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Abstract 

This paper presents a report on the experimental study of the impact of false minutiae on 

the performance of fingerprint matching systems. A 3-tier algorithm comprising of pre-

processing, minutiae extraction and post-processing stages formed the backbone of the 

experiments. The pre-processing stage enhanced the fingerprint image, the minutiae 

extraction stage used the minutiae properties to detect and extract true and false minutiae 

points while the post-processing stage eliminated the false minutiae points. The experiments 

were performed on the four datasets in each of the three standard fingerprint databases; 

namely FVC2000, FVC2002 and FVC2004. The completion times for the minutiae extraction 

and the post-processing algorithms on each dataset were measured. A standard fingerprint 

matching algorithm was also implemented for verifying the impact of false minutiae points on 

FAR, FRR and the matching speed. Analysis of the obtained results revealed that for reliable 

and optimal performance of fingerprint matching systems, false minutiae points must be 

eliminated as much as possible from their operations. 
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1. Introduction 

Automated Fingerprint Identification System (AFIS) is a device for human verification and 

identification in places or centers where human traffic management and control are required 

[1-3]. The recent upsurge in the acceptance and use of AFIS over the other biometrics-based 

devices has been attributed to a number of factors which include: 

a. Fingerprint exhibits properties that are highly unique from individual to individual 

b. It is possessed by every individual 

c. It maintains durable and consistent form in one’s lifetime 

d. There are wide range of low-cost devices and technologies for fingerprint enrolment and 

processing 

The steps involved in the operation of most AFISs are conceptualized in Figure 1. For 

consistent and reliable performance, trust worthy matching or rejection results must be 

obtained. Very low False Acceptance Rate (FAR) and False Rejection Rate (FRR) are also 

expected for users’ acceptability and patronage. To achieve these objectives, suitable and 

reliable algorithms must form the backbone of these steps.  

mailto:IwasokunGB@tut.ac.za
mailto:akinwole2003@yahoo.co.uk
mailto:OjoSO@tut.ac.za


International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

160   Copyright ⓒ 2014 SERSC 

Sequel to fingerprint image enrolment, several enhancement activities including pre-

processing, segmentation, normalization and image filtering are performed. Local variance 

and angular definitions constitute the method for fingerprint segmentation to separate the 

fingerprint foreground from its background. Normalization is also performed for 

standardization of the ridge grey level values [4]. Several methods including Gabor filter [5-

10], Short Time Fourier Transform [11] and Directional Filter [12-14] are some of the most 

popular approach to filtering fingerprint ridge and valley patterns in gray levels. At the 

fingerprint enhancement stage, all the noises and the contaminants introduced during 

enrolment are removed to pave way for smooth and accurate minutiae extraction. The 

extracted minutiae then formed the reference minutiae set that is matched with pre-created 

minutiae sets in the template database. Commonly used minutiae are the end points (enclosed 

in circles) and bifurcations (enclosed in square) in Figure 2 [15-19]. The ridge terminates at 

the end point while it splits into two at the bifurcation point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fingerprint Ridges Showing End and Bifurcation Points 

Based on specified algorithm, the characteristics (orientation, coordinate and distance 

relative to singular point) for the minutiae set of an image is compared (matched) with those 

for other images to establish or reject claim of identity.  The implementation of very safe and 

reliable fingerprint minutiae extraction strategies is therefore important for ensuring accuracy 

[16-18]. Existing research works on fingerprint minutiae extraction include the use of 

Adaptive Flow Orientation [19-20], Mathematical Morphology [21-22]; Ridge Tracing [23-

Figure 1. Operational Steps of AFIS 
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24], Fuzzy Image [25] and Complex filtering [26-27]. Others are Weighted Audio Spectrum 

Flatness-WASF [28], Stochasitic Resonance [29], Cellular Neural Networks [30] and Pseudo 

Zernike Moments [31]. Section 2 of this paper presents the review of some existing works 

while Section 4 discusses the fingerprint minutiae extraction technique. Sections 4 and 5 

present the experimental study and the conclusion drawn respectively.  

