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Abstract 

Community detection is widely applied in many fields and k-clique community detection is 

one important detection method. There are many works on k-clique community detection. 

However, the work on analyzing the structure of k-clique community is rare. In this paper, we 

first give the definition of k-clique community tree and closed l-s-clique community, which 

could be used as the index of analyzing k-clique community. Then we give the definition of l-

s-clique community pivot to describe the members playing the bridging roles in k-clique 

community. We analyze the properties of l-s-clique community and propose KCliqueTree 

algorithm based on the properties. This algorithm could efficiently generate k-clique 

community tree whose leaf nodes represent closed l-s-clique community. We also propose 

LSBridge algorithm to search l-s-clique community pivot. At last, we conduct case study on 

DBLP (Digital Bibliography & Library Project) dataset, which shows the availability of our 

definitions and algorithms. 

 

Keywords: k-Clique Community Tree, l-s-clique community, k-Clique Community, 

Community Detection 

 

1. Introduction 

Graph is an abstract of real world data: the nodes indicate the information of entities while 

the edges indicate the links between entities [1]. To store the detailed information of the link, 

the edges could be abstracted as weighted directed or weighted undirected or unweighted 

directed or unweighted undirected. For example, in the research of scientific bibliography like 

DBLP [2], the authors are abstracted as nodes while the co-authorships between them are 

abstracted as edges. The time authors co-authored could be abstracted as the weight of the 

edges; the citation relationship between authors could be abstracted as edges. 

Many concepts are proposed to study the properties of graph data [3, 4]. Among them, 

community is of great interest to the research community and many algorithms are proposed 

for community detection [5-9]. Since both the assumption and the algorithms are relatively 

simple for unweighted undirected graph comparing with those for weighted and directed 

graph, the results on unweighted undirected graph is the basis for further analysis on the other 
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two types of graphs [10, 11]. K-clique community detection is for unweighted undirected 

graph. There is extended work on k-clique community detection [12-17]. However, the work 

on analyzing the structure of k-clique community is rare. Let us look at the definition first. 

Definition 0: A k-clique community is a union of all k-cliques (complete subgraphs of size k) 

that can be reached from each other through a series of adjacent k-cliques (where adjacency 

means sharing k-1 nodes). 

 

 

Figure 1. K-clique Communities with Different k 

Example 1: Assume a tiny subset of DBLP is abstracted as the graph (unweighted 

undirected) in Figure 1. When k is set to be 2, all the vertices are in a 2-clique community. 

When k is set to be 3, a, b, e and f are in a 3-clique community while c, d, g, h and i are in 

another 3-clique community. When k is set to be 4, c, d, h and i are in a 4-clique community. 

In Fig.1, the 2-clique community could be viewed as the first level community in describing 

the strength of the vertices connections; the two 3-clique communities could be viewed as the 

second level communities and the 4-clique community could be viewed as the third level 

community. They together form a hierarchical structure. Furthermore, through bc and fg, {a, 

b, e, f} and {c, d, g, h, i} are in the same 2-clique community. Then b, f in {a, b, e, f} and f, g 

in {c, d, g, h, i} could be viewed as playing the role of bridging different communities. 

The hierarchical clustering method [18] was proposed to detect communities with 

hierarchical tree and was widely applied since then [19-21]. It requires manually definition on 

the distance between vertices and the hierarchical tree generated by the algorithms are for the 

graph instead of k-clique communities. There is also extended work on assessing a vertice’s 

involvement in the walk structure of a graph [22-24]. Its focus is not on the k-clique 

communities either. 

This paper focuses on k-clique community. The main contributions include (a) giving the 

definition of k-clique community tree and closed l-s-clique community as the index of 

analyzing the hierarchical structure of k-clique community; (b) giving the definition of l-s-

clique community pivot to describe the members bridging k-clique communities; (c) 

proposing KCliqueTree algorithm to efficiently generate k-clique community tree whose leaf 

nodes represent closed l-s-clique community; proposing LSBridge algorithm to search l-s-

clique community pivot. (d) conducting case study on DBLP datasets. 

The rest of the paper is organized as follows. Section 2 gives some related work. Section 3 

introduces the basic idea of k-clique community tree and closed l-s-clique community. 

Section 4 describes our algorithms KCliqueTree and LSBridge. Section 5 conducts case study 

on DBLP dataset. Section 6 concludes the paper. 
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2. Related Work 

Community detection has gained great focus since the last decade. And there are extended 

work in this field [5-9]. Several milestone definitions are given to describe the concept of 

community. And Clique community [25] is one of the earliest definitions, which is widely 

used in social network analysis. Clique community is directly from the concept of clique in 

discrete mathematics. Recently, Palla [26] gave the definition of k-clique community based 

on the definition of k-clique. K-clique community is a definition focusing on the overlapping 

regions between communities. There is extended work on the detection of k-clique 

community [12-17]. However, the research on the hierarchical structure of k-clique 

community and its bridging member is rare. 

