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Abstract 

Tree structures are used extensively in domains such as XML data management, web log 

analysis, biological computing, and so on. In this paper we introduce the problem of mining 

frequent sequential trees in a large tree sequence database. We present a framework for 

mining frequent sequential trees in a so-called tree sequence database. Basically, this 

framework employs a transformation-based approach which converts the sequential tree 

mining problem into a traditional sequence mining problem. Our approach firstly mines 

frequent trees in the tree sequence database. Secondly, we perform a database transformation 

by means of tree-containment computation to generate a sequence database. Thirdly, after the 

transformation, frequent sequence patterns can be mined in the newly created sequence 

database using a conventional sequence mining technique. Finally we perform an inverted 

transformation process on the output of sequence mining to obtain sequential tree patterns. 

Experimental results on synthetic datasets show that the proposed framework is both effective 

and efficient in finding frequent sequential trees in a large tree sequence database. 

 

Keywords: tree mining, sequence mining, tree sequence mining, tree pattern 

 

1. Introduction 

In recent years, semi-structured data have become ubiquitous with the rapid upsoaring in 

both number and scale of semi-structured data applications such as XML database systems, 

business transactions, XML middleware systems, and so on. As the size of the data increases, 

efficient retrieval of semi-structured data becomes critical for such applications. For example, 

XML queries can be expedited by deploying a cache of frequent queries. This issue can be 

addressed by mining frequent XML query patterns, which are in the form of trees in nature, to 

the XML database. As another example, accesses to a website, where web pages are often 

stored in a tree organization, can be improved considerably using a cache if the most 

frequently accessed subtrees are found. Therefore, mining frequent tree patterns is an 

interesting topic in many performance-critical database applications. The frequent patterns 

that our mining technique could find include, but are not limited to, tree patterns such as 

XML query patterns, web access patterns, protein patterns and so on. 

There are a few previous works in the literature proposed to discover tree patterns. 

However these works do not consider the temporal feature or other sequential features. In our 

work, we will illustrate the effectiveness of exploiting the sequential features of the trees. 
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Actually, our method could be interpreted as a solution to the problem of sequential semi-

structured data mining. The main contributions of our work are as follows: 

(1) We bring forward the problem of mining frequent sequential patterns in a tree 

sequence database and define a problem statement of frequent sequential tree mining. 

(2) We present a framework for solving the problem of sequential tree mining in a tree 

database. The framework consists of four component steps: tree mining, database 

transforming, sequence mining, and sequence transforming. 

(3) We propose an approach to transform a tree sequence database into a traditional 

sequence database. Firstly, we employ an existing sequence mining algorithm in order 

to mine frequent trees in the original tree sequence database. Secondly, we transform 

the sequential tree mining problem into a traditional sequence mining problem using 

the frequent trees mined in the first step. We note that our method is not dependent on 

a specific sequence mining algorithm being used. So the framework can flexibly work 

with other sequence mining algorithms at the expense of trivial efforts. 

(4) For the final output, we give a method of transforming mined sequences into non-

redundant sequential trees. 

(5) We implement a prototype tree-mining system. The experiments show that our 

proposed method could generate good mining results on synthetic datasets. 

There may be several types of tree structures, such as rooted ordered tree, rooted unordered 

tree, free tree. Without loss of generality, we focus on the sequential mining problem of root 

ordered tree in our work. Simple modification to the framework would allow us to mine other 

types of tree-structures. 
The rest of the paper is organized as follows. In Section 2, we discuss previous work 

related to sequence mining and tree mining. In Section 3, we prepare basic definitions and 

define the problem of mining frequent sequential trees in a tree sequence database. We 

present a framework for sequential tree mining in Section 4. Section 5 gives the results of 

experiments and we conclude our work in Section 6. 
 