 

2. Some Existing Works 

Several techniques have emerged for fingerprint minutiae extraction with their respective 

strengths and weaknesses. The authors in [29] presented a stochastic resonance approach for 

feature extraction from low-quality fingerprints. Gaussian noise was added to the original 

fingerprint images earlier rejected due to low-quality by some state-of-the-art fingerprint 

verification algorithms before extraction.  Though, the approach failed with fingerprints with 

no meaningful features, obtained results showed significant improvement in the equal error 

and genuine acceptance rates. The authors in [23] presented an algorithm for minutiae 

extraction from skeletonized and binarized images. An algorithm was also proposed for ridge 

cleansing based on ridge positions and directional maps. The obtained results showed 

efficient reduction of spurious minutiae with good performances in dirty areas but the 

algorithm experiences low processing speed due to computational complexity. The authors in 

[24] proposed an algorithm for the extraction of fingerprint features from gray scale images 

by ridge tracing which used contextual information to handle noisy regions with used 

parameters made adaptive for circumventing human supervision. The algorithm is suitable for 

speedy extraction of minutiae points but susceptible to extraction of type-exchange minutiae 

as well as dropped features like short ridges and spurs. Mathematical morphology algorithm 

is used in [21-22] to remove the superfluous information for genuine feature extraction and 

measure performance through sensitivity and specificity. The algorithm effectively removed 

spurious structures and extracted clear and reliable ridge map from input fingerprint image 

but experienced a number of missed genuine minutiae.  

A set of local feature descriptors for fingerprints is proposed in [26]. Minutiae points are 

detected through a complex filtering of the structure tensor by revealing their positions and 

directions. Model formulation was by parabolic and linear symmetry descriptions for the 

extraction of local features and their ridge orientations and reliabilities. Although results on 

their application in several stages of fingerprint recognition systems showed efficiency, the 

descriptors failed with severely distorted images. The authors in [30] proposed Cellular 

Neural Networks (CNN) algorithm for the extraction of high percentage of genuine feature 

points and their corresponding direction attributes from thinned fingerprint images. The 

algorithm rejects spurious feature points resulting from noisy fingerprints, but show low 

computational speed due to un-optimized procedures. A fingerprint local invariant feature 

extraction using Feature Transform (SIFT) and Speeded-Up Robust Feature (SURF) detectors 

is proposed in [32].The detectors run on the central and graphic processing units and focus on 

the consumed time as important factor for fingerprint identification. The implementations 

produced promising behaviors for the two detectors with very short processing time. 

A method for direct extraction of features from gray-level fingerprint images without 

binarization and thinning is proposed in [33]. The algorithm traced the ridges, recorded the 

skeleton image and acquired minutiae with robustness and efficiency. The authors in [15, 17] 

used Crossing Numbers (CN) algorithms that is based on ridge scanning for fingerprint 

minutiae extraction. For bad quality image, the algorithm is prone to extraction of exceeding 

number of false minutiae prompting the authors in [15] to use a post-processing stage to 

eliminate all forms of spurious features using their ridge and neighborhood characteristics. A 
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features detection method which reduces the likelihood of an unreliable overlapping region in 

partial fingerprint is proposed in [34]. The method provides significant improvement for 

matching low quality images but fails with too much overlapping areas.  

A Gabor filter-based method for direct extraction of fingerprint minutiae from grey-level 

images without pre-processing is proposed in [35]. The method demonstrated efficiency and 

suitability than other conventional methods but failed with images whose grey-level cannot be 

determined. The algorithm solved some fingerprint recognition problems relating to 

translation, scaling and rotation. The authors in [25, 36] implemented algorithms for high 

level minutiae extraction for all fingerprint images based on pre-processing stages (singular 

point detection, orientation field estimation and Gabor filter). The performance of these 

algorithms however depends on the precision of directional and frequency maps. The authors 

in [31] presented invariant fingerprint minutiae extraction algorithm based on Pseudo Zernike 

Moments [37-38] and Bayesian classifier [39].  

 

3. Fingerprint Minutiae Extraction Technique salient features OF OUR A 

The algorithm that formed the basis of minutiae extraction experiments is conceptualized 

in Figure 3 showing the pre-processing, minutiae extraction and validation stages.  

 

 

 

 

 

 

 

 

 

 

 

3.1. Image Pre-Processing 

For smooth and reliable minutiae extraction, the enrolled fingerprint image is taken 

through a pre-processing stage of enhancement. The stage includes segmentation, 

normalization, ridge orientation and frequency estimation, filtering, binarization and thinning. 