A well known community detection method called hierarchical clustering [18] is 

commonly used to explore the hierarchical structure of graph. A definition on the distance 

between vertices is given first. Then the distance between all vertice pairs is computed. At 

last, a hierarchical tree is generated according to the distance with a agglomerative algorithm 

or divisive algorithm. The hierarchical tree displays several levels of grouping of the vertices 

with small clusters included within large clusters [27]. Note that in this paper, we explore the 

hierarchical structure of k-clique community and cluster indicates k-clique community in our 

work. There is no manually defined similarity (distance) either. 
 

3. K-clique Community Tree and Closed l-s-clique Community 
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Figure 2. Graph Generated by Constraint with Constraint Dimension 

Before further discussion, let us look at example 2. Note that a specified constraint (The 

papers should be published in 2003) is used during the abstraction in example 1. In this paper, 

a constraint is a set of constraint dimensions. A constraint dimension is an atomic rule for 

generating the graph. The constraint in example 1 is composed only one constraint dimension: 

‘The papers should be published in year Y’. To make the specified constraint ‘The papers 

should be published in 2003’ tighter, constraint dimension ‘the authors co-published at least N 

times’ could be appended. Then if N is set to be 2, they together compose a new specified 

constraint ‘The papers should be published in 2003, the authors co-published at least 2 times’. 

Example 2: Given the constraint ‘The papers should be published in 2004’, a tiny subset of 

DBLP is abstracted as graph (1) in left Figure 2. Here the number on an edge indicates the 

times for the coauthorship of the vertices for the edge. Then constraint dimension ‘the authors 
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co-published at least N times’ is appended to construct a new constraint. If N is set to be 

larger than or equal to 2, the subset of DBLP is abstracted as graph (2) in right upper Figure 2; 

if N is set to be larger than or equal to 1, the subset of DBLP is abstracted as graph (3) in right 

bottom Figure 2. In graph (2), b, c and f are in a 3-clique community; c, g and h are in a 3-

clique community. In graph (3), b, c, d, f, g, h, i, j are in a 3-clique community. The 3-clique 

community in graph (3) could be viewed as the first level community in describing the 

strength of the vertices connections; the two 3-clique communities in graph (2) could be 

viewed as the second level communities in describing the strength of the vertices connections. 

Then b, f, g, h could be viewed as playing the role of bridging different communities. 

According to example 1 and 2, k-clique community could be viewed as the basis for 

analyzing the hierarchical structure and bridging member of k-clique community: (1) the 

value of k reflects the strength of the vertices connections inside a k-clique community: the 

larger k is, the higher the strength is; (2) the value of k indicates a subset relationship, i.e., a 

larger k-clique community is inside a smaller k-clique community; (3) Studying the k-clique 

communities helps to find the vertices playing the bridging role. 

 

3.1. Terminologies 

Let pi(1in) be a constraint dimension where n is a positive integer. The domain for the 

parameter θ of pi is a finite set {θ1, θ2, θ3,…, θi,…, θj,…θn}, where θi< θj if i < j. Then a 

specified constraint could be denoted as SP={spi| spi =(θlow, θhigh)} (1in). SP is a finite 

nonempty set. Here spi is a specified constraint on constraint dimension pi. With a specified 

constraint SP, an unweighted undirected graph abstracted from real data is denoted as G = (V, 

E), where V and E are both finite nonempty set. The subgraph induced by vertice set Vs is 

denoted as G|Vs. Whether G|Vc is a k-clique community is judged by boolean function k-

Clique(Vs, G, k). If G|Vs is a k-clique community, k-Clique(Vs, G, k)=1; else k-Clique(Vs, G, 

k)=0. 

Now, let us revisit example 2. For graph (2) in example 2, SP={sp1, sp2}, sp1 = ‘The papers 

should be published in 2004’, sp2= ‘the authors co-published at least 2 times’, p1=‘The papers 

should be published in year Y’, p2= ‘the authors co-published at least N times’. We call graph 

(2) is generated with sp2 from graph (1) or graph (2) is generated with constraint SP from 

original data. 
 

3.2. K-Clique Community Tree and Closed l-s-clique Community 

Definition 1: A k-clique community tree is a tree structure generated with specified 

constraint SP, whose vertices are k-clique communities. It could be constructed by the 

following steps: 

1) Generate a node for each k-clique community Ck detected with constraint SP; 

2) For k-clique community Ck and k+1-clique community Ck+1, if Ck+1 is a subset of Ck, the 

node for Ck+1 is a child of the node for Ck; 

3) The root is the k-clique community with the smallest k. It limits the scope of the tree. 
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Figure 3. An Example for k-clique Community Tree 
Example 3: The k-clique community tree in the right part of Fig. 3 is for the graph in the left 

part of Fig.3.  

