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Figure 1. DTDs of Recursive XML Documents 
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Abstract 

XQuery is a language for querying XML data which is widely used on the Internet. In 

XQuery, user can define recursive functions for querying and processing XML data. XML 

twig pattern query is considered as core operation for querying XML data which has been 

studied intensively in recent years. More powerful recursive queries can be achieved via 

combining user-defined recursive function and twig pattern query. This paper proposes 

recursive twig pattern query (RTPQ) to extend traditional twig pattern query with recursion 

and an effective holistic twig matching algorithm for RTPQ. With the help of RTPQ, recursive 

function call can access its result instead of evaluating local twig pattern queries in each 

calling. Results of experiments show that this approach can improve query efficiency and 

eliminate redundant intermediate results. 
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1. Introduction 

XML has been widely used on the data storage and exchange on Internet. XML twig 

pattern query [1] is considered as a core operation for querying XML which has been studied 

intensively in recent years. It models a query request over a number of structural joins 

(ancestor-descendant relationship and parental-child relationship) between XML nodes as a 

pattern tree. This kind of query can be performed by twig pattern matching against a tree-

structured data like XML data. In XQuery language, which is recommended by W3C for 

querying XML data, the query usually consists of one or more nested FLWOR expressions 

containing some XPath expressions to locate XML nodes. The core operation within them is 

twig pattern query. For example, XPath expressions //person/name and //person/gender can 

be merged into a twig pattern, which has a root node labeled with person and two leaf nodes 

labeled with name and gender respectively. 
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Figure 2. An Example of XQuery Recursive Query and an XML Document 

In practice, XML can be used to represent data with recursive data structure. Figure 1 

shows DTDs of three XML documents in which the recursively defined element are denoted 

by bold letters. For these documents, recursive query can be submitted by various query 

languages. XQuery can describe recursive processing of XML data in user-defined recursive 

function, and XSeq [2], which is a query language for XML streams, supports recursive query 

by some powerful extensions to XPath, such as Kleene closure. 

Figure 2 shows an example of XQuery recursive query against the XML document defined 

by DTD shown in Figure 1(a). The query program uses a user-defined recursive function with 

element constructors to rebuild document by searching /child/person nodes from the 

document repeatedly, and creating person nodes and using the content of each original name 

node as an attribute of the new person nodes. This searching can be also described as 

person(/child/person)* in XSeq language.  

However, efficiency of such query requests may be reduced by both recursive computation 

and complex data query. In recursive function calls in XQuery, if a function body includes 

some FLWOR or XPath expressions, evaluation of these expressions at each recursion call 

level may work on the result of the corresponding twig pattern matching. Similar queries are 

performed repeatedly and redundant intermediate results are generated at each recursion call 

level. Consequently, it increases the cost of data querying and causes declines in performance 

of the function call. 

This paper studies on the processing of recursive query with twig pattern query. The main 

contribution is as follows: 

a. Propose the concept of recursive twig pattern query denoted by RTPQ which extends 

the traditional twig pattern to describe recursive query request. 

b. Propose a holistic twig matching algorithm and an enumeration algorithm for RTPQ. A 

number of twig patterns in recursive calls can be replaced by a single RTPQ, which 

avoids querying XML documents repeatedly and reduces the redundant intermediate 

data. 
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The remainder of this paper is organized as follows. Section 2 explains the motivation of 

the research. Section 3 defines recursive twig pattern. Section 4 describes RTPQ algorithm. 

Section 5 discusses the related work. Experimental results are presented in Section 6. 

 

2. Motivation 

Recursive structure often appears in XML documents. In Figure 2, the ancestor node 

named Betty is stored under the family node and its descendant recursively stored in the child 

node. For simplicity, person nodes are numbered as “p1” and so on. For XML query in 

XQuery, twig patterns can be identified from its FLOWR expression. 