The essence of segmentation is to clearly divide the background region from the foreground 

region. The background regions generally exhibit high noise and contaminant levels as well 

as very low grey-scale variance values. On the contrary the foreground regions possess very 

high variances with minimal noise and contaminants. Based on these characteristics, variance 

thresholding technique is used to separate the background from the foreground regions. The 

first step is to divide the image into blocks followed by the calculation of the grey-scale 

variance for each block. A block with variance exceeding the global threshold is assigned to 

the foreground otherwise it is assigned to the foreground. The grey-level variance for a block, 

b with size β x β is defined as [4, 40]: 
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 ( ) is the variance for block b,  (   ) is the grey-level value at pixel (   ), and  ( ) is the 

mean grey-level value for the block b. 
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The segmented image is normalised by regulating its grey-level values to attain uniformity 

and fall within desired range. If  (   ) represents the grey-level value at pixel (r,s), and 

 (   )  represents the normalised grey-level value at pixel (r,s), the normalized image is 

derived from: 
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  and   are the calculated mean and variance of  (   ), respectively while    and    are the 

desired mean and variance respectively.  

The orientation field of a fingerprint image gives the local orientation of its ridges.  It is 

computed by dividing the image into blocks of uniform sizes and the local orientation for a 

block with centre at pixel (r,s) is  computed from [40-42]: 
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 x(p,q) and  y(p,q) are the gradients obtained using any gradient operator at point (p,q) in x 

and y directions respectively. Ɵ(r,s) is the least square estimate of the local orientation of the 

block with centre at pixel (r,s). 

The ridge frequency estimation algorithm produces a coarse-level ridge map of the input 

fingerprint image and it is based on pre-estimated local ridge orientations. Grey levels along 

fingerprint ridges and valleys are modeled as sinusoidal shaped wave along the normal 

direction to the local orientation. The wave is principally utilized for the estimation of the 

ridge frequency based on the assumptions that valid ridge frequencies lie between 1/31 and 

1/25 for 500dpi images [6, 43-44]. Fingerprint image filtering is based on the periodic 

function G(x, y; f, ɵ) as follows [8].  
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f represents the frequency of the sinusoidal plane wave along the direction θ from the x-axis, 

and    and    are the space constants empirically determined and set to about half the average 

inter-ridge distance in their respective direction. The filtered image is binarized using the 

method proposed in [45] to obtain its best performance threshold. The threshold (T) is set for 

making each cluster as tight as possible, thereby minimizing their overlap. T is determined by 

separating the pixels into two clusters based on presumed thresholds and the mean of each 
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cluster is determined. The difference between the means is squared and the product of the 

number of pixels in one cluster and the number in the other is determined. The success of 

these operations is determined by the difference between the means of the clusters while the 

optimal threshold maximizes the between-class variance or minimizes the within-class 

variance. The binarized image is thinned with the Matlab ‘bwmorph’ operation using the 

‘thin’ option to generate the thin or skeleton image. 

 

3.2. Minutiae Extraction 

During minutiae extraction, a fingerprint image is viewed as a flow pattern with a definite 

texture from which an orientation field for the flow texture is computed [46]. From a filtered 

(thinned) image, a minutia point is extracted based on its CN value obtained from: 
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N1, N2, …, N8 represent the 8 neighbours of the candidate minutia point N, in its 3 x 3 

neighbourhood which are scanned in the direction shown in Figure 4.  

 

 

 

 

 

 

 

Table 1 shows the existing CN properties of 2 and 6 denoting ridge end and bifurcation 

points respectively. The isolated, continuous and crossing points produced spur, hole, triangle 

and spike structures which are all regarded as false minutiae points. As shown in Figure 5, the 

spur structure generates false ridge endings while the hole and triangle structures produce 

false bifurcations. The spike structure also creates a false bifurcation and a false ridge ending 

point [15, 41, 47]. Figure 6 shows candidate ridge pixels (at the centre of the enclosed ridges) 

for ridge ending and bifurcation points. 

