
International Journal of Database Theory and Application

Vol.7, No.3 (2014), pp.1-12

http://dx.doi.org/10.14257/ijdta.2014.7.3.01

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

Effective Metadata Cluster Management for Mass Data Storage

Chen Ningjiang
1
, Xiao Zhongzheng

1
 and Zhang Wenbo

2

1
College of Computer Science and Electronic Information, Guangxi University, Nan-

ning, 530004
2
 Technology Center of Software Engineering, Institute of Software, Chinese Academy

of Sciences, Beijing, 100190

chnj@gxu.edu.cn, zz.xiao.gx@gmail.com, zhangwenbo@otcaix.iscas.ac.cn

Abstract

An effective decentralized metadata management schema is critical to a reliable and scal-

able large-scale distributed storage system. With regard to the defects of huge expansion cost

and high sensitivity to cluster alteration borne in both the hash-based and subtree-based

metadata management schemas, a metadata server (MDS) clustering schema based on con-

sistent hash structure, named DSVL, is proposed. By introducing virtual MDS into the con-

sistent MDS cluster, it can effectively balance MDS cluster load. Besides, the standby mecha-

nism and the lazy update policy are merged and applied to the MDS cluster to accomplish

rapid MDS failover as well as zero data migration in case of cluster alteration. The results of

prototype system and simulation test prove that DSVL, with the features of balanced metadata

distribution, rapid failover, flexible scalability and zero data migration amount in case of

node alteration, can meet the demands for flexible and effective management of large-scale

data storage systems with ever increasing data amount.

Keywords: metadata management, metadata cluster, distributed storage

1. Introduction

The metadata management is the key factors for the good performance and scalability of

large-scale distributed file system [1]. The metadata amount takes up a very small percentage

of the data storage, however, 50%-80% of the access requests involve metadata operations

[2]. The metadata server (MDS) [3] works as an intermediate mapping layer for client’s data

requests and data files. Decentralized and highly scalable MDS cluster schema
 [4]

 can realize

the good performance and scalability in data access by sharing loads. Hash-based mapping

and subtree partitioning are major metadata partitioning ways. Hash-based mapping has good

load balance but its’ scalability is terrible. Subtree based schema has huge cost of data migra-

tion. Large-scale storage system with periodical input of large amount of data will find its

metadata amount increasing dramatically with the gradual growth of data amount. Metadata

determines the system’s storage capacity. Apparently, a cluster that is flexible in expanding

the metadata management nodes can meet the demand for ever increasing data storage.

The paper proposes DSVL (Distributed Schema based-on Virtual MDS and Lazy policy), a

distributed dynamic metadata management system based on consistent hash that can accom-

plish the effective management and flexible expansion of cluster metadata in the large-scale

data storage system. Section 2 introduces the work related to metadata management. Section

3 introduces system architecture while Section 4 describes its performance in metadata load

balancing, MDS fail-over, scalability and data migration. Simulation tests for DSVL proto-

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

2 Copyright ⓒ 2014 SERSC

type are given in Section 5. Finally, we discuss the advantages of DSVL in Section 5 and

conclude in Section 6.

2. Related Work

GFS [5] and HDFS [6] are typical single MDS schema implementation. It is easy to main-

tain the consistency but it limits the scalability of the file system, and a large number of con-

current writes will dramatically increase the load of the master MDS, which will damage the

system stability. In the subtree-based partitioning, the namespace of the whole file system is

partitioned to be many subtrees. The static subtree partitioning is relatively easy to fulfill with

NFS [7] and Coda [8] as representatives. However, it may give rise to extreme imbalance of

the system load. The dynamic subtree takes into consideration the load balance. Ceph [9] typ-

ically employs the dynamic subtree partitioning. The dynamic subtree requires all nodes to

regularly exchange their load information, resulting in the sharp growth of system load as re-

hashing is needed in the case of the alteration of the cluster structure. Hash-based metadata

partitioning [10] directly determines file location. The metadata requests will be evenly dis-

tributed onto the metadata nodes. But it’s extremely sensitive to the change of metadata clus-

ter configuration. Therefore, Lazy Hybrid [11] tries to reduce such huge abrupt metadata mi-

gration by lazy update policy.

