
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.179-190

http://dx.doi.org/10.14257/ijdta.2014.7.3.16

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Figure 1. DTDs of Recursive XML Documents

Recursive Twig Pattern Query

Husheng Liao, Hongyu Gao and Zhaoning Guan

Beijing University of Technology, Beijing, China

{liaohs, hy_gao}@bjut.edu.cn, gznmind@gmail.com

Abstract

XQuery is a language for querying XML data which is widely used on the Internet. In

XQuery, user can define recursive functions for querying and processing XML data. XML

twig pattern query is considered as core operation for querying XML data which has been

studied intensively in recent years. More powerful recursive queries can be achieved via

combining user-defined recursive function and twig pattern query. This paper proposes

recursive twig pattern query (RTPQ) to extend traditional twig pattern query with recursion

and an effective holistic twig matching algorithm for RTPQ. With the help of RTPQ, recursive

function call can access its result instead of evaluating local twig pattern queries in each

calling. Results of experiments show that this approach can improve query efficiency and

eliminate redundant intermediate results.

Keywords: XML, XQuery, Twig Pattern, Recursive Function

1. Introduction

XML has been widely used on the data storage and exchange on Internet. XML twig

pattern query [1] is considered as a core operation for querying XML which has been studied

intensively in recent years. It models a query request over a number of structural joins

(ancestor-descendant relationship and parental-child relationship) between XML nodes as a

pattern tree. This kind of query can be performed by twig pattern matching against a tree-

structured data like XML data. In XQuery language, which is recommended by W3C for

querying XML data, the query usually consists of one or more nested FLWOR expressions

containing some XPath expressions to locate XML nodes. The core operation within them is

twig pattern query. For example, XPath expressions //person/name and //person/gender can

be merged into a twig pattern, which has a root node labeled with person and two leaf nodes

labeled with name and gender respectively.

mailto:hy_gao%7D@bjut.edu.cn
mailto:gznmind@gmail.com

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

180 Copyright ⓒ 2014 SERSC

Figure 2. An Example of XQuery Recursive Query and an XML Document

In practice, XML can be used to represent data with recursive data structure. Figure 1

shows DTDs of three XML documents in which the recursively defined element are denoted

by bold letters. For these documents, recursive query can be submitted by various query

languages. XQuery can describe recursive processing of XML data in user-defined recursive

function, and XSeq [2], which is a query language for XML streams, supports recursive query

by some powerful extensions to XPath, such as Kleene closure.

Figure 2 shows an example of XQuery recursive query against the XML document defined

by DTD shown in Figure 1(a). The query program uses a user-defined recursive function with

element constructors to rebuild document by searching /child/person nodes from the

document repeatedly, and creating person nodes and using the content of each original name

node as an attribute of the new person nodes. This searching can be also described as

person(/child/person)* in XSeq language.

However, efficiency of such query requests may be reduced by both recursive computation

and complex data query. In recursive function calls in XQuery, if a function body includes

some FLWOR or XPath expressions, evaluation of these expressions at each recursion call

level may work on the result of the corresponding twig pattern matching. Similar queries are

performed repeatedly and redundant intermediate results are generated at each recursion call

level. Consequently, it increases the cost of data querying and causes declines in performance

of the function call.

This paper studies on the processing of recursive query with twig pattern query. The main

contribution is as follows:

a. Propose the concept of recursive twig pattern query denoted by RTPQ which extends

the traditional twig pattern to describe recursive query request.

b. Propose a holistic twig matching algorithm and an enumeration algorithm for RTPQ. A

number of twig patterns in recursive calls can be replaced by a single RTPQ, which

avoids querying XML documents repeatedly and reduces the redundant intermediate

data.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 181

The remainder of this paper is organized as follows. Section 2 explains the motivation of

the research. Section 3 defines recursive twig pattern. Section 4 describes RTPQ algorithm.

Section 5 discusses the related work. Experimental results are presented in Section 6.

2. Motivation

Recursive structure often appears in XML documents. In Figure 2, the ancestor node

named Betty is stored under the family node and its descendant recursively stored in the child

node. For simplicity, person nodes are numbered as “p1” and so on. For XML query in

XQuery, twig patterns can be identified from its FLOWR expression.

For example, the twig pattern shown in Figure 3(a) can be identified from the XQuery

program in Figure 2, which will be applied on the function’s parameter $a. Dotted edges in

the tree pattern denotes the optionally relationships. The nodes in twig pattern is called query

node. The results of twig query are bound to the variables on query nodes for subsequent

processing. By the current holistic pattern matching algorithm [3], its query results can be

gotten through a single matching against an XML document.