Table 1. CN Number and its Property 

 

 

 

 

 

 

S/No. CN Property 

1 0 Isolated point 

2 2 Ridge ending point 

3 4 Continuous ridge point 

4 6 Bifurcation point 

5 8 Crossing point 

Figure 4. 8 Neighbors of a Candidate Minutiae Point 
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3.3. Post-Processing 

For the elimination of all the false minutiae points, a post-processing algorithm [15, 20, 40] 

is implemented. The algorithm firstly creates an image M of size W x W and centred on the 

candidate minutia point. The validity of the candidate point is then tested by examining the 

properties of its 3 x 3 neighbourhood. This involves labelling the centre pixel with -1 while 

the connected pixels are initialized to zero, as shown in Figure 7(a) and Figure 7(c) for 

candidate ridge ending and bifurcation points respectively. 

 

 

 

 

 

 

 

 

 

Figure 7. Labelling and Initialization of Candidate Minutiae Points and its 
Connected Pixels 

Then for every ridge ending candidate point, all the connecting pixels are initialized to 1 

(Figure 7(b)) and the number of 0 to 1 transitions in clockwise direction (T01) along the 

border of M is determined. If T01 = 1 (Figure 8(a)), then the candidate minutia point is a true 

ridge ending. Similarly, for each bifurcation point, all the three ridge pixels in M that are 

Figure 6. CN Values for Ridge Ending and Bifurcation Points 
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connected to it are initialized to 3 (Figure 7(d) and the number of transitions from 0 to 3 (T03) 

(Figure 8(b)) are counted along the border of image M in clockwise direction. If T03 = 3, then 

the candidate point is validated as a true bifurcation point. The flowchart of the algorithm is 

presented in Figure 9. 

 

 

 

 

 

 

 

Figure 8. 0 to 1 Transitions. (a) Ridge Ending (T01=1), (b) Bifurcation (T03=3) 

4. Experimental Study 

The experiments based on Matlab application were carried out using FVC2000, FVC2002 

and FVC2004 standard fingerprint databases on Ms-Window 7 Operating System on a 

Pentium 4 – 2.80 GHz dual processors with 4.00GB of RAM. The summary of the three 

standard databases is presented in Table 2 [48-49]. The three databases were jointly 

formulated by the Biometric System Laboratory of the University of Bologna, together with 

the Biometric Test Centre of the San Jose State University and the Pattern Recognition and 

Image Processing Laboratory of the Michigan State University. There are four datasets in 

each of the three databases and each dataset has 80 fingerprints of different qualities and 

obtained at different resolution, orientation and sizes on the basis of 8 enrolments from each 

of 10 different people. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Flowchart for Minutiae Validity Test 
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Table 2. Details of the Standard Fingerprint Databases 

Data-

base 

Sensor Type Image size No. Resolution 

FVC200

0 

FVC2002 FVC2004 FVC2000 FVC2002 FVC2004 FVC20

00 

FVC20

02 

FVC20

04 

DB1 Optical Sensor 300 x 
300 

388 ×  
374 

640 x 
480 

100 ×  
8 

500 dpi 500 dpi 500 dpi 

DB2 Capacitive 

Sensor 

Optical Sensor 256 x 

354 

296 ×  

560 

328 x 

364 

100 ×  

8 

500 dpi 569 dpi 500 dpi 

DB3 Optical 
Sensor 

Capacitiv
e Sensor 

Thermal 
Sweeping 

448 x 
478 

300 ×  
300 

300 x 
480 

100 ×  
8 

500 dpi 500 dpi 512 dpi 

DB4 SFinGe 

v2.0 

SFinGe 

v2.51 

SFinGe 

v3.0 

240 x 

320 

288 ×  

384 

288 x 

384 

100 ×  

8 

About 

500 dpi 

About 

500 dpi 

About 

500 dpi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Fingerprint Images from Standard Databases and their True and 
False Minutiae Points 

The detailed results for the pre-processing sub-stages of segmentation, normalization, 

filtering, binarization and thinning had been discussed in [50] and they are excluded from this 

report. Formatted images from datasets DB1 of FVC2000, FVC2002 and FVC2004 standard 

databases are shown in Figure 10 (a), 10(b) and 10(c) respectively. Figures 10(d), 10(e) and 

10(f) present the extracted minutiae based on CN algorithm from the skeleton (thinned) 

images of Figure 10(a), 10(b) and 10(c) respectively.  

