ∩ (Vertice(lClique1)

∪Vertice(lClique2));

12. endif

13. endfor

14. endif

4.2. Sketch of LSBridge

Given lClique1 and lClique2 (k-clique communities with l), their l-s-clique community

pivot could be searched by method of exclusion. The strategies for exclusion are as follows:

1) If there exists a l-s-clique community pivot, lClique1 and lClique2 exist in at least one k-

clique community with s denoted as sClique1;

2) If the connected graph linkG, which helps to find the l-s-clique community pivot, does

not share vertices with lClique1 and lClique2, linkG is neither lClique1 nor lClique2;

3) A shared vertice of lClique1 and lClique2 is an l-s-clique community pivot.

According to the definition of l-s-clique community pivot and the strategies for exclusion,

LSBridge is proposed to search the l-s-clique community pivot of two k-clique communities

with two l. This algorithm reduces the time cost by filtering with CSV plot. As shown in

algorithm 3, LSBridge is roughly divided into two steps:

1) The first step is shown by line 3 to 5, it generates the subgraphs lClique1, lClique2 and

sClique are in respectively.

2) The second step is shown by line 6 to 14. Line 6 finds the shared vertices of lClique1 and

lClique2. Line 7 to line 11 checks whether the non shared vertices of lClique1 and

lClique2 are l-s-clique community pivots based on exclusion strategy 2.

4.3. Time complexity

For KCliqueTree, the time complexity highly depends on SCP and LargeKCliqueCSV: if

the leaves are not l-s-clique communities, the time cost is the cost for traversing all the k-

clique communities with different k; if the leaves are l-s-clique communities, the smaller αis,

the number of k-clique communities to be traversed is smaller and the time cost is less. In

[17], Xu has demonstrated the high efficiency of LargeKCliqueCSV to detect large k-clique

communities. Thus KCliqueTree is also efficient when k is large.

The scale of the input k-communities for LSBridge is very small. The worst time

complexity of subG, subLinkedG and deleteSubG is O(|E|). Thus LSBridge is linear.

Since the time complexity for both KCliqueTree and LSBridge is not a problem, the focus

will be on the results generated by the two algorithms.

5. Case study

All experiments are conducted on an INTEL core 2DuoProcessorE2160 with 2G

memory, running Windows XP. All algorithms are implemented with C++ and STL.

5.1. The Dataset

Since the loss of information is significant for SMD [33] dataset. Only DBLP dataset

is adopted for case study. DBLP is an integrated database system composed of the

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 213

bibliography information in the field of computer science. And it is stored as XML file.

In the graph transformed from DBLP data, vertices represent authors while edges

represent the co-authorship. The existence of an edge between two authors indicates

that in a given time period, the times for their co-authorship is not smaller than a

threshold. When the threshold is set to be 2, the statistical information for DBLP

dataset is shown in Figure 6 and Figure 7. Figure 6 and Figure 7 show that the bigger

the year is, the larger |V| and |E| are. But the average |E|/|V| is always small.

0

0.5

1

1.5

1980 1984 1988 1992 1996 2000 2004 2008

year

Avg(|E |/|V |) DBLP-2+

Fig. 6. The statistical information on average |E|/|V| for DBLP dataset

0

20000

40000

60000

80000

1980 1984 1988 1992 1996 2000 2004 2008

year

size
DBLP-2+|V| DBLP-2+|E|

Figure 7. The Statistical Information on Vertices and Edges for DBLP
Dataset

5.2. Evaluation and Results

The constraint for the graph abstraction is set to be ‘the papers are published in year Y, the

authors co-published at least twice’. The k-clique community tree generated from the

abstracted graph will be studied. According to the structure of k-clique community trees, they

are classified into two categories: balanced tree and non-balanced tree. Our case study will

focus on the trees whose roots are 3-clique communities.

5.2.1. Case 1

When Y is set to be 2006, a k-clique community composed of 22 vertices is discovered.