For example, the twig pattern shown in Figure 3(a) can be identified from the XQuery 

program in Figure 2, which will be applied on the function’s parameter $a. Dotted edges in 

the tree pattern denotes the optionally relationships. The nodes in twig pattern is called query 

node. The results of twig query are bound to the variables on query nodes for subsequent 

processing. By the current holistic pattern matching algorithm [3], its query results can be 

gotten through a single matching against an XML document. 

 

 

However, this twig pattern can only match data in a single function call. For example, 

when function recons is first called, the root node person($a) matches with p1, person($n) 

with matches p2, p5 and p6 from sub-trees of p1, and they are put into the next recursion call 

level one by one as its argument. The twig query needs to be executed against them and scan 

entire sub-tree rooted at these nodes passed by $a. Thus, some XML sub-tree may be 

traversed repeatedly. But the original intention of twig query is to scan an XML document 

only once. 

In order to optimize the recursive query in XQuery functions, this paper extends XML twig 

pattern with the ability to represent recursive query. As shown in Figure 3(b), RTPQ can 

describe the relationship between actual parameter and formal parameter in recursive function 

calling. The argument of recursive function call corresponds to a recursive query node, which 

is denoted as a circle with a slanted arrow, and it will be considered as the root query node at 

the next recursion call level. Benefitted from RTPQ, only one single pattern-matching is 

needed to obtain all data for every recursive function callings. It merges multiple twig 

matching into one single RTPQ matching that improves efficiency of recursive query in 

XQuery. For simplicity, there are two assumptions in this paper: (1) twig query in recursive 

functions is applied on only one single XML document; (2) XPath expressions in the function 

body are static. 

 

3. Recursive Twig Pattern 

Definition 1. Recursive twig pattern Q is defined as a non-empty query tree T (N, E, bind, 

lab, root), where N is a finite set of query nodes, E is a finite set of edges, root∈N is the root 

query node, RN-{root} is a set of recursive query nodes, MN is a set of return nodes, 

 

Figure 3. The Twig Pattern Extracted from Function Body 
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function bind: M→Name gives bind variables of return nodes, function lab: N→String gives 

node labels. Edges in E are defined as e=(q1, q2, struct, bindtype), where q1, q2∈N, struct∈
{PC,AD}, bindtype∈{mandatory, optional}, where PC and AD denotes ancestor-descendant 

and parental-child relationships respectively, mandatory and optional denotes the 

relationships are mandatory and  optional respectively. 

Definition 2. Matching M between a twig pattern and a tuple of XML nodes should satisfy 

following properties: (1) In accordance with depth-first order, types of XML nodes in the 

tuple correspond to labels of query nodes. (2) Structural relationship between any two XML 

nodes in the tuple meets structure constraints described by the edge between corresponding 

query nodes. 

In the recursive twig pattern, all labels of the query nodes are determined by corresponding 

location steps of an XPath expression. Especially, label of the root query node is determined 

by the argument of function call in main query body. The recursive query node not only 

describes the argument of inner function call at current recursion call level but also describes 

the parameter of the callee at next recursion call level. The root query node describes 

parameter of the function only at first recursion call level. Therefore, tuples in matching 

results can be divided into two types. 

Definition 3. A basic matching result of recursive twig pattern is a tuple D which consists 

of XML nodes. D meets the matching M with recursive twig pattern. The element of D, which 

corresponds to the root query node, must be the XML node bound by the parameter at the first 

run of recursive function.  

Definition 4. A recursive result of recursive twig pattern is a tuple B which consists of 

XML nodes. B meets the matching M with recursive twig pattern (makes recursive query 

node replace the root query node). The element of B, which corresponds to the root query 

node, must also correspond to the recursive query node in another matching result. 

The result of RTPQ is composed of one basic matching result and several recursive results. 

A basic result is what recursive function needs at first recursion call level. The root query 

node only matches with XML nodes passed by the argument. A recursive result provides data 

to recursive function at a deeper recursion call level.  

The recursive twig pattern shown in Figure 3(b) consists of root query node person($a), 

two ordinary query nodes labeled with name($r1) and child, and a recursive query node 

labeled with person($n). All edges are PC edge, where solid lines for mandatory relationships 

and dotted lines for optionally relationships. The root query node matches with the argument 

of function recons and other query nodes correspond to XPath location steps in the function 

body. 