The true ridge ends points are shown with circles (red color), the square marks (blue color) 

represent the true bifurcation points and the false minutiae points are denoted with diamonds 

(in green). The ratio of true to false ridge end points extracted and shown in Figure 10(d), 

10(e) and 10(f) are 19:13, 25: 14 and 26: 13 respectively.  For bifurcation points, the ratio is 

13:7, 6:13 and 9:19 respectively. The results from the minutiae extraction experiments on the 

three standard fingerprint databases using the CN algorithm are presented in Table 3. Higher 

values are recorded for false minutiae points over true minutiae points in all cases. As shown 

(a) (b) (c) 

(d) (e) (f) 
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in Figures 11 and 12, there are higher percentages for false ridge end and bifurcation points in 

all the datasets and databases. 

Table 3. Statistics of Extracted True and False Minutiae from the Three 
Databases 

Dataset FVC2000 FVC2002 FVC2004 

Total Time(s) Total Time(s) Total Time(s) 

DB1 Ridge end 10683 91.86 6980 119.01 10822 200.20 

Bifurcation 6254 9545 12389 

DB2 Ridge end 7914 97.05 22425 158.93 14962 114.37 

Bifurcation 8008 14156 11276 

DB3 Ridge end 54165 231.34 13124 91.81 18198 133.95 

Bifurcation 46681 15676 12565 

DB4 Ridge end 6269 73.35 17735 97.95 14544 100.32 

Bifurcation 8147 12873 12137 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Percentage of True and False Extracted Ridge Ends 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Percentage of True and False Extracted Bifurcations 

The exceedingly higher number of extracted false minutiae points is attributed to the 

presence of high cases of corrupted regions in several of the images.  The corrupted regions 

resulted in the introduction of a great number of artifacts during enhancement [3] some of 

which appear in form of ridge ends while others as bifurcations. In Figure 13, a highly 

corrupted image in dataset DB3 of FVC2000 fingerprint database is presented with its 

extracted true and false minutiae points. It is revealed how the false minutiae points (marked 
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with ‘X’) with numerous overlaps, outnumbered the true minutiae points (shown in circles 

and squares). A total of 123 false minutiae extraction is recorded as against 59 for true 

minutiae points. 

Since different enrolment (from same or different fingers) experience different level of 

corruption (noise and contaminations), it is therefore consequential that different number of 

true and false minutiae points will be generated for different images. It also implied that the 

extraction of different number of false minutiae from images of the same finger will pose a 

great challenge to reliable implementation of AFIS. 

 

 

 

 

 

 

 

 

 

Figure 13. Fingerprint Image and its Extracted True and False Minutiae Points 

In the next stage, an implementation of the extension of the CN algorithm with the post-

processing algorithm was carried out with a view to eliminating all the false minutiae points. 

For the purpose of obtaining the best results, the window size, W was experimentally 

determined. Most appropriate and accurate extraction of true minutiae points as well as 

rejection of false minutiae points were recorded for W=23 as shown in Figure 14(b). With W 

< 23, the algorithm was misled into considering some false points as true as shown in Figure 

14(a). False rejection of some true points was also experienced with W > 23 as presented in 

Figure 14(c). With W=23, the results for Figures 10(d), 10(e) and 10(f) are shown in Figure 

15(a), 13(b) and 15(c) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Results Showing the Impact of Window Size of True Minutiae 
Extraction 

The summary of the results of the elimination of all false minutiae points from the images 

in the three databases are presented in Table 4. The summary shows very significant 

reduction in the number of extracted minutiae but increase in the completion time when 

compared with Table 3. 

(a) Falsely extraction 
due to undersize 
window, W=21 

(b) True exclusion due 
to appropriate window 
size, W=23 

(c) Falsely exclusion due 
to oversize window, 
W=25 
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Figure 15. Results Showing the Elimination of False Minutiae Point 

Table 4. Results based on Post-Processing Algorithm 

 

 

 

 

 

 

 

The increase in the completion time is the time taken to validate or reject each minutia 

point. 

Based on a fingerprint pattern matching algorithm, false rejection and acceptance rates 

experiments were performed on the three databases for the investigation of the impact of the 

false minutiae points on fingerprint matching. The algorithm involves the following steps 

[51]: 

a. The core point is extracted based on the algorithm proposed in [52].  

b. The equations of the straight lines connecting all the feature points in the 11 x 11 

neighbourhood of the core point of an image are calculated. Typical interconnection lines 

for minutiae points A, B, C, D and E and their intersection points a, b and c are illustrated 

in Figure 16. 