However, this twig pattern can only match data in a single function call. For example,

when function recons is first called, the root node person($a) matches with p1, person($n)

with matches p2, p5 and p6 from sub-trees of p1, and they are put into the next recursion call

level one by one as its argument. The twig query needs to be executed against them and scan

entire sub-tree rooted at these nodes passed by $a. Thus, some XML sub-tree may be

traversed repeatedly. But the original intention of twig query is to scan an XML document

only once.

In order to optimize the recursive query in XQuery functions, this paper extends XML twig

pattern with the ability to represent recursive query. As shown in Figure 3(b), RTPQ can

describe the relationship between actual parameter and formal parameter in recursive function

calling. The argument of recursive function call corresponds to a recursive query node, which

is denoted as a circle with a slanted arrow, and it will be considered as the root query node at

the next recursion call level. Benefitted from RTPQ, only one single pattern-matching is

needed to obtain all data for every recursive function callings. It merges multiple twig

matching into one single RTPQ matching that improves efficiency of recursive query in

XQuery. For simplicity, there are two assumptions in this paper: (1) twig query in recursive

functions is applied on only one single XML document; (2) XPath expressions in the function

body are static.

3. Recursive Twig Pattern

Definition 1. Recursive twig pattern Q is defined as a non-empty query tree T (N, E, bind,

lab, root), where N is a finite set of query nodes, E is a finite set of edges, root∈N is the root

query node, RN-{root} is a set of recursive query nodes, MN is a set of return nodes,

Figure 3. The Twig Pattern Extracted from Function Body

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

182 Copyright ⓒ 2014 SERSC

function bind: M→Name gives bind variables of return nodes, function lab: N→String gives

node labels. Edges in E are defined as e=(q1, q2, struct, bindtype), where q1, q2∈N, struct∈
{PC,AD}, bindtype∈{mandatory, optional}, where PC and AD denotes ancestor-descendant

and parental-child relationships respectively, mandatory and optional denotes the

relationships are mandatory and optional respectively.

Definition 2. Matching M between a twig pattern and a tuple of XML nodes should satisfy

following properties: (1) In accordance with depth-first order, types of XML nodes in the

tuple correspond to labels of query nodes. (2) Structural relationship between any two XML

nodes in the tuple meets structure constraints described by the edge between corresponding

query nodes.

In the recursive twig pattern, all labels of the query nodes are determined by corresponding

location steps of an XPath expression. Especially, label of the root query node is determined

by the argument of function call in main query body. The recursive query node not only

describes the argument of inner function call at current recursion call level but also describes

the parameter of the callee at next recursion call level. The root query node describes

parameter of the function only at first recursion call level. Therefore, tuples in matching

results can be divided into two types.

Definition 3. A basic matching result of recursive twig pattern is a tuple D which consists

of XML nodes. D meets the matching M with recursive twig pattern. The element of D, which

corresponds to the root query node, must be the XML node bound by the parameter at the first

run of recursive function.

Definition 4. A recursive result of recursive twig pattern is a tuple B which consists of

XML nodes. B meets the matching M with recursive twig pattern (makes recursive query

node replace the root query node). The element of B, which corresponds to the root query

node, must also correspond to the recursive query node in another matching result.

The result of RTPQ is composed of one basic matching result and several recursive results.

A basic result is what recursive function needs at first recursion call level. The root query

node only matches with XML nodes passed by the argument. A recursive result provides data

to recursive function at a deeper recursion call level.

The recursive twig pattern shown in Figure 3(b) consists of root query node person($a),

two ordinary query nodes labeled with name($r1) and child, and a recursive query node

labeled with person($n). All edges are PC edge, where solid lines for mandatory relationships

and dotted lines for optionally relationships. The root query node matches with the argument

of function recons and other query nodes correspond to XPath location steps in the function

body.

4. Recursive Twig Matching Algorithm

A number of matching algorithms for ordinary twig pattern query have been issued[3-8].

[3] proposes two holistic twig matching algorithms: PathStack and TwigStack, using twig

pattern to match XML document as a whole firstly. [4] proposes Twig2Stack which optimizes

TwigStack and supports GTP which an extended twig pattern, but its complexity of stack

structure is not easy to use. [5] comes up with TwigList using a kind of list as the data

structure which represents intermediate results clearly and is more practical. Recursive twig

matching algorithm develops on the basis of TwigList algorithm.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 183

4.1. TwigList

Definition 5. XML node v meets the sub-query rooted at query node q, if v and some of its

descendants match with the sub-tree rooted at q in twig pattern under Definition 2, denoted by

meet(v,q).