3. Architecture of DSVL

As shown in Figure 1, the global metadata management for DSVL is based on consistent

hash structure [12-14]. Consistent hash is usually applied to the design for distributed hash

table, as seen in Chord [13] and Apache Cassandra [15]. With its monotonicity, autonomy,

decentralization, fault tolerance and scalability, it will not lead to critical changes of element

mapping in the case of joining, leaving and failure of nodes.

Standby Proto

Client Interface

Standby

Consistent

Hash Ring

LayoutTable

MDS Protocol

Hash Ring

Loc Alloc

Load Balancing

RAID-10 Style

Block Storage

Storage Manager

MDS

Key

Figure 1. Architecture of DSVL

All MDSs as well as all metadata items in DSVL are mapped to the consistent space by

hash functions, and every MDS has its standby MDS called Standby Node which is its next

hop MDS in the consistent hash ring. The global data layout table is used to describe the net-

work structure of MDS-cluster, the logic structure of MDS, the distribution structure of

metadata and the Lazy-Update Table. Besides, the MDS Protocol is used to regulate the in-

teroperation between MDS instances while the Standby Protocol defines the standby mecha-

nism for the Standby Node that can interact with the target MDS.

3.1. The MDS Layout Structure

Definition 1 Cluster Layout. It describes the network topology of MDS cluster and is

marked as Tc∷ =[]<{MIDi,DCi,MIDt}>, in which MIDi is the sole identifier of MDS instance,

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 3

DCi is the network connection information of MDS instance, and MIDt is the identifier of the

target MDS node served by the Standby Node in the MDS instance.
Definition 2 Metadata Distribution. It describes the mapping of metadata to MDS and is

marked as Td∷ =Vd∪Cm,, in which Cm=SortedMap<{(K,vMDS)→{MID,host,ports,…}}>

(this is a metadata mapping set and an ordered collection, in which K is the Key value of

metadata and vMDS is the identifier of virtual MDS mapped to the real MDS.) and Vd=[

]<{MID→[vMi, vMi+γ , vMi+2γ ,...]}> (this is the distribution table of virtual MDS and MID is

the MDS identifier mapped to a group of virtual MDSs.)

Definition 3 Lazy-Update Table. It records the local lazy-update data set and is marked

as Tu∷ =[]<{K,MDSS,MDST,Type}>, in which K is the metadata identifier, MDSS is the ID of

source MDS, MDST is the ID of target MDS, and Type is alteration type. It’s the local MDS if

MDSS is empty. Type=[rm∣ mv], in which rm means to delete operation while mv, update op-

eration.

Definition 4 MDS Layout Table. It refers to the compound data structure of every MDS

instance that organizes and controls clusters and is marked as LT∷ =Tc∪Td∪Tu, in which Tc

and Td are shared by every MDS in the cluster while Tu is privately owned by the very MDS.

Tc、Td and Tu are combined to describe the structure, state and control information of the

whole MDS cluster. Tc builds an information table of MDS nodes based on the cluster layout,

Td defines the multi-level mapping of Key→vMDS→MDS, and Tu marks the expansion record

on Key when metadata is changed (in particular the renaming of directory) so as to conduct

lazy processing of data migration in large amount. LT is critical to the building and mainte-

nance of the effective and consistent operation of MDS cluster as it directly determines its

logic structure. Figure 2 shows the logic structure of Layout Table in DSVL.

Cluster Layout

Metadata
Distribution

Lazy-Update Table

host info targetMID0

…
host info targetMID1 , 2rK

,1rK

3 4~n nR K R K 

2~n nR K R

1 2~n nR K R K 

…

…

0v M

1v M

2v M

…

mv M

nv M

MID0

MID1

MID2

……

K0 MID0 m/d MID1 misc

…

Keys ExtendMDS Reference 1 , 0K …

0 ,1K 1 ,1K …

0 , 2K 1 , 2K …

Global Sync

MDS Local

K1 MID0 m/d MID1 misc

0 , 0rK

Figure 2. Structure of Layout-Table in DSVL

As shown in Figure 2, K∈Sh, vM0< vM1<… ≤ 2
n
-1, metadata between 0～K r,0 are mapped

to vM0, metadata between K 0,1 ～K r,1 are mapped to vM1, and so on. vM is mapped to the