The time cost for searching the l-s-clique community pivot is 0.11 seconds. When α is set to

be 0.8, the time cost for constructing the k-clique community tree is 0.125 seconds. As shown

in Figure 6, the tree is balanced.

A is a 3-clique community composed of 22 vertices. F is a 7-4-clique community composed

of 7 vertices. And the other nodes are 4-clique community. When l is set to be 4 and s to be 3,

there are 8 l-s-clique community pivots inside A. The detail is shown in Table 1. Table 1

shows that 1) B, C, and E share relatively more l-s-clique community pivots; 2) D and F share

relatively more l-s-clique community pivots.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

214 Copyright ⓒ 2014 SERSC

Figure 6. An Example for Balanced k-clique Community Tree

Table 1. The l-s-clique Community Pivots for the Tree in Figure 6

Node l-s-clique community pivots The communities

bridged

B Jiawei Han, Philip S. Yu, Jian Pei C, D, E, F

C Jiawei Han, Philip S. Yu, Xifeng Yan B, D, E, F

D Bing Liu, Wei Wang, Baile Shi B, C, E, F

E Philip S. Yu, Jian Pei B, C, D, F

F Jian Pei, Wei Wang, Baile Shi, Ada Wai-

Chee Fu

B, C, D, E

The analysis above shows that: 1) As the l-s-clique community pivots, Jiawei Han, Jian

Pei, Philip S. Yu, Bing Liu, Wei Wang are all famous scholars in the field of Data Mining: 2)

In general, the authors represented by vertices which are not l-s-clique community pivots are

unnamable scholars.

5.2.1. Case 2

 (a) l-s-clique communities(α=0.8) (b) l-s-clique communities(α=0.7)

(c) l-s-clique communities (α=0.6)

Figure 7. An Example for Non-Balanced k-clique Community Trees

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 215

When Y is set to be 2008, a k-clique community composed of 49 vertices is discovered.

The time cost for searching the l-s-clique community pivot is 0.266 seconds. When α is set to

be 0.8, the time cost for constructing the k-clique community tree is 0.281 seconds and the

tree is non-balanced; When α is set to be 0.7, the time cost for constructing the k-clique

community tree is 0.235 seconds and the tree is non-balanced; When α is set to be 0.6, the

time cost for constructing the k-clique community tree is 0.219 seconds and the tree could be

regarded as balanced. The results are shown in Figure 7.

When α is reset from 0.8 to 0.7, the subtree whose root is G changes most. The reason is

that G is composed of 10 vertices and 8 of them compose a clique community. When α is

reset from 0.7 to 0.6, the subtree whose root is I changes most. The reason is that G is

composed of 14 vertices: 8 of them compose L (a 6-clique community) while 9 of them

compose K (a clique community).

Table 2. The l-s-clique Community Pivots for the Trees in Figure 7

Node l-s-clique community pivots The communities

bridged

B Thomas Sikora, Lutz Goldmann C, D, E, F, G, H

C Vasileios Mezaris, Ioannis Kompatsiaris B, D, E, F, G, H

D Thomas Sikora, Noel E. O'Connor, Lutz

Goldmann, Tomasz Adamek,Yannis S.

Avrithis

B, C, E, F, G, H

E Thomas Sikora, Noel E. O'Connor, B, C, D, F, G, H

F Vasileios Mezaris, Ioannis

KompatsiarisAlan

B, C, D, E, G, H

G Tomasz Adamek, Yannis S. Avrithis,

Evaggelos Spyrou

B, D, E, H

G Vasileios Mezaris, Ioannis Kompatsiaris C, F

H Noel E. O'Connor, Yannis S. Avrithis B, C, D, E, F, G

When l is set to be 4 and s to be 3, there are 10 l-s-clique community pivots inside A. The

detail is shown in table 2. Table 2 shows that 1) C and F share l-s-clique community pivots;

2) B, D, E and H share relatively more l-s-clique community pivots; 3) The vertices inside G

could be classified into two types of l-s-clique community pivots: bridging C&F and bridging

B, D, E&H.