 

 

 

 

 

Figure 16. Typical Minutiae Interconnection Lines and their Intersection Points 
 

Dataset FVC2000 FVC2002 FVC2004 

Total Time(s) Total Time(s) Total Time(s) 

DB1 Ridge end 4042 99.88 3151 129.10 5349 210.17 

Bifurcation 1675 3302 3832 

DB2 Ridge end 2966 104.15 6587 172.08 5515 126.34 

Bifurcation 2197 3759 3088 

DB3 Ridge end 14200 254.38 4532 102.44 7543 143.98 

Bifurcation 9694 3510 3750 

DB4 Ridge end 2442 79.86 6021 109.48 4972 110.89 

Bifurcation 2223 3293 3331 

(a)Results of post-processing 

algorithm for Fig. 10(a) 

(b)Results of post-

processing algorithm for Fig. 

10(b) 

(c)Results of post-processing 

algorithm for Fig. 10(c) 

a 
b 

c 

A 

B 

C 

D E 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC   171 

Given that points   (     ) and   (     ) are two feature points located in the 11 x 11 

neighbourhood of the core point, the equation of the straight line P1P2 is given by: 

                                                                                         (11) 

         is the gradient of line P1P2 and   is defined by: 

           ((     )(     )  (     )(      ))  (     )
                                          (  ) 

c. The locations of all intersection points in the 11 x 11 neighbourhood of the core (or delta) 

point are obtained by solving the equations of all intersecting lines. Given that the straight 

lines AB and CD shown in Figure 17 are defined by equations    x +   y =   and   x + 

  y =   respectively, then the intersection point J(e,f) is obtained from:  

                             ( (         )    (       ))  (  (         ))
                        (  ) 

                           (        )(         )
                                                                     (  ) 

 

 

 

 

 

 

Figure 17. Junction Point of Straight Line Formed by Feature Points 

c. The distance,  i between the i
th
 intersection point Ji(ei,fi) and the image core point M(   ) 

is obtained from: 

   ((    )
  (    )

 )                (  ) 

d. For query and reference images with   and   intersection points respectively, the degree 

of closeness,   is obtained from: 

               ∑
| ( )   ( )|

 ( )

 

   

                                    (  ) 

  {
        
              

                                              (  ) 

P(i) and I(i) represent the distance between the i
th 

intersection point and the core point for 

the query and reference image respectively.     

e. The cross-correlation coefficient value for the two images is the pattern matching score, 

C obtained from: 

    
  
   

                                                          (  )  

The degree of closeness will be    = 0 for exact images and, consequently, the cross-

correlation will be C = 1.  

The false acceptance experiments measured the rate at which images from different fingers 

are found to match (matching value exceeding threshold). The false rejection experiments 

also measured the rate at which images from same finger failed to match (matching value 

falling below threshold). In all the datasets, matching experiments based on minutiae 

extracted using CN algorithm (which produced true and false minutiae) in one hand and post-

processing algorithm (which produced only true minutiae points) on the other hand, resulted 
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in False Acceptance Rate (FAR) of 0%.  The ROC curves for results based on experiments on 

false and true minutiae point on the datasets of the 3 fingerprint databases are presented in 

Figures 18(a-c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. (a) ROC Curve for Matching 
with True and False Minutiae in 

FVC2000 Fingerprint Database 

Figure 18. (b) ROC Curve for 
Matching with True and False 

Minutiae in FVC2002 Fingerprint 
Database 

Figure 18. (c) ROC Curve for 
matching with true and false minutiae 

in FVC2004 Fingerprint Database 

Figure 18. (d) ROC Curve for 
matching with true minutiae in 

FVC2000 Fingerprint Database 

Figure 18. (e) ROC Curve for 
matching with true minutiae in 

FVC2002 Fingerprint Database 

Figure 18. (f) ROC Curve for 
matching with true minutiae in 

FVC2004 Fingerprint Database 
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Figures 18(d-f) present the ROC curves for results from experiments on true minutiae 

points only. It is revealed from the curves that matching based on true minutiae points only 

produced lower error rates for all the datasets. This indicates greater accuracy, reliability and 

efficiency when false points are eliminated from the minutiae set. The higher error rates for 

matching inclusive of false minutiae points imply that the presence of false minutiae points is 

capable of worsening the performance of a fingerprint matching algorithm. 