Node A is the 2-clique community composed of {a, b, c, d, e, f, g, h, i, j}. Node B is the 3-

clique community composed of {a, b, e, f}. Node C is the 3-clique community composed of 

{c, d, g, h, i, j}. Node D is the 4-clique community composed of {c, d, h, i}. B and D are both 

leaves of the tree: the strength vertices connect to each other inside them is relatively strong. 

Vertices b and c are members of two children of the same parent node: they play the bridging 

role. 

According to example 3, k-clique community tree could be used as an index for exploring 

k-clique community: if users are interested in the communities inside which the strength of 

vertices connections are strong, they could check the leaves of the tree; if users are interested 

in the bridging members, they could check the nodes with many children. 

To describe the bridging members of k-clique community, the concept of l-s-clique 

community pivot is introduced. 

 

Definition 2: Let lClique1(Vl1, El1) and lClique2(Vl2, El2) be two k-clique communities (k=l), 

vertice v is a l-s-clique community pivot of lClique1 and lClique2 IFF there exists at least one 

k-clique community (k=s and l>s) sClique1(Vs, Es) which has a connected subgraph 

linkG(linkV, linkE) satisfying the following conditions: 

(1) Vl1 Vs, Vl2 Vs; 

(2) v∈linkV∩(Vl1∪ Vl2); 

(3) linkV∩Vl1≠ and linkV∩Vl2≠; 

(4) For each edge uw in linkE, neither {u, w} Vl1 nor {u, w} Vl2 holds. 

Whether a vertice v in G is a l-s-clique community pivot is judged by boolean function l-s-

bridge(v, G, l, s). If v is an l-s-clique community pivot, l-s-bridge (v, G, l, s) = 1; else l-s-

bridge (v, G, l, s) = 0. 

According to the definition of l-s-clique community pivot, for k-clique communities (k = l) 

lClique1(Vl1, El1) and lClique2(Vl2, El2), the vertices in Vl1∪ Vl2 are all l-s-clique community 

pivots. Let us look at an example. 
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Figure 4. An Example for k-clique Community Pivot 

Example 4: In Figure 4, a, b, c, d, e, f, g, h, i and j compose a 2-clique community; a, b, e and 

f compose a 3-clique community; c, d, g, h, i and j compose a 3-clique community. The 

vertice b could be viewed as a l-s-clique community pivot (l=3, s=2) between the 3-clique 

community composed by {a, b, e, f} and the 3-clique community composed by {c, d, g, h, i, 

j}: there exists a 2-clique community composed by {a, b, c, d, e, f, g, h, i, j} which has a 

connected subgraph {{b, c}, {bc}} satisfying the 4 conditions above: 1) {a, b, e, f}{a, b, c, 

d, e, f, g, h, i, j}, {c, d, g, h, i, j}{a, b, c, d, e, f, g, h, i, j}; 2) b{b, c}({a, b, e, f}{c, d, g, 

h, i, j}) ; 3) {b, c}{a, b, e, f}≠ and {b, c}{c, d, g, h, i, j}≠; 4) for the edge bc in {bc}, 

{b, c}{a, b, e, f} does not hold, {b, c}{c, d, g, h, i, j} does not hold. 

According to example 3 and example 4, on a k-clique community tree, l-s-clique 

community pivot describes how children nodes connect to each other inside their parent node. 

And according to example 3, the larger the k-clique community is, the higher level it has on 

the k-clique community tree. To simplify the k-clique community tree while avoiding the loss 

of information for k-clique community, l-s-clique community is introduced. 

Definition 3: Given a graph G and a vertice set Vs, G|Vs is an l-s-clique community if it 

satisfies the following conditions: 

(1) There exists s2 satisfying k-clique(Vs, G, s)=1; 

(2) There exists VlVs (l s) satisfying  k-clique(Vl, G, l)=1; 

(3)   |Vl|/|Vs|>α (1α0, α is specified by the user manually). 

Whether G|Vs is a l-s-clique community is judged by boolean function l-s-clique(Vs, G, l, s, 

α). If G|Vs is an l-s-clique community, l-s-clique(Vs, G, l, s, α) = 1; else l-s-clique (Vs, G, l, s, 

α) = 0. 

Three conclusions could be drawn according to definition 3: 

(1) An l-s-clique community is also a k-clique community and l-s-clique community could be 

represented by a node of k-clique tree; 

(2) When l is equal to s, a k-clique community is also an l-s-clique community; 

(3) When l is larger than s, a k-clique community may be an l-s-clique community: the larger 

α is, with the smaller possibility a k-clique community becomes an l-s-clique community. An 

extreme case is when α is equal to 1, only clique community is l-s-clique community. 