2. Related work 

Many efficient mining approaches have been developed [1-7] to discover frequent 

sequences. Agrawal [1] proposed sequential pattern mining first and developed a generalized 

and refined algorithm GSP [2] later. SPADE presented by Zaki [5] can avoid many repeated 

database scans and mine sequences in only three database scans. SPADE makes use of 

combinatorial properties to decompose the original problem into smaller sub-problems that 

can be independently solved in main-memory with lattice search techniques. During search, a 

vertical id-list database format is adopted and frequent sequences are enumerated via simple 

temporal joins on id-lists. Han et al. introduced FreeSpan [3] and PrefixSpan [4] to the 

problem of sequence mining. PrefixSpan employs a horizontal format database representation 

and utilizes the pattern-growth paradigm: adopting a prefix growth and database projection 

framework and an optimization pseudo-projection is used when projecting databases. 

MCPRISM in [21] uses prime encoding that effectively mines min-closed sequences. 

For the problem of finding tree-like patterns, many efficient tree mining approaches have 

been developed [8-14]. Basically, there are two main steps for generating frequent trees in a 

database (forest). First of all, a systematic way should be conceived for generating non-

redundant candidate trees whose support is to be computed. Secondly, an efficient way is 
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required to compute the support of each candidate tree and determine whether a tree is 

frequent. Anyhow, they adopted a straight-forward generate-and-test strategy. Asai presented 

a rooted ordered and a rooted unordered tree mining approach in [12] and [13] respectively. 

Zaki gave ordered and unordered embedded tree mining algorithms in [8, 9]. Chi et al., 

brought forward algorithms for mining rooted unordered and free trees in [10, 11]. In [15], 

Bei et al., proposed a tree mining algorithm named BUXMiner for finding rooted unordered 

trees. Liu et al., [20] proposed an algorithm to find all sequential patterns in the updated 

database. 

XML query can be considered as a tree pattern. Frequent query access patterns can be 

made use of accelerating retrieval of query results [16-19]. Yang et al., presented a series of 

apriori-style algorithms called XQPMiner, XQPMinerTID, and FastXMiner to discover 

frequent rooted query pattern subtrees from a set of XML queries in [16, 17]. Ling et al., in 

[19] take into account the temporal features of user queries to discover association rules. They 

clustered XML queries according to their semantics first and then mined association rules 

between clusters for caching. We also introduced FLS method to represent XML documents 

and a framework of clustering algorithm using frequent sequences in [22]. 

 

3. Problem Statement 

In this section, we define some basic concepts that will be used in the remainder of the 

paper and state the problem about sequential tree mining. 
 

3.1. Rooted Ordered Tree 

A rooted ordered tree is an undirected, connected, acyclic graph T = (V, E, ∑, L, r, ≤) 

consisting of a vertex set V, an edge set E, an alphabet ∑ for vertex labels and a labeling 

function L. The rooted ordered tree T with a distinguished node r called root satisfying the 

following properties. If vertex u is on the path from the root to vertex v then u is the ancestor 

of v and v is the descendent of u. If in addition u and v are adjacent, then u is the parent of v 

and v is the child of u. The mapping function L: V  ∑ assigns a label L(v) to each node v ∈ 

V. In an ordered tree, the children of each vertex are ordered. The binary relation ≤  V
2
 

represents a sibling relation between two children of the same parent. We denote v ≤ w if 

vertex v and vertex w have the same parent u and v is an elder brother of w. 

Given two rooted ordered trees T and S on an alphabet ∑, we say that S is a subtree of T iff 

there exists a one-to-one mapping φ: VS  Vt, such that satisfies the following conditions: 

(1) φ preserves the labels, i.e., L(v) = L(φ(v)), v ∈VS. 

(2) φ preserves the parent relation, i.e., (u,v) ∈ ES iff (φ(u), φ(v)) ∈ET. 

(3) φ preserves the sibling relation, i.e., v ≤ w for v ∈VS and w ∈VS iff φ(u) ≤ φ(v) for 

φ(v)∈VT and φ(w) ∈VT. 
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Figure 1. Frequent Tree and Infrequent Tree 
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If a tree S is a subtree of a tree T, we denote it as S  T. We also can say that T contains S 

or S occurs in T. In Figure 1, we show that S1 is a subtree of trees T1,T2 and T3 while S2 is a 

subtree of the only tree T3. 
 