TwigList algorithm crieates a list Li for every query nodes qi. For every XML nodes v and

query node q in a twig pattern, v will be added to the end of list in turn according to lab(q) if

meet(v, q) is true. The algorithm makes preorder traversal of an XML document and process

XML nodes in postorder traversal. A stack is used to converse the processing order. Each

XML node matched with qi has a set of range pointers point to each Lc (qc is sub nodes of qi)

to indicate an interval, denoted by intervalc, which is composed of a start pointer and end

pointer. Start pointers of its intervalc are set to the end of Lc when an XML node matching

with qi is pushed into the stack, and their end pointers are set to the end of Lc when the XML

node is popped up. Therefore, the XML nodes which are appended to every Lc during the

period between the two operations must be in the interval. If every intervalc is not empty,

meet(v, qi) holds for each XML node v matching with qi and v should be appended to the

corresponding list. In a twig pattern, PC edges are handled as same as AD edges, but a brother

chain is attached to the lists to connect the XML nodes that meet PC relationship with its

parent node. After traverse entire XML document, starting from the list of root query node,

user can enumerate query results via XML nodes and their range pointers. Figure 4 shows the

list structure for query person//name against the document shown in Figure 2(b). Here, XML

node p2 has an interval pointer to list Lname and it indicates that node n3, n4 and n2 are its

children. It should be noted that the nodes in these list are arrayed in the XML document

order.

4.2. Recursive Twig Matching

Root query node and recursive node are special treated in recursive twig matching

algorithm in order to match all query results that entire recursion period needs and make

matching results to represent the relations between different recursion call levels. The

algorithm is divided into two phases: matching and enumeration. The matching algorithm is

used to construct list similar to TwigList and the enumeration algorithm provides a unified

interface to obtain sequence of XML nodes from the list according to the query node of twig

pattern.

As shown in Figure 3(b), the matching algorithm should be able to match p1 with

person($a), other person node with person($n), name node with name($r1) and child node

with query node child. Recursive hierarchical relationships between them should be recorded

too. Enumeration algorithm should be able to enumerate data depending on recursion call

level. At first level, its basic matching result should be found and recursive matching results

Figure 4. The List Structure of TwigList

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

184 Copyright ⓒ 2014 SERSC

TwigR-Enumeration (Q, {Lv1,…,Lvn}, s, Vq, b)

Input: twig pattern Q=(N,E,bind,lab,root),

 lists Lvi (1≤i≤n), parameter s, given query node Vq, boolean b.

Output: sequence seq of XML nodes from Lvq.

1. Begin

2. seq ← ∅;

3. while Lv1≠∅ do

4. v = next(Lv1);

5. if v = next(s) then

6. path ← path from V1 to Vq in Q;

7. while path≠∅ do

8. V ← next(path);

9. if b = true then

10. EnumNodes(v.start, v.end, V, Vq, seq)

11. else

12. EnumNodes(v.rstart, v.rend, V, Vq, seq)

13. end of while;

14. end of while;

15. End.

Procedure EnumNodes(start, end, V, Vq, seq)

16. for v∈ [start, end] do

17. if (V, Vq, struct, type)∈ E then

18. addToSeq(seq, v, Lvq, v.startvq, v.endvq);

19. else

20. Vc ← advance(path);

21. EnumNodes(v.startvc, v.endvc, Vc, Vq, seq);

22. end of for.

Procedure addToSeq (seq, v, L, start, end)

23. for each i ∈ [start, end] do

24. node ← L[i];

25. if isAD(VC) or ischild(node, v) then

26. if node.traversed = false then

27. addinto(seq, node);

28. node.traversed ← true;

29. end of for.

Figure 7. Enumeration Algorithm

should be enumerated at other call levels. For example, at first recursion call level it should be

able to enumerate sequence of nodes p2, p5 and p6 by the query node person($n) and they are

enumerated by iteration variable $n one by one as the argument and is passed into the next

recursion call level.