 

4. Recursive Twig Matching Algorithm 

A number of matching algorithms for ordinary twig pattern query have been issued[3-8]. 

[3] proposes two holistic twig matching algorithms: PathStack and TwigStack, using twig 

pattern to match XML document as a whole firstly. [4] proposes Twig2Stack which optimizes 

TwigStack and supports GTP which an extended twig pattern, but its complexity of stack 

structure is not easy to use. [5] comes up with TwigList using a kind of list as the data 

structure which represents intermediate results clearly and is more practical. Recursive twig 

matching algorithm develops on the basis of TwigList algorithm. 
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4.1. TwigList 

Definition 5. XML node v meets the sub-query rooted at query node q, if v and some of its 

descendants match with the sub-tree rooted at q in twig pattern under Definition 2, denoted by 

meet(v,q). 

TwigList algorithm crieates a list Li for every query nodes qi. For every XML nodes v and 

query node q in a twig pattern, v will be added to the end of list in turn according to lab(q) if 

meet(v, q) is true. The algorithm makes preorder traversal of an XML document and process 

XML nodes in postorder traversal. A stack is used to converse the processing order. Each 

XML node matched with qi has a set of range pointers point to each Lc (qc is sub nodes of qi) 

to indicate an interval, denoted by intervalc, which is composed of a start pointer and end 

pointer. Start pointers of its intervalc are set to the end of Lc when an XML node matching 

with qi is pushed into the stack, and their end pointers are set to the end of Lc when the XML 

node is popped up.  Therefore, the XML nodes which are appended to every Lc during the 

period between the two operations must be in the interval. If every intervalc is not empty, 

meet(v, qi) holds for each XML node v matching with qi and v should be appended to the 

corresponding list. In a twig pattern, PC edges are handled as same as AD edges, but a brother 

chain is attached to the lists to connect the XML nodes that meet PC relationship with its 

parent node. After traverse entire XML document, starting from the list of root query node, 

user can enumerate query results via XML nodes and their range pointers. Figure 4 shows the 

list structure for query person//name against the document shown in Figure 2(b). Here, XML 

node p2 has an interval pointer to list Lname and it indicates that node n3, n4 and n2 are its 

children. It should be noted that the nodes in these list are arrayed in the XML document 

order.  

 

4.2. Recursive Twig Matching 

Root query node and recursive node are special treated in recursive twig matching 

algorithm in order to match all query results that entire recursion period needs and make 

matching results to represent the relations between different recursion call levels. The 

algorithm is divided into two phases: matching and enumeration. The matching algorithm is 

used to construct list similar to TwigList and the enumeration algorithm provides a unified 

interface to obtain sequence of XML nodes from the list according to the query node of twig 

pattern. 

As shown in Figure 3(b), the matching algorithm should be able to match p1 with 

person($a), other person node with person($n), name node with name($r1) and child node 

with query node child. Recursive hierarchical relationships between them should be recorded 

too. Enumeration algorithm should be able to enumerate data depending on recursion call 

level. At first level, its basic matching result should be found and recursive matching results 

 
 

Figure 4. The List Structure of TwigList 
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TwigR-Enumeration (Q, {Lv1,…,Lvn}, s, Vq, b) 

Input:   twig pattern Q=(N,E,bind,lab,root),   

               lists Lvi (1≤i≤n), parameter s,     given query node Vq,  boolean b. 

Output: sequence seq of XML nodes from Lvq. 

1. Begin 

2. seq ← ∅; 

3. while  Lv1≠∅  do 

4.     v =  next(Lv1); 

5.     if v = next(s)  then 

6.         path ← path from V1 to Vq in Q; 

7.         while  path≠∅  do 

8.             V ← next(path); 

9.             if b = true then  

10.                 EnumNodes(v.start, v.end, V, Vq, seq) 

11.             else  

12.                 EnumNodes(v.rstart, v.rend, V, Vq, seq) 

13.         end  of while; 

14. end of while; 

15. End. 

Procedure EnumNodes(start, end, V, Vq, seq) 

16. for v∈ [start, end] do 

17.     if   (V, Vq, struct, type)∈ E  then 

18.         addToSeq(seq, v, Lvq, v.startvq, v.endvq); 

19.     else 

20.         Vc  ← advance(path); 

21.         EnumNodes(v.startvc, v.endvc, Vc, Vq, seq); 

22. end of for. 