3.2. Frequent Tree 

Let D denotes all the trees in a forest and dT be an indicator variable with dT(S) = 1 if tree S 

is a subtree of T and dT(S) = 0 if tree S is not a subtree of T. The frequency (support) of tree S 

in the forest can be defined as σ(S) = ∑T∈D dT(S), i.e., the number of trees in D that contains 

tree S. A tree is frequent in a forest if its frequency is no less than a user-specified minimum 

support. The tree is considered as a frequent tree in a forest. In Figure 1, the frequency of S1 

is 3 and the frequency of S2 is 1 for the forest with trees T1, T2, T3 and T4. Suppose the 

minimum support is 3, then by definition, tree S1 is frequent while S2 is not in the forest. 
 

3.3. Tree Sequence Database 

A tree sequence database (or a sequential database of trees) is a database with each 

record containing a set of trees and trees in each record are in a certain sequential order (The 

order can be temporal order, spatial order, etc.). A tree in a tree sequence database can be 

denoted as (rid, tid), where rid is the id of record containing the tree and tid is the tree id in 

the record. Figure 2 shows a sequential database of trees and trees in each record are ordered. 

There are 3 records in the database and each record contains 5 sequential trees. The first tree 

at the top-left corner can be represented as (R1, 1). Let fR be an indicator variable with fR(S) = 

1 if there exists a tree T∈R with dT(S) = 1 and fR(S) = 0 if there is no tree T belonging to R 

that contains S. The frequency (support) of tree S in a tree sequence database can be defined 

as σ(S) = ∑R∈D fR(S). A tree is frequent in a tree sequence database D if its frequency is no less 

than a user-specified minimum support. 
 

3.4. Sequential Tree Mining Problem 
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Figure 2. A Tree Sequence Database and Frequent Trees in the Database (a) R1 
Denotes the Record id of the Database; Label under the Tree is the Tree id in 
Current Record. (b) Label at the Left of Tree is the Frequent Tree id and the 
Value under the Tree is the Number of Trees Containing Current Tree in the 

Database 
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Let T = {t1, t2, …, tm} be a set of all subtrees in D. A tree sequence is an ordered list of 

subtrees. Let P and Q be two tree sets, P ≤ Q is denoted as all trees p∈P, there exists a tree q 

∈Q that contains p. We can say that tree sets Q contains sets P. A tree sequence S can be 

denoted by <s1, s2, …, sn>, where sj is a set of trees, i.e., sj  T. 

One tree sequence L = {li1,li2, …, lim} is a subsequence of another S = {s1, s2, …, sn} if 1 

≤ j ≤ m-1, ij < ij+1 and 1 ≤ j ≤ m, 1 ≤ k ≤ n such that lij ≤ sk (sk contains lij). In this case, tree 

sequence S contains tree sequence L. The tree sequence database is a set of records (rid, S), 

where rid is the identifier of current sequential trees and S is a tree sequence. The support 

(frequency) of a tree sequence S in a tree sequence database is the number of records in the 

database that contain S, denoted as freqD(S). A tree sequence is frequent in a tree sequence 

database if its support is more than or equal to a user-specified minimum support. We 

consider it as a frequent tree sequence in the tree sequence database. As show in Figure 2, 

suppose the user-given minimum support is 3, and then tree sequence <(1,4),(1,5)> (Number 1, 

4 and 5 respectively represent labeled id of trees in the set of frequent trees in Figure 2 (b)) is 

frequent in the database since records R1, R2 and R3 all contain the tree sequence. 

 

4. Framework of Sequential Tree Mining 

In this section, we present a framework for frequent tree sequence mining in the tree 

sequence database. In Figure 3, we give a presentation of the whole framework. The 

framework of tree sequence mining consists of the following major parts: (1) Tree Mining, 

i.e., given a user specified minimum support and an input tree sequence database, a set of 

frequent trees are mined from the database; (2) Database Transforming, with the previous 

generated frequent trees we transform the tree sequence database into a general sequence 

database; (3) Sequence Mining, frequent subsequences are mined from the new generated 

sequence database; (4) Sequence Transforming, frequent subsequences generated in step (3) 

are transformed into non-redundant frequent tree sequences which is our final goal. 
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Figure 3. A Framework of Tree Sequence Mining in the Tree Sequence 
Database 

4.1. Tree Mining 

Many efficient mining approaches have been developed for finding tree-like patterns [8-

13]. In our paper, since we focus mainly on rooted ordered tree mining problem, we choose 

the tree mining algorithm FreqT from Asai. However, other tree mining approaches can also 

be used for analysis of other tree-structures. 