The analysis above shows that: 1) The k-clique community detected here is for the field of

multimedia: 2) In general, the authors represented by vertices which are not l-s-clique

community pivots published at a relatively later date.

The analysis on case 1and case 2 shows that: 1) Searching l-s-clique community pivots

helps to discover interesting knowledge; 2) k-clique community tree helps to understand how

the vertices are bridged by key vertices and then construct a community.

5.2.3. Case 3

Two constraint dimensions are chosen: ‘The papers should be published in year Y’ and ‘the

authors co-published at least N times’. After specifying Y, we will analyze the k-clique

community dimension tree on dimension ‘the authors co-published at least N times’. Here N

is set to be 2 and 3 respectively. Then there are at most two levels for the k-clique community

dimension tree. Since it is too simple, no visualization is used here.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

216 Copyright ⓒ 2014 SERSC

Considering the root node A in Figure 6, if N is set to be 3, it has 4 children. Like l-s-clique

community pivots, the authors bridging the four children are Jiawei Han, Jian Pei and Philip

S. Yu.

Considering the root node A in Figure 7, if N is set to be 3, it has 5 children. Like l-s-clique

community pivots, the authors bridging the 5 children are Ioannis Kompatsiaris, Noel E.

O'Connor and Yannis S. Avrithis.

According to the analysis above, although k-clique community dimension tree and k-

clique community tree are different from each other on the contents, they are similar to

each other in describing bridging members.

6. Conclusions

In this paper, we define k-clique community tree and closed l-s-clique community to be the

index for analyzing k-clique communities in a graph abstracted from real data. K-clique

community dimension tree is also discussed here. We also define l-s-clique community pivot

to describe the bridging members of k-clique community. KCliqueTree is proposed to

construct the k-clique community tree and LSBridge is proposed to search the l-s-clique

community pivots. Since our algorithms take advantage of LargeKCliqueCSV, their time

costs are very low. The case study on DBLP verifies the availability of our definitions and

algorithms and their low time costs. Obvious our definitions and algorithms can be applied in

analyzing data in various fields such as email contact, mobile contact and internet browsing.

References

[1] L. C. Freeman, “The sociological concept of ‘group’: An empirical test of two models”, American

Journal of Sociology, vol. 98, no. 1, (1992).

[2] http://www.informatik.uni-trier.de/~ley/db/.

[3] M. E. J. Newman, “The structure and function of complex networks”, SIAM Review, vol. 45, (2003).

[4] L. F. Costa, F. A. Rodrigues, G. Travieso and P. R. Villas Boas, “Characterization of complex

networks: A survey of measurements”, Advances In Physics, vol. 56, (2007).

[5] E. Ravasz, A. L. Somera, D. A. Mongru, Z. Oltvai and A. L. Barab ási, “Hierarchical organization of

modularity in metabolic networks, Science, vol. 297, (2002).

[6] A. Arenas, A. Fernández, S. Fortunato and S. Gómez, “Motif-based communities in complex

networks”, Journal of Physics A: Mathematical and Theoretical, vol. 41, 224001, (2008).

[7] S. Fortunato, “Community detection in graphs”, Physics Reports, vol. 486, (2010), pp. 3–5.

[8] K. K. Xu, C. J. Tang, C. Li, Y. X. Jiang and R. Tang, “An MDL Approach to Efficiently Discover

Communities in Bipartite Network”, DASFAA, Japan, vol. 1, (2010).

[9] C. Aggarwal, Y. Xie and P. Yu, “Towards community detection in locally heterogeneous networks”,

SDM, USA, (2011).

[10] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks”, Proc.

Natl. Acad. Sci. USA, vol. 99, (2002).