only MID while one MDS is partitioned into many vMs. Td table, after a series of mapping,

determines the MDS in which metadata reside. The distribution process of vM is also the even

distribution process of metadata as well as the provision of matching MDS for client’s

lookup. Client can, when looking up metadata, send MDS matching requests from any Mi

who will first gain via hashing the file’s Key value to be input into Td for matching and return

with Mt, the target MDS node, then client can be directly redirected to Mt for metadata. Tu, the

auxiliary data structure built on Td, is for marking the altered metadata instead of migrating

them immediately so as to reduce the large data migration amount possibly resulting from

metadata alteration. Tu are not consistent with each other as every MDS has its local Lazy-

Update table that is not shared with other MDSs. Therefore, only relevant local items are

marked when alteration of local metadata occurs. Forced data migration will be triggered

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

4 Copyright ⓒ 2014 SERSC

when the items’ size of Tu reaches the threshold, which is apparently helpful for better utiliza-

tion of storage resources and avoiding the metadata fragmentation caused by large amount of

metadata to be migrated but not yet migrated.

3.2. Balanced Metadata Distribution

The uncertainty of mapping MDS nodes to Sh hash ring will lead to the uneven distribution

of elements on it and further to the load imbalance of MDS cluster. With regard to the

metadata distribution imbalance as a result of MDS mapping randomness and range of data

aggregation, the paper proposes to remap numerous Virtual MDSs (vMDSs) evenly to Sh for

every MDS so as to ensure equal metadata residing probability of every MDS in every local

range.

When a certain MDS instance joins in MDS cluster, the very MDS responsible for its reg-

istration will distribute for it the default P vMDSs. As a result, LT‘s alteration will be directly

influenced, so the join request will be broadcast to all other existing MDSs for voting before

registration is allowed by MDS via testing to see if the local LT is attached a write lock (e.g.,

forced data migration is under way). MDS will be successfully registered and distributed with

P vMDSs if registration is passed unanimously. As shown in Figure 3, the range of metadata

sections of M1 is far beyond that of M2 and M3, noticeably impacting the system’s storage and

computation performance and utilization. Now let’s map M1 respectively to the space within

the same range as [0, 2
n
-1], we can get [vM1,0, vM1,1, vM1,2, vM1,3]. These vMDS will partition

Sh into P equal parts (P =4 as shows in Figure 3 and Figure 4) and the metadata items and

vMDS comprise the basic elements of hash space. The mapping between MDS and vMDS is

thus finally described as Vd in Definition 2. Such equal partition in enclosed space allows the

data distribution and procedure of every 1/P to be consistent.

M1 M2 M3

vM1 vM2 vM3 vM4 vM5 vM6
F1

F2

F1F2

Hash

 0P0P R

Figure 3. MDS-vMDS Mapping Figure 4. Procedure of vMDS Division

Figure 4 shows the dynamic procedure of vMDS distribution in 1/P aliquot part of Sh. The

space between P0 and P0+R is one aliquot part itself when there is only 1 MDS in the begin-

ning. In the later process of vMDS joining in continuously, if [P0,P0+R) is partitioned into

the aliquot collection of CV and CV2, and all elements in CV2 are 2 times of those in CV, the

aliquot block in CV2 needs to be further bisected until CV2 is empty. The distribution algorithm

of vMDS is described as follows.

Algorithm ALLOC-VIRTUAL-MDS

Input: hash factor: β(β>1); vMDS number: ρ(ρ>0); vMDS recycling list: ζ = List { vMDS

}

Output: vMDS set A

BEGIN

(1) Def N =2
β
-1, Nγ = N/ρ, Δ = Nγ, P γ = 0, A = []

(2) IF ζ ∈ ø : A1 ← P γ + Δ/2

 (3) FOR i = (1:1: ρ] DO: Ai ← Ai-1 + Nγ ENDFOR

 (4) P γ ←P γ +Δ

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 5

 (5) IF P γ →Nγ: Pγ ← 0, Δ ← 0 ENDIF

(6) ELSE: A ← rm(ζ0), FOR j = (1:1: ρ] DO: Aj ← Aj-1 + Nγ ENDFOR

(7)ENDIF

END

Δ keeps rotating within [0,N/ρ) with the existing distribution of Vd, so that vMDSs are rela-

tively evenly distributed. The distribution of vMDSs allows metadata to be indirectly mapped

to MDSs via vMDSs, creating a balanceing mechanism between MDSs and metadata that

contributes to the better response performance of MDS cluster.