We do not use FreqT algorithm to mine frequent trees in a tree sequence database straight. 

On the contrary, we make several modifications to the FreqT algorithm. First of all, since we 

mine frequent trees in a tree sequence database while not in a tree database, the computation 

of support of trees should be modified. A tree is frequent in a tree database while it may not 
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be frequent when considering the database as a tree sequence database. Secondly, when 

mining frequent trees, we label each frequent tree with a unique id. In Figure 2 (b), there are 

11 frequent trees and we label trees from 1 to 11 respectively. For each frequent tree we use a 

tree-id-list to record all the trees in database that contain current frequent tree. In this way we 

can obtain the tree-id-list during mining process and avoid a time-costly tree-containing 

computation. When computing the support of each candidate tree, trees in database are 

enumerated in database order (first by rid order then by tid order). Therefore, constructing 

results of tree-id-lists are also automatically ordered in database order without any other 

disposal. In Figure 4 (a), we list the tree-id-list of every frequent tree. We use Ri-k to denote a 

tree with Ri to be rid and k to be tid. For example, the No. 10 frequent tree is a subtree of 

trees {R1-2, R1-4, R2-5, R3-1, R3-3}. For every frequent tree we also use a subtree-id-list to 

record all the frequent trees contained by current frequent tree. Frequent trees recorded in 

subtree-id-list are order by the frequent tree id. Figure 4 (b) shows the results of subtree-id-

list for each frequent tree in Figure 2. For example, the No. 1 frequent tree does not contain 

any other frequent tree while No. 9 tree contains frequent trees {1, 2, 4, 6}. Generation of 

subtree-id-list will be used during process of sequence transforming. A detail of its function 

will be discussed when talking about sequence transforming. 

In case that the database is large we cannot store all tree-id-list and subtree-id-list in 

memory, we can store all id-lists in disk and load them when needed. All the tree-id-lists are 

stored first by the frequent tree id order and then by the database order. All the subtree-id-lists 

are stored first by the frequent tree id order and for each subtree-id-list it is stored also by 

frequent tree id order. 
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Figure 4. Tree-ID-List and Subtree-ID-List of Frequent Trees 

4.2. Database Transforming 

During this process, we can transform the tree sequence database into a traditional 

sequence database. An approach for database transforming is given in Algorithm 1. The input 

of the algorithm is tree-id-list of all frequent trees and the output is a new generated sequence 

database. Each id in tree-id-list can be represented as a three-tuple format (rid, tid, fid)1, 

where rid is the record id of tree, tid is the tree id in the record and fid is the frequent tree id. 

Since tree ids in each tree-id-list are ordered according to the tree order in database (first by 

rid order then by tid order). First of all, we can sort ids in all tree-id-lists first by database 

order then by frequent tree id order with a merge sort. A data structure heap is used for 

sorting ids. If the amount of ids is too large, we can use an external merge sort approach. 

                                                           
1 The tree-id-list of a frequent tree is transformed from the 2-tuple format <rid, tid> into 3-tuple format <rid, tid, 

fid> by appending id of the frequent tree to the original format. 
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Secondly, we generate the records of new database. The records are sequences and elements 

in sequences are itemsets. Ids with a same rid and tid constitute an itemset for a tree. All 

itemsets with a same rid constitute a sequence (record). Itemsets are ordered by tid in the 

same record. By transforming a tree in the tree sequence database can be represented as an 

itemset which composed by all frequent trees contained by current tree. In Figure 5(a), we 

show the new sequence database generated from tree-id-lists in Figure 4 (a). To be briefly, we 

only use fid set to denote an itemset. Items in itemset {1,2,3,4,7} are all with rid = R1,tid = 1 

and represent tree (R1,1). Itemsets in sequence <{1,2,3,4,7}, {1,2,3,4,6,7,9,10,11}, 

{1,2,3,4,8}, {1,2,3,4,6,7,9,10,11}, {1,2,3,4,5,7}> are all with rid = R1 and represent record 

R1. 
 