The completion times (in seconds) for FAR and FRR experiments on the 80 fingerprint 

images in each of the datasets for every standard database are shown in Tables 5 and 6. Based 

on the figures presented, Figures 19 and 20 clearly show very wide gaps between the 

computation times for FAR and FRR in the CN and post-processing algorithms-based 

experiments. The lower completion times for the post-processing-based experiments are 

attributed to lower number of minutiae searches and minimum computations. Statistical 

analysis of the values presented in Tables 5 and 6 also revealed that matching inclusive of 

false minutiae points take about 3.5, 3.29 and 2.86 times the time for true minutiae-based 

matching for all the datasets in FVC2000, FVC2002 and FVC2004 standard databases 

respectively. It is therefore obvious that the elimination of all false minutiae points at the 

feature extraction stage in a fingerprint pattern matching system is a necessity for reliable, 

high speed and user friendly operation. 

Table 5. Completion Time (in seconds) for True Minutiae-based Fingerprint 
Matching 

  FVC2000 FVC2002 FVC2004 

  FAR FRR FAR FRR FAR FRR 

DB1 12.62 11.51 15.33 14.65 13.14 12.36 

DB2 14.11 12.37 21.92 18.31 16.70 14.21 

DB3 15.90 14.52 22.91 21.33 15.01 15.32 

DB4 11.73 13.57 12.34 17.95 12.62 14.94 

Table 6. Completion Time (in seconds) for Fingerprint Matching Inclusive of 
False Minutiae 

 

 

 

 

 

 

 

 

The reliability of the obtained results was further investigated through comparison of its 

obtained ERR results with those from the implementation of the algorithms proposed in 

[Bebis et al., [53]; Liu et al., [54]; Liang et al., [55] on FVC2000 with respect to matching 

accuracy and efficiency. The comparison is presented in Table 7. The EER, which is 

commonly used to summarize the accuracy performance of a matching system, is defined as 

the error rate at which the system’s FAR and FRR are equal.  

 

 

 

Dataset FVC2000 FVC2002 FVC2004 

FAR FRR FAR FRR FAR FRR 

DB1 44.17 40.28 50.43 48.19 37.58 35.34 

DB2 49.38 43.29 72.11 60.23 47.76 40.64 

DB3 55.65 50.82 75.37 70.17 42.92 43.81 

DB4 41.05 47.49 40.59 59.05 36.09 42.72 
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Figure 19. FAR Completion Times 

 

 

 

 

 

 

 

 

 

Figure 20. FRR Completion Times 

Table 7. ERR (%) Results for Different Algorithms 

 DB1 DB2 DB3 DB4 

Current study 0.56 0.86 0.95 0.69 

Bebis et al. [53] 1.56 2.35 3.05 1.89 

Liu et al. [54] 2.78 3.57 4.18 2.94 

Liang et al. [55] 0.75 0.98 1.20 0.84 

 

Table 7 shows that, in comparison with the other algorithms, the research fingerprint 

matching algorithm (RA) is able to achieve matching with the least error results in all the four 

datasets. The EERs, for example, on DB1 for Bebis et al., [53], Liu et al., [54] and Liang et 

al., [55] are 0.56%, 1.56%, and 0.75%, respectively as against 0.56% recorded for RA. 

Further proof of the best performance for RA is presented on the ROC curves in Figure 21 

This feat is attributed to the appropriate use of local and neighbourhood feature characteristics 

in RA. 
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5. Conclusion 

This paper presented a report on the experimental study of the impact of false minutiae 

points on the performance of AFIS. A 3-tier algorithm was implemented with the results at 

each level showing relevance and meaningfulness. Results for the first phase of fingerprint 

minutiae extraction revealed the extraction of true minutiae points. At the post-processing 

stage, only the true minutiae points; namely ridge end and bifurcation were extracted. 

Analysis of experimental results for both feature extraction and post-processing algorithms on 

FVC2000, FVC2002 and FVC2004 fingerprint databases revealed that for speedy and reliable 

performance of AFIS, all forms of false minutiae points must be eliminated from its 

operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. ROC Curves for Four Different Algorithms on Datasets of FVC2004 
Fingerprint Database 

  

(b): ROC Curve for DB2 

(c): ROC Curve for DB3 (d): ROC Curve for DB4 

(a): ROC Curve for DB1 
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