Fact 1. MDSs and metadata items are mapped to the same hash space, and metadata K re-

sides in Mx when and only when ((∄ Mi, MKi>MKx) ⋀ MKx>K) ⋁ (MKx=0 ⋀ (∄ Mj,

MKj>K)).

Theorem 1 The consistency of MDS cluster will not be influenced any MDS joins in.

Proof: Allow the existing cluster C to have m MDSs, namely M0, M1,…,Mm that are

mapped to Sh, and whose Key value is MK0, MK1,…,MKm respectively. According to Fact 1,

metadata items {K | K ∈ [MKm,MK0)}=> M0，{K | K ∈ [MK0,MK1)} => M1，…，{K | K ∈

[MKi,MKi+1)} => Mi+1, …,{K | K ∈ [MKm-1,MKm)} => Mm. If new node Mx with the Key value

of MKx is to join in C, MKx ∈ [MKi, MKi+1) (MKi and MKi+1 are the Key value of Mi and Mi+1

respectively.), the metadata deployment within [MKi, MKi+1) must be adjusted to fulfill the

constraint of Fact 1 {K | K ∈ [MKi,MKx)} => Mx，{K | K ∈ [MKx,MKi+1)} => Mi+1. There

will still be {K | K ∈ [MKm,MK0)} => M0，{K | K ∈ [MK0,MK1)} => M1，…，{K | K ∈

[MKm-1,MKm)} => Mm after adjustment to meet the constraints of Fact 1. To sum up, Mx does

not have any influence on the consistency of C, or new node(s) can join in MDS cluster

freely. □

Theorem 2 The metadata server interruption time in MDS cluster during the process of

new MDS joining in is 0.

Proof: Allow Md to be the MDS newly joining in cluster C, Mr to be the MDS responsible

for registration, and Md to be distributed between Ma and Mb. The MDS-JOIN algorithm de-

scribed in this section is now followed. First, Mr asks for votes from all MDSs to see if new

MDS is allowed to join and, if yes, records will be newly made for Md in the local LT of Mr.

Second, Mb is the next hop node of Md, and {K∣ K∈Ma ∧ K<Md} needs to be migrated to

Md and written to Tu based on the lazy policy. Marking the indices of first Key and last Key is

enough as they are in order on LT. Third, Mr broadcasts the alteration of LT. Apparently, the

update marking process and the alteration broadcasting process by Mr and the voting process

are asynchronously executed with metadata servers, and these three processes don’t damage

the consistent layout of metadata whose services are still available normally. The broadcast-

ing process of LT alteration will attach write locks to the metadata of Mb, but the lookup ser-

vices can still operate normally. Other MDSs don’t have this request. To sum up, in the pro-

cess of a new MDS joining in the cluster, the lookup service interruption time is 0. Only one

MDS will stop its write service in the alteration broadcasting process while other MDSs can

be normally accessed for write. Therefore the system service interruption time is 0.

Corollary 1 DSVL has good MDS scalability.

Algorithm MDS-JOIN

Input：MDS for MDS registration：Mr ; New MDS; Md

Output：LT of Md

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

6 Copyright ⓒ 2014 SERSC

BEGIN

(1) T ← FetchLayout (Mr) /* gain LT of Mr*/

(2) IF vote (T.c, Mr) = size (T.c) /* executed only after all MDSs allow Md to join */

(3) Global_LockLayout (T, Mr) /* MDSes execute in parallel*/

(4) FOR Mx in T.c PARALLEL-DO:

(5) AddMDS (Tthis, Md, Mr)

(6) IF Md → Mx /* lazy update and forced update of the next hop of Md */

(7) Al ← split (Tthis.m, Md)

(8) FOR K in Al DO: Log_Migrate (K, Mx, Md) ENDFOR

(9) Am ← find (Tthis.l, Md)

(10) FOR K in Am DO: UPDATE-KEY-ITEM (K, K, Tthis, ‘mv’) ENDFOR

(11) ENDIF

(12) ENDFOR

(13) Global_UnlockLayout (T, Mr)

(14) ENDIF

END

4. MDS Failover

Persistence of in-memory data is an important issue for storage systems. DSVL addresses

this issue with Standby Node [16-18].