Procedure addToSeq (seq, v, L, start, end) 

23. for each i ∈ [start, end] do 

24. node ← L[i]; 

25. if  isAD(VC)  or  ischild(node, v) then 

26.     if  node.traversed = false  then  

27.               addinto(seq, node); 

28.               node.traversed  ←  true; 

29. end of for. 
 

Figure 7. Enumeration Algorithm 

should be enumerated at other call levels. For example, at first recursion call level it should be 

able to enumerate sequence of nodes p2, p5 and p6 by the query node person($n) and they are 

enumerated by iteration variable $n one by one as the argument and is passed into the next 

recursion call level. 

 

The matching algorithm TwigR-Construction is outlined in Figure 5. Its inputs are the 

recursive twig pattern Q with n query nodes, XML nodes sequence s that is value of the 

argument of a function call in main query body. Each input XML nodes is accompanied by 

the encoding which represents structural relationship with others. Output is list Lvi built for 

each query node Vi. In the algorithm, v represents XML node, V represents its corresponding 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC   185 

query node, where V1 is root query node. Each node v maintains pairs of pointers v.startvp and 

v.endvp to specify the interval for its Vp-type descendants in lists Lvp, where Vp are child nodes 

of V. If v is a recursive query node, there are another pairs of pointers v.rstartvk and v.rendvk to 

specify the interval for its Vk-type descendants in lists Lvk, where Vk represents each child 

node of V in the twig pattern.  

Initialization phase of the algorithm is line 2 and 3. It builds empty stack and lists and 

assigns all input XML nodes in preorder to different label streams Xi according to the type of 

query nodes. The stream typed by root query node only keeps XML nodes bound by the 

parameter in function call expression, only these XML nodes can be put into the list of root 

query node eventually, while the rest of XML nodes will not be placed in the list even if they 

have the same type as root query node. Starting from line 4, current node v is picked out from 

Xq which the top element is the first following preorder traversal among all top elements in all 

Xi. Before v is pushed into the stack S, top(S) is popped up if v is not its ancestor and 

procedure node2list is called to check whether it matches with a sub-tree of the current XML 

document. For node Vm popped up from stack, it will be appended to the tail of Lvm if 

vm.startvn ≤ vm.endvn holds for each its mandatory child Vn. Both end pointers v.end and 

v.rend for every child are set in node2list. Both start pointers v.startvk and v.rstartvk for its 

every child is set to length(Lvk)+1 before it is pushed into stack. After traversing all XML 

nodes, remaining nodes in the stack S will be processed in turn. 

Suppose a twig pattern shown in Figure 3(b) matches with the XML document shown in 

Figure 2(b). Figure 6 shows all lists Lvi and stack S, when it has traversed to p5. List L’person 

here corresponds recursive query node person($n). Before p5 is pushed into the stack, nodes 

p4, c2 and p2 are popped-up since they are not ancestors of p5. Then, they are checked to 

ensure that meet(p4,qperson), meet(c2,pchild) and meet(p2,qperson) hold, so they are put into 

corresponding lists. Double dashed lines indicate range pointers. Here the lines from recursive 

query node indicate range pointers rstart and rend. Obviously, c2, p3 and p4 can be accessed 

by range pointers from p2. Finally, after all XML nodes have been traversed, p1 will be 

placed in the list of root query node and the matching is completed. 

 

4.3. Enumeration 

As mentioned above, the recursive query node and its range pointer rstart and rend acts as 

a link between different recursion call levels. For different call level, it is necessary to 

enumerates different group of XML nodes from the matching results in lists. Based on the 

XML nodes bound by the function’s parameter, enumeration algorithm gets basic query 

results via range pointers start and end if it is at first recursion call level, otherwise gets 

recursive query results via range pointers rstart and rend. 