The matching algorithm TwigR-Construction is outlined in Figure 5. Its inputs are the

recursive twig pattern Q with n query nodes, XML nodes sequence s that is value of the

argument of a function call in main query body. Each input XML nodes is accompanied by

the encoding which represents structural relationship with others. Output is list Lvi built for

each query node Vi. In the algorithm, v represents XML node, V represents its corresponding

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 185

query node, where V1 is root query node. Each node v maintains pairs of pointers v.startvp and

v.endvp to specify the interval for its Vp-type descendants in lists Lvp, where Vp are child nodes

of V. If v is a recursive query node, there are another pairs of pointers v.rstartvk and v.rendvk to

specify the interval for its Vk-type descendants in lists Lvk, where Vk represents each child

node of V in the twig pattern.

Initialization phase of the algorithm is line 2 and 3. It builds empty stack and lists and

assigns all input XML nodes in preorder to different label streams Xi according to the type of

query nodes. The stream typed by root query node only keeps XML nodes bound by the

parameter in function call expression, only these XML nodes can be put into the list of root

query node eventually, while the rest of XML nodes will not be placed in the list even if they

have the same type as root query node. Starting from line 4, current node v is picked out from

Xq which the top element is the first following preorder traversal among all top elements in all

Xi. Before v is pushed into the stack S, top(S) is popped up if v is not its ancestor and

procedure node2list is called to check whether it matches with a sub-tree of the current XML

document. For node Vm popped up from stack, it will be appended to the tail of Lvm if

vm.startvn ≤ vm.endvn holds for each its mandatory child Vn. Both end pointers v.end and

v.rend for every child are set in node2list. Both start pointers v.startvk and v.rstartvk for its

every child is set to length(Lvk)+1 before it is pushed into stack. After traversing all XML

nodes, remaining nodes in the stack S will be processed in turn.

Suppose a twig pattern shown in Figure 3(b) matches with the XML document shown in

Figure 2(b). Figure 6 shows all lists Lvi and stack S, when it has traversed to p5. List L’person

here corresponds recursive query node person($n). Before p5 is pushed into the stack, nodes

p4, c2 and p2 are popped-up since they are not ancestors of p5. Then, they are checked to

ensure that meet(p4,qperson), meet(c2,pchild) and meet(p2,qperson) hold, so they are put into

corresponding lists. Double dashed lines indicate range pointers. Here the lines from recursive

query node indicate range pointers rstart and rend. Obviously, c2, p3 and p4 can be accessed

by range pointers from p2. Finally, after all XML nodes have been traversed, p1 will be

placed in the list of root query node and the matching is completed.

4.3. Enumeration

As mentioned above, the recursive query node and its range pointer rstart and rend acts as

a link between different recursion call levels. For different call level, it is necessary to

enumerates different group of XML nodes from the matching results in lists. Based on the

XML nodes bound by the function’s parameter, enumeration algorithm gets basic query

results via range pointers start and end if it is at first recursion call level, otherwise gets

recursive query results via range pointers rstart and rend.

p4

c2

p2

c1

p1

p5
Lperson: []

Lname: [n1 n2 n3 n4]

L’person: [p3]

Lchild: []

(a) Before p5 is pushed into stack

p5

c1

p1

n5

Lperson: []

Lname: [n1 n2 n3 n4]

L’person: [p3 p4 p2]

Lchild: [c2]

(a) after p5 is pushed into stack
Figure 6. The Stack and List Structures of Recursive Twig Matching

Algorithm

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

186 Copyright ⓒ 2014 SERSC

The enumerate algorithm TwigR-Enumeration is outlined in Figure 7. It is used to get

matching results of a given query node. Inputs are recursive query pattern Q, all lists Lvi, real

parameter s of a recursive function which is node sequence, given query node Vq and a

boolean value b indicates that basic query result or recursive query result is looking forward.

Its output is XML nodes in Listvq which can be reached by the range pointers from XML

nodes in s. When a recursive function is first called, b is set as true and all XML nodes in

Listv1 are used as input s. Subsequently, whenever the recursive function is called, XML

nodes bound by its parameter are used as s and a recursive query results can be gotten by their

rstart and rend pointers. Sub procedure addToSeq is in charge of putting XML nodes to the

result sequence. To cope with PC edges in twig pattern, it only adds descendent nodes that

meet PC relationship to result sequence by comparing encoding.

4.4. Analysis

Given a twig pattern Q with n query nodes and an XML document t. The time and space

complexity of TwigR-Contruct is O(d·|X|+ r·|Y|) in the worst case, where |X| is the total

number of Vi-typed XML nodes vi(1≤i≤n), d is the max degree of a query node, |Y| is the total

TwigR-Construction(Q, s)

Input: recursive twig patten Q with query nodes {V1…Vn}, XML node sequence s

Output: Lvi for Vi, 1≤i≤n.