According to the conclusions above, the definition for l-s-clique community is more 

relaxed than clique community while tighter than k-clique community. Therefore, given a 

graph, the count for l-s-clique community may be large. And for some l-s-clique 

communities, their sub-communities are also l-s-clique communities. To lay emphasis on the 

extraordinary nature of the leaves for a k-clique community tree, closed l-s-clique community 

is introduced. 
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Definition 4: Given a graph G and a vertice set Vs, G|Vs is a closed l-s-clique community if it 

satisfying the following conditions: 

(1) l>s≥2 and l-s-clique(Vs, G, l, s, α)=1;  

(2) If li>l, then l-s-clique(Vs, G, li, s, α)=0; 

(3) If si<s, then l-s-clique(Vs, G, l, si, α)=0; 

(4) There does not exist a vertice set Vc satisfying Vs Vc and l-s-clique(Vc, G, l, s, α)=1. 

Note that definition 4 indicates only a leaf of k-clique community tree could be a closed l-s-

clique community. 

Example 5: After applying the concept of l-s-clique community, the k-clique community tree 

on Fig. 3 is transformed into the one on right Figure 5. Node A is the 2-clique community 

composed of {a, b, c, d, e, f, g, h, i, j}. Node B is the 3-clique community composed of {a, b, 

e, f}. Node C is the l-s-clique (l=4, s=3, α<0.8) community composed of {c, d, g, h, i, j}. B 

and C are both leaves of the tree: the strength vertices connect to each other inside them is 

relatively strong. Vertices b and c are still members of two children of the same parent node: 

they play the bridging role. 

According to example 5, after introducing l-s-clique community, when l is bigger than s, α 

is equal or close to 1, l-s-clique community is highly similar to the k-clique community 

(lks) it contains. This keeps the index function of k-clique tree. Besides simplifying the k-

clique tree, l-s-clique community helps to avoid regenerating highly similar k-clique 

communities, which reduces the time cost. 
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Figure 5. An Example for k-clique Community Tree after Introducing l-s-
Community 

3.3. The Property of l-s-community 

Properties similar to the famous Apriori property [31] exist for l-s-community. They are 

expressed as the following two theorems. 

Theorem 1: Given li, lj and s (li>lj >s) and given vertice set Vs (l-s-clique(Vs, G, li, s, α)=1), 

there must exists a vertice set Vc satisfying Vc Vs and l-s-clique(Vc, G, lj, s, α)=1.  

Proof: According to the definition of l-s-community, there musts exist a vertice set Vsk 

satisfying Vsk Vs, |Vsk|/|Vs|>α and k-clique(Vsk, G, li)=1. For vertice set Vc (Vc Vs), there 

exist two cases to be discussed: 

a) if k-clique(Vc, G, lj)=0, then l-s-clique(Vc, G, lj, s, α)=0; 

b) if k-clique(Vc, G, lj)=1, since li>lj, according to the definition of k-clique community, we 

can get |Vc|>|Vsk| and |Vc|/|Vs|>α, thus l-s-clique(Vc, G, lj, s, α)=1. 

The second case must exist. And Vsk=Vc is an example. Thus Theorem 1 holds. 
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Theorem 2: Given k, si, sj (l>si>sj) and given vertice set Vs (l-s-clique(Vs, G, k, sj, α)=1), 

there must exists a vertice set Vc satisfying Vc Vs and l-s-clique(Vc, G, k, si, α)=1.  

Proof: According to the definition of l-s-community, there musts exist a vertice set Vsk 

satisfying Vsk Vs, |Vsk|/|Vs|>α and k-clique(Vsk, G, si)=1. For vertice set Vc (Vc Vs), there 

exist two cases to be discussed: 

a) if k-clique(Vc, G, sj)=0, then l-s-clique(Vc, G, l, si, α)=0; 

b) if k-clique(Vc, G, sj)=1, since sj> sj, according to the definition of k-clique community, we 

can get |Vs|>|Vc| and |Vsk|/|Vc|>α, thus l-s-clique(Vc, G, l, sj, α)=1. 

The second case must exist. And Vsk=Vc is an example. Thus Theorem 2 holds. 

Theorem 1 and theorem 2 together provide a path to detect l-s-community. According to 

theorem 1, given the s for k-clique community, the closed l-s-clique community could be 

discovered by checking the k-clique community with specified l. The space is searched by 

adjusting k (from bigger to smaller) and the search stops once discovering l-s-community or 

ls; according to theorem 2, given the l for k-clique community, the closed l-s-clique 

community could be discovered by checking the k-clique community with specified s. The 

space is searched by adjusting s (from smaller to bigger) and the search stops once 

discovering l-s-community or ls. 

 

3.4. K-clique Community Dimension Tree 

To describe the hierarchical structure of k-clique community on constraint dimension pi, 

we introduce the concept of k-clique community dimension tree. The discussion is based on 

the assumption that with the decreasing of θ from θn to θ1, the number of edges of G also 

decreases. 