[11] R. Guimerà, M. Sales-Pardo and L. A. N. Amaral, “Module identification in bipartite and directed

networks”, Phys Rev E, vol. 76, (2007).

[12] I. Derényi, G. Palla and T. Vicsek, “Clique percolation in random networks”, Phys. Rev. Lett, vol. 94,

160202, (2005).

[13] P. Hui, E. Yoneki and S. Y. Chan, “Distributed Community Detection in Delay Tolerant Networks”,

Proceedings of 2nd ACM/IEEE international workshop on Mobility in the evolving internet

architecture, New York, (2007).

[14] E. Yoneki, P. Hui and J. Crowcroft, “Visualizing community detection in opportunistic networks”,

Proceedings of the second ACM workshop on Challenged networks, New York, (2007).

[15] G. Palla, A. Barabasi and T. Vicsec, “Quatifying social group evolution”, Nature, vol. 446, (2007).

[16] J. M. Kumpula, M. Kivela and K. Kaski, “Sequential algorithm for fast clique percolation”, Physical

Review E., vol. 78, 026109, (2008).

[17] K. K. Xu, J. He and S. R. Zou, “A Cohesive Subgraph Visualization based Approach to Efficiently

Discover Large k-Clique Community”, Arabian Journal For Science and Engineering.

10.1007/s13369-012-0299-x, (2012).

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 217

[18] B. Everitt, Cluster Analysis, John Wiley, New York, (1974).

[19] P. Holme, M. Huss and H. Jeong, “Subnetwork hierarchies of biochemical pathways”, Preprintcond-

mat/0206292, (2002).

[20] E. Ravasz and A.-L. Barabasi, “Hierarchical organization in complex networks”, Phys. Rev. E, 67, 026112,

(2003).

[21] E. Ravasz, A. L. Somera, D. A. Mongru, Z. Oltvai and A. L. Barabasi, “Hierarchical organization of

modularity in metabolic networks”, Science, vol. 297, (2002).

[22] S. Borgatti and M. Everett, “A graph-theoretic perspective on centrality”, Social Net-works, vol. 28,

no. 4, (2006).

[23] N. Perra and S. Fortunato, “Spectral centrality measures in complex networks”, Physical review E,

vol. 78, 036107, (2008).

[24] H. J. Wang, J. M. Hernandez and P. V. Mieghem, “Betweenness centrality in a weighted net-work”,

Physical review E, vol. 77, 046105, (2008).

[25] P. J. Carrington, J. Scott and S. Wasserman, “Models and methods in social network analysis”,

Cambridge University Press, (2005).

[26] G. Palla, I. Derényi, I. Farkas and T. Vicsek, “Uncovering the overlapping community structure of

complex networks in nature and society”, Nature, vol. 435, (2005).

[27] T. Hastie, R. Tibshirani and J. H. Friedman, “The Elements of Statistical Learning, Springer”, Berlin,

Germany, (2001).

[28] L. C. Freeman, “Centrality in networks: conceptual clarification”, Social Networks, vol. 1, (1979).

[29] L. C. Freeman, “The gatekeeper, pair-dependency, and structural centrality”, Quality and Quantity,

vol. 14, (1980).

[30] N. Perra and S. Fortunato, “Spectral centrality measures in complex networks”, Physical Review E,

vol. 78, 036107, (2008).

[31] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large Databases”,

Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile,

Chile, (1994) September 12-15.

[32] X. Z. Wei, C. J. Tang and K. K. Xu, “CCDCD: Community Core Mining with Dy-namic Constrains

based on Graph Density”, Journal of Frontiers of Computer Science and Technology FCST, vol. 3,

no. 3, (2009).

[33] V. Boginski, “On structural properties of the market graph”, Innovations in Financial and Economic

Networks, Nagurney (editor), Edward Elgar Publishers, (2004).

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

218 Copyright ⓒ 2014 SERSC