 

Algorithm 1. Database Transformation Algorithm 

GenerateDatabase 

Input: TREE_ID_lISTS 

Output: DATABASE 

result_lists = Ф; 

compute merge_lists from TREE_ID_lISTS 
//a merge_list in merge_lists with structure (start_list,end_list) 

for each merge list ml in merge_lists do 

result_list = Merge(TREE_ID_lISTS,ml); 

 result_lists = result_lists ∪ result_list 

if count of list in result_lists is more than 1 then 

     DATABASE = GenerateDatabase(result_lists); 

else  

DATABASE = ClusterTreeID(result_lists); 

 end if 

end for 

 

Merge 

Input: TREE_ID_lISTS, merge_list 

Output: result_list 
Construct a priority Queue TreeIDMergeQueue do 

for each list id li in merge_list do 

get a tree id list til from TREE_ID_lISTS according to li 

   get next tree id ti from til; 

   if  ti exists then 
       insert ti into TreeIDMergeQueue 

   end if 

end for 

while TreeIDMergeQueue is not empty do 

pop top tree id tti from TreeIDMergeQueue  
    insert tti into result_list 

get next tree id ti from tree_id_list which tti is in; 

        if ti exists then 

           insert ti into TreeIDMergeQueue 

        end if 

end while 
 

ClusterTreeID 

Input: TREE_ID_LIST 

Output: DATABASE  

for each tree id ti in tree_id_list do 
if tree id ti and prev tree id pti not with same record id then 

        generate a new record with rid equals ti.rid; 

        DATABASE = DATABASE ∪ {record}; 

    else if tree id ti and prev tree id pti not with same tree id then 

       generate a new tree with tid equals ti.tid; 

       record = record ∪ {tree}; 

    else  

       tree = tree ∪ {ti.fid}; 

    end if 

end for 
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4.3. Sequence Mining 

For the sake of discovering sequential patterns, many efficient mining approaches have 

been developed [1-6]. Among these efficient algorithms, we adopt algorithm SPADE to mine 

sequences from our new generated sequence database as it is a more efficient and easy to 

implement one. SPADE presented by Zaki [5] can avoid many repeated database scans and 

mine sequences in only three database scans. SPADE makes use of combinatorial properties 

to decompose the original problem into smaller sub-problems that can be independently 

solved in main-memory with lattice search techniques. Further detailed discussion on the 

SPADE algorithm can be found in [5]. In Figure 5(b) we show the frequent sequences 

discovered from the generated database in Figure 5(a) by SPADE. 
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Figure 5. Generated Sequence Database and Frequent Sequences in the 
Database 

4.4. Sequence Transforming 

In this section, we give a scheme to change mined sequences into non-redundant tree 

sequences. Itemset constituting mined sequence is composed of all frequent trees that the tree 

contains. Since a tree S is contained in a T, then all subtrees of S will also be contained in T. 

Therefore, there may exist some redundant data in mined sequences. For example, in Figure 5 

(b), sequence <{1, 2, 3, 4, 7}> with only one itemset is a frequent tree sequence in database. 

While No. 1 and 2 trees are subtrees of No. 3 tree, and No. 4 tree is a subtree of No. 7 tree. By 

removing redundant items, a new non-redundant sequence {<4, 7>} is constructed. Thus, a 

tree sequence <{4, 7}> is a non-redundant frequent tree sequence, with No. 4 and No. 7 trees 

are two frequent trees respectively. 
 

 

Algorithm 2. Non-redundant Sequence Transformation Algorithm 

To remove redundant items, we need a time-costly tree-containing computation. 