Definition 5: A k-clique community dimension tree is a tree structure generated with 

specified constraint SP and constraint dimension pi, whose vertices are k-clique communities. 

Here SP does not contain spi. It could be constructed by the following steps: 

(1) Generate a node for each k-clique community Ck detected with constraint SP{spi =(θi, 

θi)}; 

(2) For k-clique community Ci
k
 with constraint SP{spi =(θi, θi)} and k-clique community 

Ci+1
1
 with constraint SP{spi =(θi, θi)}, if Ci+1

1
 is a subset of Ci

k
, the node for Ci+1

1 
 is a child 

of the node for Ci
k
; 

(3) The root is the k-clique community generated with the smallest θ (θ1). It limits the scope 

of the tree. 

According to definition 5, the expression of k-clique community dimension tree is similar 

to k-clique community tree. However, the semantic is different: the k value for k-clique 

community dimension tree is permanent, the hierarchical structure is generated by the 

different strength of the constraint; the hierarchical structure of k-clique community tree is 

generated by different k 

The algorithm to generate k-clique community dimension tree is the same as that to 

generate k-clique community tree. Therefore, in the next section, we will only focus on the 

algorithm for k-clique community tree. 
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4. The k-clique Community Tree Construction Algorithm and the k-clique 

Community Pivot Detection Algorithm 
 

4.1. Sketch of KCliqueTree 

According to the analysis above, KCliqueTree is proposed to construct k-clique community 

tree, which is shown in Algorithm 1. Here both k-clique community and closed l-s-clique 

community are considered excluding non-closed l-s-clique community. KCliqueTree is 

roughly divided into two steps: 

1) The first step is shown by line 1 to line 6. Through searching the maximum clique 

community for kclique, it gives the upper limit for the search in KCliqueSubTree and 

LSCliqueSubTree. If kclique is a clique community, the algorithm stops. 

2) The second step is shown by line 7 to line 19. If the leaf does not indicate a closed l-s-

community, KCliqueSubTree is called; if the leaf indicates a closed l-s-community, both 

KCliqueSubTree and LSCliqueSubTree are called; the nodes generated by 

KCliqueSubTree indicate small k (here k is set to be smaller than 5) while the nodes 

generated by LSCliqueSubTree indicate large k. 
 

Algorithm 1 KCliqueTree   

A CSV plot [17] based algorithm to construct k-clique community tree 

Input: G, csvPlotK(CSV plot for G), kClique(a k-clique community), k(the value for k 

of kClique), lsCal(the flag for the existence of l-s-community), α 

Output: tree (a k-clique community tree with kClique as the root) 

1. maxClique = MaxCliqueCSV(G, csvPlotK, k);   

2. lmax =  |maxClique|; 

3. if  lmax/|kClique |>α 

4.     treeRoot = {k, lmax, kClique}; return; 

5. endif 

6. store {k, lmax, {maxClique}, kClique} in a temporary buffer; 

7.  treeRoot = kClique; 

8.  if lsCal = false 

9.      tree = KCliqueSubTree(treeRoot, kClique, G, csvPlotK, k, lmax); 

10.  else 

11.      if k < 5 

12.          headTree = KCliqueSubTree(treeRoot, kClique, G, csvPlotK, k, 5); 

13.      else 

14.          headTree = treeRoot; 

15.          for each leafNode in headTree 

16.                LSCliqueSubTree(leafNode, the k-clqiue communities inside leafNode,               

G, csvPlotK, k, lmax, α, True);  

17.           end 

18.       endif      

19.  endif 

Here KCliqueSubTree is simple. It is divided into two steps:  

1) The first step is to call KCliqueCSV [17], perform a transverse and check out all the k-

clique communities with different k.  



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

210   Copyright ⓒ 2014 SERSC 

2) The second step is to construct a hierarchical tree according to subset relationship 

between k-clique communities 

We will lay emphasis on LSCliqueSubTree, which is shown in Algorithm 2. 

LSCliqueSubTree is a recursive algorithm based on theorem 1 and theorem 2.  It uses 

the buffer to store the intermediate results of computation, reduces the computation by 

calling subprocedure calOrLoad, saveRelation and reduces the search scope of the next 

step by calling subprocedure subG, subCSVPlot. 

Similarity computation is an essential step for memory based method. The most 

commonly used similarity computation formulas are Pearson coefficient, cosine 

similarity and adjust cosine similarity. Here Pearson coefficient is adopted for 

improvement. Our method also works for other similarly computation formulas. It is 

roughly divided into two steps: 

1) The first step is shown by line 1 to line 6. It judges whether the recursive call should be 

stopped.  