 

p4

c2

p2

c1

p1

p5
Lperson: [  ] 

Lname: [n1 n2 n3 n4] 

L’person: [ p3 ] 

Lchild: [  ] 

(a) Before p5 is pushed into stack

p5

c1

p1

n5

Lperson: [  ] 

Lname: [n1 n2 n3 n4] 

L’person: [p3   p4   p2] 

Lchild: [c2] 

(a) after p5 is pushed into stack  
Figure 6. The Stack and List Structures of Recursive Twig Matching 

Algorithm 
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The enumerate algorithm TwigR-Enumeration is outlined in Figure 7. It is used to get 

matching results of a given query node. Inputs are recursive query pattern Q, all lists Lvi, real 

parameter s of a recursive function which is node sequence, given query node Vq and a 

boolean value b indicates that basic query result or recursive query result is looking forward. 

Its output is XML nodes in Listvq which can be reached by the range pointers from XML 

nodes in s. When a recursive function is first called, b is set as true and all XML nodes in 

Listv1 are used as input s. Subsequently, whenever the recursive function is called, XML 

nodes bound by its parameter are used as s and a recursive query results can be gotten by their 

rstart and rend pointers. Sub procedure addToSeq is in charge of putting XML nodes to the 

result sequence. To cope with PC edges in twig pattern, it only adds descendent nodes that 

meet PC relationship to result sequence by comparing encoding.  

 

4.4. Analysis 

Given a twig pattern Q with n query nodes and an XML document t. The time and space 

complexity of TwigR-Contruct is O(d·|X|+ r·|Y|) in the worst case, where |X| is the total 

number of Vi-typed XML nodes vi(1≤i≤n), d is the max degree of a query node, |Y| is the total 

TwigR-Construction(Q, s) 

Input: recursive twig patten Q with query nodes {V1…Vn}, XML node sequence s 

Output:  Lvi    for Vi, 1≤i≤n. 

1. Begin 

2. initialize label streams Xi for Vi, 1≤i≤n, and put s into X1 and divide all Vi-typed nodes 

in its descendants into Xi; 

3. initialize S and Lvi(1≤i≤n) to ∅; 

4. while ∃ Xi ≠ ∅(1≤i≤n) do 

5. v ← removetop(Xq), where v is the first following the preorder traversal among 

all top elements in all Xi, and Vq is the corresponding query node. 

6. while S ≠ ∅ and noancestor(top(S), v) do 

7.     node2list(pop(S)); 

8. for each child Vp of Vq in Q  do  

9.      v.startvp ← length(Lvp) + 1; 

10. if Vq is the recursive node then 

11.   for each child Vk of V1 do  

12.          v.rstartvk ← length(Lvk) + 1; 

13. push(S, v); 

14. while S ≠ ∅ do  

15.       node2list(pop(S)); 

16. End 

Procedure: node2list(Vm) 

1. for each child Vn of Vm do  

2.     v.endvn ← length(Lvn); 

3. if Vm is the recursive node then 

4.     for each child Vk of V1 do 

5.          v.rendvk ← length(Lvk); 

6. for  each mandatory child Vn of Vm  do 

7.     if vm.startvn  > vm.endvn   return; 

8. append(Vm, Lvm); 
 

Figure 5. The Recursive Twig Matching Algorithm 
 

 

 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC   187 

number of Vr-typed XML nodes that Vr is recursive query node, and r is the degree of root 

query node. It is linear w.r.t |X|. The algorithm just need performs once during entire 

recursion period, saving the cost of creating context for matching algorithm and maintaining 

intermediate result. Therefore, it should have better performance than ordinary twig matching 

algorithm which needs perform repeatedly at each recursion call level.  

