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Abstract 

An effective decentralized metadata management schema is critical to a reliable and scal-

able large-scale distributed storage system. With regard to the defects of huge expansion cost 

and high sensitivity to cluster alteration borne in both the hash-based and subtree-based 

metadata management schemas, a metadata server (MDS) clustering schema based on con-

sistent hash structure, named DSVL, is proposed. By introducing virtual MDS into the con-

sistent MDS cluster, it can effectively balance MDS cluster load. Besides, the standby mecha-

nism and the lazy update policy are merged and applied to the MDS cluster to accomplish 

rapid MDS failover as well as zero data migration in case of cluster alteration. The results of 

prototype system and simulation test prove that DSVL, with the features of balanced metadata 

distribution, rapid failover, flexible scalability and zero data migration amount in case of 

node alteration, can meet the demands for flexible and effective management of large-scale 

data storage systems with ever increasing data amount. 
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1. Introduction 

The metadata management is the key factors for the good performance and scalability of 

large-scale distributed file system [1]. The metadata amount takes up a very small percentage 

of the data storage, however, 50%-80% of the access requests involve metadata operations 

[2]. The metadata server (MDS) [3] works as an intermediate mapping layer for client’s data 

requests and data files. Decentralized and highly scalable MDS cluster schema
 [4]

 can realize 

the good performance and scalability in data access by sharing loads. Hash-based mapping 

and subtree partitioning are major metadata partitioning ways. Hash-based mapping has good 

load balance but its’ scalability is terrible. Subtree based schema has huge cost of data migra-

tion. Large-scale storage system with periodical input of large amount of data will find its 

metadata amount increasing dramatically with the gradual growth of data amount. Metadata 

determines the system’s storage capacity. Apparently, a cluster that is flexible in expanding 

the metadata management nodes can meet the demand for ever increasing data storage.  

The paper proposes DSVL (Distributed Schema based-on Virtual MDS and Lazy policy), a 

distributed dynamic metadata management system based on consistent hash that can accom-

plish the effective management and flexible expansion of cluster metadata in the large-scale 

data storage system. Section 2 introduces the work related to metadata management. Section 

3 introduces system architecture while Section 4 describes its performance in metadata load 

balancing, MDS fail-over, scalability and data migration. Simulation tests for DSVL proto-
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type are given in Section 5. Finally, we discuss the advantages of DSVL in Section 5 and 

conclude in Section 6. 

 

2. Related Work 

GFS [5] and HDFS [6] are typical single MDS schema implementation. It is easy to main-

tain the consistency but it limits the scalability of the file system, and a large number of con-

current writes will dramatically increase the load of the master MDS, which will damage the 

system stability. In the subtree-based partitioning, the namespace of the whole file system is 

partitioned to be many subtrees. The static subtree partitioning is relatively easy to fulfill with 

NFS [7] and Coda [8] as representatives. However, it may give rise to extreme imbalance of 

the system load. The dynamic subtree takes into consideration the load balance. Ceph [9] typ-

ically employs the dynamic subtree partitioning. The dynamic subtree requires all nodes to 

regularly exchange their load information, resulting in the sharp growth of system load as re-

hashing is needed in the case of the alteration of the cluster structure. Hash-based metadata 

partitioning [10] directly determines file location. The metadata requests will be evenly dis-

tributed onto the metadata nodes. But it’s extremely sensitive to the change of metadata clus-

ter configuration. Therefore, Lazy Hybrid [11] tries to reduce such huge abrupt metadata mi-

gration by lazy update policy. 

 

3. Architecture of DSVL 

As shown in Figure 1, the global metadata management for DSVL is based on consistent 

hash structure [12-14]. Consistent hash is usually applied to the design for distributed hash 

table, as seen in Chord [13] and Apache Cassandra [15]. With its monotonicity, autonomy, 

decentralization, fault tolerance and scalability, it will not lead to critical changes of element 

mapping in the case of joining, leaving and failure of nodes. 
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Figure 1. Architecture of DSVL 

All MDSs as well as all metadata items in DSVL are mapped to the consistent space by 

hash functions, and every MDS has its standby MDS called Standby Node which is its next 

hop MDS in the consistent hash ring. The global data layout table is used to describe the net-

work structure of MDS-cluster, the logic structure of MDS, the distribution structure of 

metadata and the Lazy-Update Table. Besides, the MDS Protocol is used to regulate the in-

teroperation between MDS instances while the Standby Protocol defines the standby mecha-

nism for the Standby Node that can interact with the target MDS. 

 

3.1. The MDS Layout Structure 

Definition 1 Cluster Layout. It describes the network topology of MDS cluster and is 

marked as Tc∷ =[ ]<{MIDi,DCi,MIDt}>, in which MIDi is the sole identifier of MDS instance, 
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DCi is the network connection information of MDS instance, and MIDt is the identifier of the 

target MDS node served by the Standby Node in the MDS instance. 
Definition 2 Metadata Distribution. It describes the mapping of metadata to MDS and is 

marked as Td∷ =Vd∪Cm,, in which Cm=SortedMap<{( K,vMDS )→{MID,host,ports,…}}> 

(this is a metadata mapping set and an ordered collection, in which K is the Key value of 

metadata and vMDS is the identifier of virtual MDS mapped to the real MDS.) and Vd=[ 

]<{MID→[vMi, vMi+γ , vMi+2γ ,...]}> (this is the distribution table of virtual MDS and MID is 

the MDS identifier mapped to a group of virtual MDSs.) 