2) The second step is shown by line 7 to line 27, which could be divided into three sub-

steps: 

 

Algorithm 2 LSCliqueSubTree   

A CSV plot [17] based algorithm to construct k-clique community tree 

whose leaves are closed l-s-clique community 

Input: treeRoot, G, sClique(a k-clique community with s), 

csvPlotS(CSV plot for sClique),  s, l, α for l-s-clique community, 

maxCal(flag) 

Output: tree (a k-clique community tree with sClique as the root and 

closed l-s-clique communities as its leaves) 

1. if s>l 

2.     return; 

3. endif 

4. if (treeRoot is a l-s-clique community) or (treeRoot has children) 

5.     return; 

6. endif 

7.  if s==l 

8.     treeRoot = {s, l, wclique}; return; 

9. endif 

10. if maxCal==true 

11.     sG = subG(G, sClique); 

12.     sCSVPlotS = subCSVPlot(csvPlotS, sClique); 

13.     maxClique =  MaxCliqueCSV(sG, sCSVPlotS, s); 

14.     if |maxClique| < l 

15.         l = |maxClique|;  

16.     endif 

17. endif 

18. lKCliques = calOrLoad(sClique, l); 

19. calContinue = true; 

20. for each lClique in lKCliques 

21.      if |lClique|/|sClique| >α  

22.        make {s, l, sClique} as a child of treeRoot; 

23.        calContinue = false; 
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24.      endif 

25. endfor 

26. if calContinue == false 

27.     return; 

28. endif  

29. lKCliques = calOrLoad(sClique, s+1); 

30. for each sPlusClique in sPlusKCliques 

31.     saveRelation(sPlusClique, lKCliques, s+1, l); 

32.     make sPlusClique a child of treeRoot and denote it as subRoot; 

33.     LSCliqueSubTree(subRoot, sPlusClique, sG, sCSVPlotS, s+1, l, 

α, true); 

34. endfor 

35. nextL = findNextMax(csvPlotS, lmax); 

36. LSCliqueSubTree(treeRoot, sClique, sG, sCSVPlotS, s, nextL, α, 

false);       

① The first step is shown by line 10 to 17. If maxCal is true, the search the maximum 

clique community inside sClique and update the upper limit for the searching. 

         ② The second step is shown by line 18 to 28. It first judges whether there exists a l-s-

clique community with s and l inside sClique. If it is true, this community is a closed l-

s-clique community according to theorem 2; the results are stored and the recursive call 

is stopped.   

③  The third step is shown by line 29 to 36. It updates sClique as a k-clique 

community (k=s+1), s as s+1 for the l-s-clique community and performs recursive 

call; or updates l as nextL for the l-s-clique community and performs recursive 

call. 

The subprocedure calOrLoad appears twice on line 11 and line 19 respectively. On line 11, 

it checks whether there exists the information for k-clique community with l inside sClique in 

the buffer, if the result is true, it gets the information from the buffer; or call KCliqueCSV 

[32] and store the results into lKCliques  and store {sClique, lKCliques, s, l} into the buffer. 

The subprocedure saveRelation appears on line 21. It first searches the parent-child 

relationship k-clique communities with s+1 and l inside sClique, then store them into the 

buffer. 
 

Algorithm 3 LSBridge   

A CSV plot [17] based algorithm to detect l-s-clique community pivot 

Input: G, csvPlotK(CSV plot for G), kClique(a k-clique community), 

k(the value for k of kClique), lsCal(the flag for the existence of l-s-

community), α 

Output: tree (a k-clique community tree with kClique as the root) 

1. lsBridge = ; 

2. if l>s 

3.    lCliqueG1=subG(G, lClique1); 

4.    lCliqueG2=subG(G, lClique2); 

5.    sCliqueG=subG(G, sClique) ; 

6.    LSBridge=LSBridge∪(lClique1∩ lClique2); 

7.    deleteSubG(sCliqueG, lCliqueG1∪lCliqueG2 ) ;   

8.    linkedGraphs=subLinkedG(sCliqueG); 
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9.    for each linkedG in linkedGraphs 

10.          if (linkedG∩ lCliqueG1≠)&&(linkedG∩ lCliqueG2≠) 

11.        LSBridge=LSBridge ∪ Vertice(linkedG) ∩ (Vertice(lClique1)

∪Vertice(lClique2));  

12.          endif  

13.    endfor 

14. endif 

 

4.2. Sketch of LSBridge 

Given lClique1 and lClique2 (k-clique communities with l), their l-s-clique community 

pivot could be searched by method of exclusion. The strategies for exclusion are as follows: 

1) If there exists a l-s-clique community pivot, lClique1 and lClique2 exist in at least one k-

clique community with s denoted as sClique1; 

2) If the connected graph linkG, which helps to find the l-s-clique community pivot, does 

not share vertices with lClique1 and lClique2, linkG is neither lClique1 nor lClique2; 

3) A shared vertice of lClique1 and lClique2 is an l-s-clique community pivot. 