Fortunately, we have computed the tree-containing relation during frequent tree mining 

process. We use contain(t, s) to denote a tree t contains a tree s and size(t) denote the number 

SequenceTransforming  

Input: Sequence 

Output: NewSequence 

NewSequence = <>; 

for each itemset in Sequence do  

    for each item t in itemset from back to front do  

        for each item s before item t do  

            if size(s) < size(t) AND contain(t,s) then 

                itemset = itemset - {s}; 

             end if             

        end for 

end for 

    NewSequence = NewSequence  itemset 

end for 
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of nodes in tree t. In Algorithm 2, a non-redundant sequence transformation algorithm is 

given. Items (frequent trees) in each itemset are ordered in frequent tree id order which is 

increased when a new frequent tree generated. When generating frequent trees, a bread-first 

enumerate approach is employed. Therefore, frequent trees are ordered by tree size. With the 

tree size order property, we can have that size of the tree in the same itemset is equal or larger 

than previous one. We use tree size order property and tree-containing relation to judge the 

relationship between two frequent trees for sequence transforming. 
 

5. Experimental Results 

In this section, we present the results of actual implementation of the tree sequence mining 

algorithm for a tree sequence database. 
 

5.1. Implementation and Experimental Setup 

A prototype system of tree sequence mining algorithm is implemented in Java 

programming language (Sun JDK1.6). As described in previous sections, the prototype 

system of the mining algorithm is made up of four parts: frequent tree mining, database 

transforming, sequence mining and sequence transforming. We compared time consumption 

of the four parts for various datasets. All experiments were performed on a server (Intel 

2.0GHz Pentium dual machine) with 4GB of main memory running operating system Ubuntu 

11.10. 
 

5.2. Workload 

We used tree generator provided by Zaki2 to generate a number of datasets with varying 

sizes. For generating trees, following default values were used for the parameters: the 

maximum fanout F=10, the maximum depth D=10, the number of labels N=100, the number 

of nodes in the master tree M=10,000. Various synthetic datasets are used for representing 

varying number of trees: T10K for total number of trees T=10,000, T1M for T=1,000,000. To 

form a tree sequence database, every 5 trees was used to comprise a record. Thus there are 

2,000 records for T10K dataset and every sequence contains 5 trees. In the following 

experiments, the default relative minimum support value was set 10%. 
 

5.3. Mining Performance 

Table 1. Running Time of Four Parts of Tree Sequence Mining System with 
Various Datasets 

Part 

Dataset 
TM(ms) DT(ms) SM(ms) ST(ms) Total(ms) 

T10K 1896 2568 3474 613 8551 

T20K 2661 4848 4337 489 12335 

T40K 4456 8519 8292 379 21646 

T80K 8141 16923 16239 404 41707 

T100K 10019 20806 21013 424 52262 

T200K 19334 40920 36182 438 96874 

T400K 38651 82228 76022 413 197314 

T800K 78585 151933 156327 476 387321 

T1M 95159 209082 232087 399 536727 

 

                                                           
2 http://www.cs.rpi.edu/~zaki/software/. 
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In Table 1 we show running time of four parts of tree sequence mining system with various 

datasets, where TM stands for Tree Mining, DT stands for Database Transforming, SM stands 

for Sequence Mining and ST stands for Sequence Transforming. From the table we can see 

that the running time is mainly consumed by Database Transforming and Sequence Mining. 

There are many sorting and merging operations during Database Transforming which may 

cost much I/O. During sequence mining we have to iterate all candidate subsequence. 

Although we decompose the problem into smaller sub-problems that can be independently 

solved in main-memory and prune infrequent sequences as early as possible, there are still too 

many candidates need to be examined. The time consumed by sequence mining is still large. 
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Figure 6. Total Running Time of Tree Sequence Mining 

Figure 6 shows total time consumed by frequent tree sequence mining with datasets of 

varying size from T10K to T1M. From the figure we can see that the time consumed by the 

mining system is related to the dataset size linearly, which means our approach has good 

scalability and shows a good performance for sequence tree mining. 
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Figure 7. Number of Frequent Trees and Frequent Tree Sequences with 
Various Datasets 
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Figure 8. Number of Frequent Tree Sequences for Dataset T100k with Various 
Supports 
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Figure 7 (a) shows the number of frequent trees mined from datasets of varying size, while 

Figure 7 (b) shows the number of frequent sequence trees. Since we adopt relative support 

when mining tree sequences, the number of frequent trees for one dataset is almost equal to 

others. The result of the number of frequent tree sequence behaves likewise. Therefore, the 

running time of Sequences Transforming in Table 1 varies little. Figure 8 presents the number 

of frequent tree sequences for dataset T100k with various minimum supports from 0.02 to 

0.20, which shows that the number of mined tree sequences decreases rapidly when support is 

on increase. 
 