1. Begin

2. initialize label streams Xi for Vi, 1≤i≤n, and put s into X1 and divide all Vi-typed nodes

in its descendants into Xi;

3. initialize S and Lvi(1≤i≤n) to ∅;

4. while ∃ Xi ≠ ∅(1≤i≤n) do

5. v ← removetop(Xq), where v is the first following the preorder traversal among

all top elements in all Xi, and Vq is the corresponding query node.

6. while S ≠ ∅ and noancestor(top(S), v) do

7. node2list(pop(S));

8. for each child Vp of Vq in Q do

9. v.startvp ← length(Lvp) + 1;

10. if Vq is the recursive node then

11. for each child Vk of V1 do

12. v.rstartvk ← length(Lvk) + 1;

13. push(S, v);

14. while S ≠ ∅ do

15. node2list(pop(S));

16. End

Procedure: node2list(Vm)

1. for each child Vn of Vm do

2. v.endvn ← length(Lvn);

3. if Vm is the recursive node then

4. for each child Vk of V1 do

5. v.rendvk ← length(Lvk);

6. for each mandatory child Vn of Vm do

7. if vm.startvn > vm.endvn return;

8. append(Vm, Lvm);

Figure 5. The Recursive Twig Matching Algorithm

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 187

number of Vr-typed XML nodes that Vr is recursive query node, and r is the degree of root

query node. It is linear w.r.t |X|. The algorithm just need performs once during entire

recursion period, saving the cost of creating context for matching algorithm and maintaining

intermediate result. Therefore, it should have better performance than ordinary twig matching

algorithm which needs perform repeatedly at each recursion call level.

4.5. Implementation

We have implemented the RTPQ matching algorithm in an XQuery engine. In this engine,

the XQuery query request is translated to a query plan, and then it is transformed into one

with RTPQ by a twig pattern extracting algorithm. During the query plan is executed, TwigR-

Contruct is used to get intermediate result before a recursive function is called at the first

time. In the evaluation of the body expression of the function, TwigR-Enumeration is used

to obtain the query result for the current recursion call level.

5. Related Works

There are some optimization methods for processing recursive query in XQuery. [9]

optimizes a kind of structurally recursive queries by function inlining. During the function

inlining, it embeds as much type information as possible into iteration parameters to prune the

target data gradually, and is followed by algebraic simplification. It not only reduces the

overhead of function calls but also avoids a large number of useless searches for XML

document. [10] introduces a controlled form of recursion in XQuery, an inflationary fixed

point operator based on the algebra XAT, to optimize recursive function in XQuery and

transitive closure in some particular cases. The execution of recursive function can be

performed by evaluation of the operator which iteratively computes a data collection. The

iterative evaluation can be optimized according to the distributivity of XQuery expressions.

The XQuery processors can benefit substantially from the mode of evaluation.

In works above, twig queries in XQuery functions have not be taken into account. It can be

processed by existing twig query algorithms individually, but multiple twig queries in

recursive function callings can be combined into a single RTPQ query by our approach in this

paper.

[2] proposes a XML query language XSeq, which extends XPath expression with Kleene

closure. XQuery recursive functions can express the same semantics as the extended XPath

expression. Therefore, our algorithm for RTPQ can be also used to implement the new feature

of the query languages effectively. Moreover, RTPQ is more powerful than Kleene closure in

XPath expression since it can contain multiple recursive nodes.

6. Experiments

We test several recursive queries on above XQuery engine, in which the queries are

implemented by three approaches respectively, including RTPQ, TwigList and traditional

navigating way (NAV). All experiments are performed on a Core i3-2120 3.30GHz processor

PC with 4GB RAM running on Windows7 system. Because existing benchmarks have few

XML documents with deep recursive structure, the documents used in experiments are

constructed in random content according to DTDs shown in Figure 1. Specifically, a group of

them has the same structure and about 5.7 average depths, other groups have different average

depths.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

188 Copyright ⓒ 2014 SERSC

Figure 8. Test Result with Different Document Size

The traditional twig pattern cannot match data for whole recursion, its matching procedure

and enumeration procedure should be invoked over and over again for each recursive function

call. As show in Figure 8, traditional TwigList is at least twice the time cost of RTPQ, and the

rate grows to 4 times as the document size grows to 101MB. RTPQ is a little faster than NAV,

but the difference increases with the raising of document.