Definition 5 M0 is the standby node of Mt in the MDS instance and marked as M0 ш Mt

when and only when (∄ Mx , Kx ∈ [K0,Kt)) ⋁ (K0 = 0 ∧ Kt = N), in which Kx, K0, and Kt are

the Key value of Mx, M0, and Mt respectively and N is the size of hash space.

DSVL adopts the checkpoint mechanism. Every MDS must have a Standby Node whose

distribution mechanism is shown in Fig. 5. Hash space grows anticlockwise while the distri-

bution of Standby Node is clockwise, M2 ш M1, M3 ш M2, ….. When M3 fails, its metadata

and the backup data of M2 all fail. M4, the Standby Node of M3, will first discover M3 failure

and quickly retrieve the backup data in M3 into the MDS instance of M4. The Standby Node

of M4 will be redirected to M2 and download the latest memory dump of M2.

Tx.ReadTx.Write
NFSNFS

Active

MDS

Standby

MDS

M1

M2
M3 M4

Figure 5. Standby-Node Mechanism

Theorem 3 All metadata of any MDS after its failure will not be lost but taken over by

other MDSs.

Proof: It can be inferred from the DSVL architecture described in Section 3.1, the descrip-

tion of Standby Node mechanism in this part, Definition 5 as well as the checkpoint mecha-

nism that every MDS must have a Standby Node, in which the log update of this MDS and

the latest checkpoint data will be backed up. Hypothesize the failed MDS is Mf, the failure

time is Tf, and the last checkpoint creation time of Mf is Tc, it’s obvious that Tc < Tf. Allow the

memory dump of Mf at Tc to be Ic, then the update record of Ic during Tf ~ Tc is SEQlog= {OP0,

OP1,…,OPk}, in which OPi is one updated log containing target data items, original data, new

data, alteration type and timestamp. Obviously, Ic describes the latest state of the memory

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 7

dump while SEQlog, all the dynamic behavior of memory dump during Tc ~ Tf. As the infor-

mation recorded by SEQlog contains the original data, this dynamic process can be re-done. In

other words, the dynamic alteration process of memory dump can be re-executed by redoing

the log record as long as Ic and SEQlog are both available. The latest correct memory dump

can be shown as In = Ic ≏ SEQlog. Therefore, the correct state of Mf can be recovered through

latest checkpoint and log files.

Theorem 4 The failure of a certain MDS will have no influence on the service state of oth-

er MDS instances.

Proof: Allow the failed MDS to be Mf, Ms ш Mf, Mf ш Mt. It can be learned from Definition

2 that the metadata set of Mf, Ms and Mt is respectively SKf={K | K∈[Kf, Ks)}, SKs={K | K∈

[Ks, Kx)}, SKt={K | K∈[Ky, Kt)}, and Ky<Kt<Ks<Kx, so SKf ∩ SKs ∩ SKt = ∅ . Computation for

all MDSs accordingly can lead to SKi ∩ SKi+1 ∩… SKn = ∅ , in which n is the number of

MDSs. In accordance with the checkpoint mechanism, there is backup for log files and the

latest checkpoint of Mf on Ms, while the backup for Mt is on Mf. After Mf fails, the backup da-

ta of Mt will be lost, but Mt can immediately create the latest checkpoint locally to be down-

loaded by the new Standby Node as it doesn’t fail. Therefore, the failure of a certain MDS

will have no influence on the metadata server state of other MDSs.

Theorem 5 The network load in the MDS failover is 0.

Proof: Assign Mf as the failed MDS and Ms ш Mf. Mf fails at time t. According to Defini-

tion 5 and the checkpoint mechanism, all updated logs before t and after last merging of

checkpoints has been backed up on Ms, and the latest checkpoint is also on Ms. According to

the DSVL consistency principle described in Section 3.1, the original metadata of Mf must

reside in Ms after Mf fails, so the target MDS for failure recovery is Ms. On the other hand,

there are already the latest checkpoint and log files of Mf in Ms, which, according to the

checkpoint mechanism, can completely recover the memory dump of Mf. Therefore, failover

takes place totally in Ms without causing any network load. The theorem is thus proved.