 

4.5. Implementation 

We have implemented the RTPQ matching algorithm in an XQuery engine. In this engine, 

the XQuery query request is translated to a query plan, and then it is transformed into one 

with RTPQ by a twig pattern extracting algorithm. During the query plan is executed, TwigR-

Contruct is used to get intermediate result before a recursive function is called at the first 

time. In the evaluation of the body expression of the function, TwigR-Enumeration is used 

to obtain the query result for the current recursion call level. 

 

5. Related Works 

There are some optimization methods for processing recursive query in XQuery. [9] 

optimizes a kind of structurally recursive queries by function inlining. During the function 

inlining, it embeds as much type information as possible into iteration parameters to prune the 

target data gradually, and is followed by algebraic simplification. It not only reduces the 

overhead of function calls but also avoids a large number of useless searches for XML 

document. [10] introduces a controlled form of recursion in XQuery, an inflationary fixed 

point operator based on the algebra XAT, to optimize recursive function in XQuery and 

transitive closure in some particular cases. The execution of recursive function can be 

performed by evaluation of the operator which iteratively computes a data collection. The 

iterative evaluation can be optimized according to the distributivity of XQuery expressions. 

The XQuery processors can benefit substantially from the mode of evaluation. 

In works above, twig queries in XQuery functions have not be taken into account. It can be 

processed by existing twig query algorithms individually, but multiple twig queries in 

recursive function callings can be combined into a single RTPQ query by our approach in this 

paper. 

[2] proposes a XML query language XSeq, which extends XPath expression with Kleene 

closure. XQuery recursive functions can express the same semantics as the extended XPath 

expression. Therefore, our algorithm for RTPQ can be also used to implement the new feature 

of the query languages effectively. Moreover, RTPQ is more powerful than Kleene closure in 

XPath expression since it can contain multiple recursive nodes. 

 

6. Experiments 

We test several recursive queries on above XQuery engine, in which the queries are 

implemented by three approaches respectively, including RTPQ, TwigList and traditional 

navigating way (NAV). All experiments are performed on a Core i3-2120 3.30GHz processor 

PC with 4GB RAM running on Windows7 system. Because existing benchmarks have few 

XML documents with deep recursive structure, the documents used in experiments are 

constructed in random content according to DTDs shown in Figure 1. Specifically, a group of 

them has the same structure and about 5.7 average depths, other groups have different average 

depths. 
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Figure 8. Test Result with Different Document Size 

The traditional twig pattern cannot match data for whole recursion, its matching procedure 

and enumeration procedure should be invoked over and over again for each recursive function 

call. As show in Figure 8, traditional TwigList is at least twice the time cost of RTPQ, and the 

rate grows to 4 times as the document size grows to 101MB. RTPQ is a little faster than NAV, 

but the difference increases with the raising of document. 

 

 

 

 

 

 

 

 

 

 

The complexity of recursive twig pattern is expressed by the number of branch. For the 

recursive twig pattern with a single branch, the result used in Figure 9 shows that the time 

cost for NAV grows exponentially with recursion depth, but for RTPQ, the cost grows slowly. 

The gap between them is growing up to 8 times when the document average depth is 27.6. 

Contrasting RTPQ and NAV, the efficiency difference of them is small since the twig pattern 

is simple. Test results for some complicated twig pattern are shown in Figure 10. Here, time 

cost of NAV is more than 2 times that of RTPQ, and the gap grows rapidly with the depth of 

document. It means that RTPQ outperform NAV and TwigList for recursive query with 

complicate twig pattern. 

 
 

Figure 9. Test Result by Simple Twig Patterns with Different Document 
Depth 
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Figure 10. Test Result by Complex Twig Pattern with Different 
Document Depth 

 
7. Conclusion 

This paper proposes a kind of twig query called recursive twig pattern query (RTPQ) and a 

holistic twig matching algorithm for the query pattern. RTPQ can describe the recursive query 

request in both XQuery user-defined functions and extended XPath with Kleen closure. The 

algorithm can be used to obtain all the data which is needed during whole recursion period. 

These data can be enumerated by the enumeration algorithm at every recursive function call 

level. RTPQ is evaluated only once during whole recursion period, its efficiency is much 

better than performing traditional twig pattern matching. 
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