The complexity of recursive twig pattern is expressed by the number of branch. For the

recursive twig pattern with a single branch, the result used in Figure 9 shows that the time

cost for NAV grows exponentially with recursion depth, but for RTPQ, the cost grows slowly.

The gap between them is growing up to 8 times when the document average depth is 27.6.

Contrasting RTPQ and NAV, the efficiency difference of them is small since the twig pattern

is simple. Test results for some complicated twig pattern are shown in Figure 10. Here, time

cost of NAV is more than 2 times that of RTPQ, and the gap grows rapidly with the depth of

document. It means that RTPQ outperform NAV and TwigList for recursive query with

complicate twig pattern.

Figure 9. Test Result by Simple Twig Patterns with Different Document
Depth

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 189

Figure 10. Test Result by Complex Twig Pattern with Different
Document Depth

7. Conclusion

This paper proposes a kind of twig query called recursive twig pattern query (RTPQ) and a

holistic twig matching algorithm for the query pattern. RTPQ can describe the recursive query

request in both XQuery user-defined functions and extended XPath with Kleen closure. The

algorithm can be used to obtain all the data which is needed during whole recursion period.

These data can be enumerated by the enumeration algorithm at every recursive function call

level. RTPQ is evaluated only once during whole recursion period, its efficiency is much

better than performing traditional twig pattern matching.

Acknowledgements

This work was supported in part by the Beijing Nature Science Foundation under Grant

4122011 and the National Science Foundation for Young Scientists of China under Grant

61202074.

References

[1] H. Marouane and D. Jérôme, “A Survey of XML Tree Patterns”, IEEE Trans. Knowledge and Data

Engineering, vol. 1, no. 25, (2013).

[2] M. Barzan, Z. Kai and Z. Carlo, “High-performance complex event processing over XML streams”,

Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale,

Arizona, USA, (2012) May 20-24.

[3] B. Nicolas, K. Nick and S. Divesh, “Holistic twig joins: optimal XML pattern matching”, Proceedings of the

2002 ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, (2002)

June 3-6.

[4] C. Songting, L. Hua-Gang, T. Junichi, H. Wang-Pin, A. Divyakant and C. K. Selçuk, “Twig2Stack: bottom-

up processing of generalized-tree-pattern queries over XML documents”, Proceedings of the 32nd

International Conference on Very Large Data Bases, Seoul, Korea, (2006) September 12-15.

[5] Q. Lu, X. Y. Jeffrey and D. Bolin, “TwigList: make twig pattern matching fast”, Proceedings of the 12th

International Conference on Database Systems for Advanced Applications, Bangkok, Thailand, (2007) April

9-12.

[6] J. Lu, T. Chen and T. W. Ling, “TJFast: efficient processing of XML twig pattern matching”, Proceedings of

the 14th International World Wide Web Conference, Chiba, Japan, (2005) May 10-14.

[7] F. Mandreoli, R. Martogia and P. Zezula, “Principles of Holism for sequential twig pattern matching”, The

VLDB Journal, vol. 18, no. 6, (2009).

[8] J. Lu, T. W. Ling, Z. F. Bao and C. Wang, “Extended XML tree pattern matching: theory and algorithms”,

IEEE Transaction on Knowledge and Data Engineering, vol. 23, no. 3, (2011).

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

190 Copyright ⓒ 2014 SERSC

[9] P. Chang-Won, M. Jun-Ki and C. Chin-Wan, “Structural function in lining technique for structurally

recursive XML queries”, Proceedings of the 28th International Conference on Very Large Data Bases, Hong

Kong, China, (2002) August 20-23.

[10] A. Loredana, G. Torsten, M. Maarten, R. Jan and T. Jens, Recursion in XQuery: put your distributivity safety

belt on. Proceedings of the 12th International Conference on Extending Database Technology: Advances in

Database Technology, (2009) March 23-26, Saint-Petersburg, Russia.

Authors

Husheng Liao, received his M.Sc degree from TsingHua University in 1981.

He is currently a professor of Beijing University of Technology. His current

research interests include compiler technology, programming language and

XML database.

Hongyu Gao, received his M.Sc. degree in Beijing University of Technology

in 1995. He is currently an associate professor of Beijing University of

Technology. His researches interests include compiler technology and XML

database.

Zhaoning Guan, received his M.Sc. degree in Beijing University of

Technology in 2013. His researches interests include XML database and query

languages.