According to the definition of l-s-clique community pivot and the strategies for exclusion, 

LSBridge is proposed to search the l-s-clique community pivot of two k-clique communities 

with two l. This algorithm reduces the time cost by filtering with CSV plot. As shown in 

algorithm 3, LSBridge is roughly divided into two steps: 

1) The first step is shown by line 3 to 5, it generates the subgraphs lClique1, lClique2 and 

sClique are in respectively. 

2) The second step is shown by line 6 to 14. Line 6 finds the shared vertices of lClique1 and 

lClique2. Line 7 to line 11 checks whether the non shared vertices of lClique1 and 

lClique2 are l-s-clique community pivots based on exclusion strategy 2. 

 

4.3. Time complexity 

For KCliqueTree, the time complexity highly depends on SCP and LargeKCliqueCSV: if 

the leaves are not l-s-clique communities, the time cost is the cost for traversing all the k-

clique communities with different k; if the leaves are l-s-clique communities, the smaller αis, 

the number of k-clique communities to be traversed is smaller and the time cost is less. In 

[17], Xu has demonstrated the high efficiency of LargeKCliqueCSV to detect large k-clique 

communities. Thus KCliqueTree is also efficient when k is large. 

The scale of the input k-communities for LSBridge is very small. The worst time 

complexity of subG, subLinkedG and deleteSubG is O(|E|). Thus LSBridge is linear. 

Since the time complexity for both KCliqueTree and LSBridge is not a problem, the focus 

will be on the results generated by the two algorithms. 

 

5. Case study 

All experiments are conducted on an INTEL core 2DuoProcessorE2160 with 2G 

memory, running Windows XP. All algorithms are implemented with C++ and STL. 

 

5.1. The Dataset  

Since the loss of information is significant for SMD [33] dataset. Only DBLP dataset 

is adopted for case study. DBLP is an integrated database system composed of the 
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bibliography information in the field of computer science. And it  is stored as XML file. 

In the graph transformed from DBLP data, vertices represent authors while edges 

represent the co-authorship. The existence of an edge between two authors indicates 

that in a given time period, the times for their co-authorship is not smaller than a 

threshold. When the threshold is set to be 2, the statistical information for DBLP 

dataset is shown in Figure 6 and Figure 7. Figure 6 and Figure 7 show that the bigger 

the year is, the larger |V| and |E| are. But the average |E|/|V| is always small. 

0
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1980 1984 1988 1992 1996 2000 2004 2008

year

Avg(|E |/|V |) DBLP-2+

 
Fig. 6. The statistical information on average |E|/|V| for DBLP dataset  

0

20000

40000

60000

80000

1980 1984 1988 1992 1996 2000 2004 2008

year

size
DBLP-2+|V| DBLP-2+|E|

 

Figure 7. The Statistical Information on Vertices and Edges for DBLP 
Dataset 

5.2. Evaluation and Results 

The constraint for the graph abstraction is set to be ‘the papers are published in year Y, the 

authors co-published at least twice’. The k-clique community tree generated from the 

abstracted graph will be studied. According to the structure of k-clique community trees, they 

are classified into two categories: balanced tree and non-balanced tree. Our case study will 

focus on the trees whose roots are 3-clique communities. 

 

5.2.1. Case 1 

When Y is set to be 2006, a k-clique community composed of 22 vertices is discovered. 

The time cost for searching the l-s-clique community pivot is 0.11 seconds. When α is set to 

be 0.8, the time cost for constructing the k-clique community tree is 0.125 seconds. As shown 

in Figure 6, the tree is balanced. 

A is a 3-clique community composed of 22 vertices. F is a 7-4-clique community composed 

of 7 vertices. And the other nodes are 4-clique community. When l is set to be 4 and s to be 3, 

there are 8 l-s-clique community pivots inside A. The detail is shown in Table 1. Table 1 

shows that 1) B, C, and E share relatively more l-s-clique community pivots; 2) D and F share 

relatively more l-s-clique community pivots. 
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Figure 6. An Example for Balanced k-clique Community Tree 

Table 1. The l-s-clique Community Pivots for the Tree in Figure 6 

Node l-s-clique community pivots The communities 

bridged 

B Jiawei Han, Philip S. Yu, Jian Pei C, D, E, F 

C Jiawei Han, Philip S. Yu, Xifeng Yan B, D, E, F 

D Bing Liu, Wei Wang, Baile Shi B, C, E, F 

E Philip S. Yu, Jian Pei B, C, D, F 

F Jian Pei, Wei Wang, Baile Shi, Ada Wai-

Chee Fu 

B, C, D, E 

The analysis above shows that: 1) As the l-s-clique community pivots, Jiawei Han, Jian 

Pei, Philip S. Yu, Bing Liu, Wei Wang are all famous scholars in the field of Data Mining: 2) 

In general, the authors represented by vertices which are not l-s-clique community pivots are 

unnamable scholars. 