6. Conclusions 

This paper brought forward the problem about mining frequent sequential patterns in a tree 

sequence database, and presented a framework for sequential tree mining in a tree sequence 

database. We decomposed the process of the framework into four steps: tree mining, database 

transforming, sequence mining and sequence transforming. We presented our method for 

each of these steps. We conducted experiments on synthetic datasets, and found that the 

running time of our approach is linear to the size of the tree sequence database. The 

experimental results also indicate that our system has good scalability. For future work, we 

plan to apply our approach to applications such as cache for XML query, and web server 

cache, etc. 

 

Acknowledgements 

The work was supported in part by National Natural Science Foundation of China [grant 

number 60903038], China Scholarship Council [grant number 201306320037], National Key 

Technology R&D Program [grant number 2013BAH01B06], Smart Industry Talent Base 

Project of Ningbo. 

 

References 

[1] R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings of the 11th International Conference on 

Data Engineering (1995), March 6-10; Taipei, China. 

[2] R. Srikant and R. Agrawal, Mining Sequential Patterns: Generalizations and performance improvements, 

Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database 

Technology (1996), March 25-29; Avignon, France. 

[3] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal and M.-C. Hsu, PrefixSpan: Mining Sequential 

Patterns Efficiently by Prefix-Projected Pattern Growth, Proceedings of the 17th International Conference on 

Data Engineering (2001), April 2-6; Heidelberg, Germany. 

[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.-C. Hsu, FreeSpan: Frequent Pattern-Projected 

Sequential Pattern Mining, Proceedings of the 6th ACM SIGKDD international conference on Knowledge 

discovery and data mining (2000), August 20 – 23; Boston, MA, USA. 

[5] M. J. Zaki, SPADE: An Efficient Algorithm for Mining Frequent Sequences, In Machine Learning Journal, 

special issue on Unsupervised Learning, vol. 42, no. 1/2, pp. 31-60 (2001). 

[6] M. N. Garofalakis, R. Rastogi and K. Shim, SPIRIT: Sequential pattern mining with regular expression 

constraints, Proceedings of the 25th International Conference on Very Large Data Bases, pp. 223-234 (1999), 

September 7-10; Edinburgh, Scotland, UK. 

[7] B. Mallick, D. Garg and P. S. Grover, Incremental mining of sequential patterns: Progress and challenges, 

Intelligent Data Analysis, vol. 17, no. 3, pp. 507-530 (2013). 

[8] M. J. Zaki, Efficiently Mining Frequent Trees in a Forest, Proceedings of the 8th ACM SIGKDD 

international conference on Knowledge discovery and data mining (2002), July 23-25; Edmonton, AB, 

Canada. 

[9] M. J. Zaki, Efficiently Mining Frequent Embedded Unordered Trees, Fundamenta Informaticae, vol. 66, no. 

1-2, pp. 33-52 (2004). 

[10] Y. Chi, Y. Yang and R. R. Muntz, Indexing and Mining Free Trees, Proceedings of the 3rd IEEE 

International Conference on Data Mining (2003), November 19-22; Melbourne, Florida, USA. 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

118   Copyright ⓒ 2014 SERSC 

[11] Y. Chi, Y. Yang and R. R. Muntz, HybridTreeMiner: An Efficient Algorithm for Mining Frequent Rooted 

Trees and Free Trees Using Canonical Forms, Proceedings of the 16th International Conference on Scientific 

and Statistical Database Management (2004), June 21-23; Santorini Island, Greece. 

[12] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto and S. Arikawa, Efficient Substructure Discovery 

from Large Semi-structured Data, Proceedings of the 2nd SIAM International Conference on Data Mining 

(2002), April 11-13; Arlington, VA, USA. 