Corollary 2 DSVL has good MDS fault tolerance and failure recovery capability.

5. Experimentation

Prototype system is developed based on the Hadoop Project
[6]

. The default minimum

MDS number in prototype system is 3, and the data sets used in the experiment are

Windows XP Professional SP3, the metadata of Ubuntu-Desktop 12.04 LTS.

5.1. Lookup

Figure 6 shows the relevance between metadata amount and lookup performance with dif-

ferent MDS count. It clearly shows that metadata amount has very little influence on lookup

latency. Figure 7 shows that the bigger the MDS count is, the smaller the lookup latency is,

despite different concurrency. The DSVL architecture determines that every MDS, loaded

with different metadata section, can serve simultaneously with high concurrence. Therefore, S

is capable of rapid direct positioning with fast lookup speed as DSVL is based on numerous

MDS and hash.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

8 Copyright ⓒ 2014 SERSC

3000

4000

5000

1 2 3 4 5 6 7 8 9

3000

4000

5000

L
a
te

n
c
y
 /
 s

1 2 3 4 5 6 7 8 9
Number of Metadata Items

MDS=60MDS=45

MDS=30MDS=15

¡Á10
7

Figure 6. Metadata Amount VS. Average Lookup Latency

10 20 30 40 50

0

0.5

1

1.5

Number of MDS

A
v
e
ra

g
e
 L

a
te

n
c
y
/m

s

 REQ=1000

 REQ=800

 REQ=500

 REQ=200

 REQ=100

500 1000 1500 2000

1

2

3

4

Number of vMDS

B
la

n
c

e
d
 F

a
c
to

r
*
 1

0
•
3

MDS=5
MDS=20

MDS=30MDS=40 MDS=50MDS=60

Figure 7. MDS Count VS. Average Figure 8. vMDS Count VS.
Lookup Latency Metadata Distrbution Evenness

5.2. Metadata Distribution Balance

Figure 8 shows the relevance between vMDS count and metadata distribution evenness

with different data amount, in which vMDS Count refers to the number of virtual MDS

nodes, and STDEV, metadata distribution evenness (standard deviation). Tests with different

metadata amounts are done in the experiment, so the metadata distributed to MDSs need to be

normalized. It can be seen that STDEV is at 10
-3

 magnitude, indicating good metadata bal-

ance in DSVL. STDEV fluctuates periodically but stays within a small range with the growth

of vMDS count. The bigger the sample amount (metadata amount) is, the closer the experi-

ment result is to reality because the Key value computed by the metadata items is random.

STDEV reduces with the increase of metadata amount. The bigger the metadata amount is,

the more dense and more overlapped the images are, indicating gradual stability. Figure 9

shows such relevance even more clearly: STDEV reduces gradually with the increase of

metadata amount. STDEV decreases more quickly when the metadata amount is smaller than

0.8×10
6
, and gradually stabilizes afterwards. In conclusion, big metadata amount is condu-

cive to distribution evenness.

0

3

5

B
la

n
c

e
d

 F
a

c
to

r(
*
1

0
• 3

)

0

3

5

0

3

5

0.1 3.1 6.1 9.1 12.1 15.1 18.1
0

2

4

0.1 3.1 6.1 9.1 12.1 15.1 18.1
0

3

5

Number of Metadata Items (*10
5
)

0.1 3.1 6.1 9.1 12.1 15.1 18.1
0

2

4

MDS=50,vMDS=50 MDS=50,vMDS=150 MDS=50,vMDS=300

MDS=20,vMDS=300MDS=20,vMDS=150MDS=20,vMDS=50

Figure 9. Metadata Amount VS. Metadata Distribution Evenness

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 9

5.3. Migration Overhead

As shown in Figure 10, the failure of a certain node causes big data migration when MDS

count is small, while such data migration gradually drops and flattens out after 30 as MDS

count grows. The data migration gradually increases with rising data amount even when MDS

count remains small. Such gap, gradually shrinks when MDS count is 30 to 40. Therefore, the

failure migration efficiency is highly enhanced when MDS count is 30 given the conditions of

this experiment. It’s also shown that the percentage of data migration amount in total metada-

ta amount is smaller than 1:1000, or even 1:100000 when MDS count is 30, indicating ex-

tremely low logic failure migration in DSVL. Likewise, Fig. 11 shows the relevance between

MDS count and data migration amount caused by new MDS node joining in cluster. Howev-

er, no data migration will actually occur in the process of MDS failure and joining after laten-

cy strategy is adopted in DSVL. Therefore, the results of the experiment are based on the

computation of logic metadata migration.