 

5.2.1. Case 2 

 

        
       (a) l-s-clique communities(α=0.8)            (b) l-s-clique communities(α=0.7) 

 

 
(c) l-s-clique communities (α=0.6) 

Figure 7. An Example for Non-Balanced k-clique Community Trees 
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When Y is set to be 2008, a k-clique community composed of 49 vertices is discovered. 

The time cost for searching the l-s-clique community pivot is 0.266 seconds. When α is set to 

be 0.8, the time cost for constructing the k-clique community tree is 0.281 seconds and the 

tree is non-balanced; When α is set to be 0.7, the time cost for constructing the k-clique 

community tree is 0.235 seconds and the tree is non-balanced; When α is set to be 0.6, the 

time cost for constructing the k-clique community tree is 0.219 seconds and the tree could be 

regarded as balanced. The results are shown in Figure 7. 

When α is reset from 0.8 to 0.7, the subtree whose root is G changes most. The reason is 

that G is composed of 10 vertices and 8 of them compose a clique community. When α is 

reset from 0.7 to 0.6, the subtree whose root is I changes most. The reason is that G is 

composed of 14 vertices: 8 of them compose L (a 6-clique community) while 9 of them 

compose K (a clique community). 

Table 2. The l-s-clique Community Pivots for the Trees in Figure 7 

Node l-s-clique community pivots The communities 

bridged 

B Thomas Sikora, Lutz Goldmann C, D, E, F, G, H 

C Vasileios Mezaris, Ioannis Kompatsiaris B, D, E, F, G, H 

D Thomas Sikora, Noel E. O'Connor, Lutz 

Goldmann, Tomasz Adamek,Yannis S. 

Avrithis 

B, C, E, F, G, H 

E Thomas Sikora, Noel E. O'Connor, B, C, D, F, G, H 

F Vasileios Mezaris, Ioannis 

KompatsiarisAlan 

B, C, D, E, G, H 

G Tomasz Adamek, Yannis S. Avrithis, 

Evaggelos Spyrou 

B, D, E, H 

G Vasileios Mezaris, Ioannis Kompatsiaris C, F 

H Noel E. O'Connor, Yannis S. Avrithis B, C, D, E, F, G 

When l is set to be 4 and s to be 3, there are 10 l-s-clique community pivots inside A. The 

detail is shown in table 2. Table 2 shows that 1) C and F share l-s-clique community pivots; 

2) B, D, E and H share relatively more l-s-clique community pivots; 3) The vertices inside G 

could be classified into two types of l-s-clique community pivots: bridging C&F and bridging 

B, D, E&H. 

The analysis above shows that: 1) The k-clique community detected here is for the field of 

multimedia: 2) In general, the authors represented by vertices which are not l-s-clique 

community pivots published at a relatively later date.  

The analysis on case 1and case 2 shows that: 1) Searching l-s-clique community pivots 

helps to discover interesting knowledge; 2) k-clique community tree helps to understand how 

the vertices are bridged by key vertices and then construct a community. 

 

5.2.3. Case 3 

Two constraint dimensions are chosen: ‘The papers should be published in year Y’ and ‘the 

authors co-published at least N times’. After specifying Y, we will analyze the k-clique 

community dimension tree on dimension ‘the authors co-published at least N times’. Here N 

is set to be 2 and 3 respectively. Then there are at most two levels for the k-clique community 

dimension tree. Since it is too simple, no visualization is used here. 
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Considering the root node A in Figure 6, if N is set to be 3, it has 4 children. Like l-s-clique 

community pivots, the authors bridging the four children are Jiawei Han, Jian Pei and Philip 

S. Yu. 

Considering the root node A in Figure 7, if N is set to be 3, it has 5 children. Like l-s-clique 

community pivots, the authors bridging the 5 children are Ioannis Kompatsiaris, Noel E. 

O'Connor and Yannis S. Avrithis. 

According to the analysis above, although k-clique community dimension tree and k-

clique community tree are different from each other on the contents, they are similar to 

each other in describing bridging members. 

 

6. Conclusions 

In this paper, we define k-clique community tree and closed l-s-clique community to be the 

index for analyzing k-clique communities in a graph abstracted from real data. K-clique 

community dimension tree is also discussed here. We also define l-s-clique community pivot 

to describe the bridging members of k-clique community. KCliqueTree is proposed to 

construct the k-clique community tree and LSBridge is proposed to search the l-s-clique 

community pivots. Since our algorithms take advantage of LargeKCliqueCSV, their time 

costs are very low. The case study on DBLP verifies the availability of our definitions and 

algorithms and their low time costs. Obvious our definitions and algorithms can be applied in 

analyzing data in various fields such as email contact, mobile contact and internet browsing. 
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