[13] T. Asai, H. Arimura, T. Uno and S. Nakano, Discovering Frequent Substructures in Large Unordered Trees, 

Proceedings of the 6th International Conference on Discovery Science (2003), October 17-19; Sapporo, 

Japan. 

[14] C. T. Jiang, F. Coenen and M. Zito, A survey of frequent subgraph mining algorithms, The Knowledge 

Engineering Review, vol. 28, no. 1, pp. 75-105 (2013). 

[15] Y. Bei, G. Chen, L Shou, X. Li and J. Dong, Bottom-up discovery of frequent rooted unordered subtrees, 

Information Sciences, vol. 179, no. 1-2, pp. 70-88 (2009). 

[16] L. Yang, M.L. Lee and W. Hsu, Efficient mining of XML query patterns for caching, Proceedings of the 29th 

International Conference on Very Large Data Bases, pp. 69–80 (2003), September 9-12; Berlin, Germany. 

[17] L. Yang, M.L. Lee, W. Hsu, D. Huang and L. Wong, Efficient mining of frequent XML query patterns with 

repeating-siblings, Information and Software Technology, vol. 50, no. 5, pp. 375-389 (2008). 

[18] M. Mazuran, E. Quintarelli and L. Tanca, Data Mining for XML Query-Answering Support, IEEE 

Transactions on Knowledge and Data Engineering, vol. 24, no. 8, pp. 1393-1407 (2012). 

[19] L. Chen, S. S. Bhowmick and L.-T. Chia, Mining Positive and Negative Association Rules from XML Query 

Patterns for Caching, Proceedings of the 10th international conference on Database Systems for Advanced 

Applications, pp.736-747 (2005), April 17-20; Beijing, China. 

[20] J. X. Liu, S. T. Yan, Y. Y. Wang and J. D. Ren, Incremental Mining Algorithm of Sequential Patterns Based 

on Sequence Tree, Advances in Intelligent Systems, vol. 138, pp. 61-67 (2012). 

[21] K. Ravi, H. S. Srinivasan and S. K. Krishnan, Comment spam detection by sequence mining, Proceedings of 

the 5th ACM international conference on Web search and data mining, pp. 183-192 (2012), February 8-12; 

Seattle, Washington, USA. 

[22] Y. J. Bei, X. L. Zheng and Z. Lin, Evaluating the Similarity of XML Documents Based on Frequent Label 

Sequences, International Journal of Advancements in Computing Technology (IJACT), vol. 4, no. 13, pp. 26-

34 (2012). 

 

Authors 
 

Yijun Bei, received the BS and PhD degrees in the College of 

Computer Science & Technology of Zhejiang University in 2003 and 

2008 respectively. He worked as a lecturer in the College of Software 

Technology, Zhejiang University. His research interests include 

databases data mining, XML data mining and social network analysis. 

 

 

 

 

Zhen Lin, is currently a Ph.D. candidate at Zhejiang University. Also, 

he becomes a joint Ph.D. student at University of Illinois at Urbana - 

Champaign since 2013. He received his Bachelor degree from 

Northeastern University, and Master degree from Zhejiang University. 

He joined the E-Business Technology Institute (ETI) of the University of 

Hong Kong in 2009. His research interests include social computing, data 

mining, and community detection. 

 

 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

Copyright ⓒ 2014 SERSC   119 

Qiyao Wang, is currently a Ph.D. candidate at Beijing University of 

Posts and Telecommunications. Also, she becomes a joint Ph.D. student 

at University of Illinois at Urbana - Champaign since 2014. She received 

his Bachelor degree from Beijing University of Posts and 

Telecommunications. Her research interests include social computing 

and information diffusion. 

 

 

 

Erteng Liu, is currently a lecturer at the Zhejiang University since 

2012. He received his Bachelor degree from Guizhou University, and 

Master degree from Zhejiang University. His research interests include 

data analysis, social computing, and software engineering. 



International Journal of Database Theory and Application 

Vol.7, No.3 (2014) 

 

 

120   Copyright ⓒ 2014 SERSC 

 