0 20 40 60

0

1

2

x 10
4

Number of MDS

L
o
g
ic

 D
a
ta

 M
ig

ra
ti
o
n

 M=20*106

 M=14*10
6

 M=10*106

 M=1*106

0 10 20 30 40 50 60

0

2

4

6
x 10

4

Number of MDS

E
x

p
a

n
s

io
n

 M
ig

ra
ti

o
n

M=1*10
6

M=10*
6

M=14*10
6

M=20*10
6

Figure 10. MDS Count VS. Logic Figure 11. MDS Count VS. Logic
Migration on Failure Migration of Expansion

6. Discussions

Table 1 compares DVSL with other typical metadata management schemas. Hash-based

schema performs well in load balance and metadata lookup but has to pay big cost for cluster

alteration, so it’s not applicable to clusters needing flexible scalability. Subtree-based sche-

mas have good directory operation because its data structure is familiar with file system hier-

archy semantics also experience big cost for scalability. Static-tree-based schema appears bet-

ter than dynamic-tree-based schema in data migration. Hash-based DSVL comes with good

load balance and quick lookup response as well as, because of some relevant improvements,

low metadata migration amount and favorable scalability. In the meantime, however, DSVL

still doesn’t perform as well as sub-tree-based schemas in terms of directory operation, which

needs to be further worked on.

Table 1. Comparations of Typical Metadata Management Schemas

 Schema Impl Load
Balance

Lookup Time Migrate
Cost

Scalability Memory
Overhead

Dir
Operation

Single MDS HDFS
[6]

 No O(logn) 0 No huge O(1)

Hash-based zFS
[10]

 Yes O(1) Huge High Cost 0 Low

Static Tree NFS
[7]

Coda
[8]

 No Large Latency 0 Much Migration O(1) O(1)

Dynamic Tree Ceph
[9]

 Yes O(logd) Huge Much Migration O(d) O(1)

DSVL DSVL Yes O(1) 0 Flexible Low cost O(1) General

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

10 Copyright ⓒ 2014 SERSC

7. Conclusion

The paper proposes DSVL based on consistent hash, a decentralized metadata management

schema with good scalability and failover, low data migration, and balanced MDS load. Vir-

tual MDS structure is added onto the consistent hash structure, enhancing the work load bal-

ance of the whole MDS cluster. The failure recovery and metadata migration mechanism

based on Standby Node and latency strategy enable DSVL to have better MDS fault tolerance

and zero-migration in the MDS cluster alteration process, greatly enhancing the system’s

scalability and reducing the cluster’s upgrading cost. Future work will be: introducing auxilia-

ry nodes to enhance dir operations and solving the potential problem that both standby node

and master node fail.

Acknowledgement

This work is supported by the Natural Science Foundation of China(No. 61063012, No.

61363003), Guangxi Natural Science Fund (No. 2012GXNSFAA053222), Guangxi universi-

ty talents support project(No. [2011]40), Guangxi Scientific and Technical Development Pro-

gram(No. 1348020-7) and Nanning Scientific and Technical Development Program(No.

201109016A).

References

[1] A. Traeger, E. Zadok, N. Joukov and C. P. Wright, “A nine year study of file system and storage benchmark-

ing”, ACM Transactions on Storage (TOS), vol. 4, no. 2, (2008).

[2] D. S. Roselli, J. R. Lorch and T. E. Anderson, “A Comparison of File System Workloads”, USENIX Annual

Technical Conference(General Track), San Diego, CA, USA, (2000) June 18-23.

[3] S. A. Weil, K. T. Pollack, S. A. Brandt and E. L. Miller, “Dynamic metadata management for petabyte-scale

file systems”, Proceedings of the 2004 ACM/IEEE conference on Supercomputing, Pittsburgh, PA, USA,

(2004) November 6-12.

[4] Y. Hua, Y. Zhu, H. Jiang, D. Feng and L. Tian, “Scalable and adaptive metadata management in ultra large-

scale file systems”, The 28th International Conference on Distributed Computing Systems (ICDCS'08), Bei-

jing, China, (2008) June 17-20.

[5] S. Ghemawat, H. Gobioff and S. T. Leung, “The Google file system”, ACM SIGOPS Operating Systems

Review, vol. 37, no. 5, (2003).

[6] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The hadoop distributed file system”, IEEE 26th Sympo-

sium on Mass Storage Systems and Technologies (MSST), Lake Tahoe, Nevada, USA, (2010) May 3-7.

[7] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel and D. Hitz, “NFS Version 3: Design and Im-

plementation”, USENIX Summer 1994 Technical Conference, Boston, MA, USA, (1994) June 6-10.

[8] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel and D. C. Steere, “Coda: A highly

available file system for a distributed workstation environment”, Computers, IEEE Transactions on. Los

Alamitos, vol. 39, no. 4, (1990).

[9] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long and C. Maltzahn, “Ceph: A scalable, high-performance

distributed file system”, Proceedings of the 7th symposium on Operating systems design and implementation,

Seattle, WA, USA, (2006) November 6-8.

[10] O. Rodeh and A. Teperman, “zFS-a scalable distributed file system using object disks”, Proceedings of the

20th IEEE/11th NASA Goddard Conference on Mass Storage Systems and Technologies, San Diego, CA,

USA, (2003) April 7-10.

[11] S. A. Brandt, L. Xue, E. L. Miller and D. D. Long, “Efficient metadata management in large distributed stor-

age systems”, Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage.

[12] D. R. Karger and M. Ruhl, “Simple efficient load balancing algorithms for peer-to-peer systems”, Proceed-

ings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, Barcelona,

Spain, (2004) June 27-30.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, “Chord: A scalable peer-to-peer lookup

service for internet applications”, ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, (2001).

[14] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine and D. Lewin, “Consistent hashing and random

trees: Distributed caching protocols for relieving hot spots on the World Wide Web”, Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, El Paso, Texas, USA, (1997) May 4-6.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

Copyright ⓒ 2014 SERSC 11

[15] V. Mateljan, D. Cisic and D. Ogrizovic, “Cloud database-as-a-service (DaaS)-ROI”, Proceedings of the 33rd

International MIPRO Convention, Opatija, Croatia, (2010) May 24-28.

[16] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg and H. Kuang, “Apache Hadoop

goes realtime at Facebook”, Proceedings of the 2011 ACM SIGMOD International Conference on Manage-

ment of data, Athens, Greece, (2011) June 12-16.

[17] Systems and Technologies, San Diego, San Diego, CA, USA, (2003) April 7-10.

[18] W. Ji-yi, F. Jian-qing, P. Ling-di and X. Qi, “Study on the P2P Cloud Storage System”, Acta Electronica

Sinica, vol. 35, no. 5, (2011), pp. 1100-1107.

[19] L. Ou, C. Engelmann, X. He, X. Chen and S. Scott, “Symmetric active/active metadata service for highly

available cluster storage systems”, Proceedings of the 19th IASTED International Conference on Parallel and

Distributed Computing and Systems, Anaheim, CA, USA, (2007).

Authors

Chen Ningjiang, born in 1975. He received the Ph.D. degree in

China from Institute of Software, Chinese Academy of Sciences in

2006. He is a professor at Guangxi University. His research interests

include software engineering, distributed computing, etc.

Xiao Zhongzheng, born in 1988. He is a master candidate at Col-

lege of Computer, Electronic, and Information, Guangxi University.

His research interest is software engineering and parallel distributed

computing.

Zhang Wenbo, born in 1976. He received the Ph.D. degree in China

from Institute of Software, Chinese Academy of Sciences in 2007. He is

an associate researcher at China from Institute of Software, Chinese

Academy of Sciences. His research interests include software engineer-

ing, distributed computing, etc.

International Journal of Database Theory and Application

Vol.7, No.3 (2014)

12 Copyright ⓒ 2014 SERSC