Definition 3 Lazy-Update Table. It records the local lazy-update data set and is marked 

as Tu∷ =[ ]<{K,MDSS,MDST,Type}>, in which K is the metadata identifier, MDSS is the ID of 

source MDS, MDST is the ID of target MDS, and Type is alteration type. It’s the local MDS if 

MDSS is empty. Type=[rm∣ mv], in which rm means to delete operation while mv, update op-

eration. 

Definition 4 MDS Layout Table. It refers to the compound data structure of every MDS 

instance that organizes and controls clusters and is marked as LT∷ =Tc∪Td∪Tu, in which Tc 

and Td  are shared by every MDS in the cluster while Tu is privately owned by the very MDS. 

Tc、Td and Tu are combined to describe the structure, state and control information of the 

whole MDS cluster. Tc  builds an information table of MDS nodes based on the cluster layout, 

Td defines the multi-level mapping of Key→vMDS→MDS, and Tu marks the expansion record 

on Key when metadata is changed (in particular the renaming of directory) so as to conduct 

lazy processing of data migration in large amount. LT is critical to the building and mainte-

nance of the effective and consistent operation of MDS cluster as it directly determines its 

logic structure. Figure 2 shows the logic structure of Layout Table in DSVL. 

 

Cluster Layout

Metadata 
Distribution

Lazy-Update Table

host info targetMID0

…
host info targetMID1 , 2rK

,1rK

3 4~n nR K R K 

2~n nR K R

1 2~n nR K R K 

…

…

0v M

1v M

2v M

…

mv M

nv M

MID0

MID1

MID2

……

K0 MID0 m/d MID1 misc

…

Keys ExtendMDS Reference 1 , 0K …

0 ,1K 1 ,1K …

0 , 2K 1 , 2K …

Global Sync

MDS Local

K1 MID0 m/d MID1 misc

0 , 0rK

 

Figure 2. Structure of Layout-Table in DSVL 

As shown in Figure 2, K∈Sh, vM0< vM1<… ≤ 2
n
-1, metadata between 0～K r,0 are mapped 

to vM0, metadata between K 0,1 ～K r,1 are mapped to vM1, and so on. vM is mapped to the 

only MID while one MDS is partitioned into many vMs. Td table, after a series of mapping, 

determines the MDS in which metadata reside. The distribution process of vM is also the even 

distribution process of metadata as well as the provision of matching MDS for client’s 

lookup. Client can, when looking up metadata, send MDS matching requests from any Mi 

who will first gain via hashing the file’s Key value to be input into Td for matching and return 

with Mt, the target MDS node, then client can be directly redirected to Mt for metadata. Tu, the 

auxiliary data structure built on Td, is for marking the altered metadata instead of migrating 

them immediately so as to reduce the large data migration amount possibly resulting from 

metadata alteration. Tu are not consistent with each other as every MDS has its local Lazy-

Update table that is not shared with other MDSs. Therefore, only relevant local items are 

marked when alteration of local metadata occurs. Forced data migration will be triggered 
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when the items’ size of Tu reaches the threshold, which is apparently helpful for better utiliza-

tion of storage resources and avoiding the metadata fragmentation caused by large amount of 

metadata to be migrated but not yet migrated.  

 

3.2. Balanced Metadata Distribution 

The uncertainty of mapping MDS nodes to Sh hash ring will lead to the uneven distribution 

of elements on it and further to the load imbalance of MDS cluster. With regard to the 

metadata distribution imbalance as a result of MDS mapping randomness and range of data 

aggregation, the paper proposes to remap numerous Virtual MDSs (vMDSs) evenly to Sh for 

every MDS so as to ensure equal metadata residing probability of every MDS in every local 

range. 

When a certain MDS instance joins in MDS cluster, the very MDS responsible for its reg-

istration will distribute for it the default P vMDSs. As a result, LT‘s alteration will be directly 

influenced, so the join request will be broadcast to all other existing MDSs for voting before 

registration is allowed by MDS via testing to see if the local LT is attached a write lock (e.g., 

forced data migration is under way). MDS will be successfully registered and distributed with 

P vMDSs if registration is passed unanimously. As shown in Figure 3, the range of metadata 

sections of M1 is far beyond that of M2 and M3, noticeably impacting the system’s storage and 

computation performance and utilization. Now let’s map M1 respectively to the space within 

the same range as [0, 2
n
-1], we can get [vM1,0, vM1,1, vM1,2, vM1,3 ]. These vMDS will partition 

Sh into P equal parts (P =4 as shows in Figure 3 and Figure 4) and the metadata items and 

vMDS comprise the basic elements of hash space. The mapping between MDS and vMDS is 

thus finally described as Vd in Definition 2. Such equal partition in enclosed space allows the 

data distribution and procedure of every 1/P to be consistent. 
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Figure 3. MDS-vMDS Mapping                Figure 4. Procedure of vMDS Division 

Figure 4 shows the dynamic procedure of vMDS distribution in 1/P aliquot part of Sh. The 

space between P0 and P0+R is one aliquot part itself when there is only 1 MDS in the begin-

ning. In the later process of vMDS joining in continuously, if [P0,P0+R) is partitioned into 

the aliquot collection of CV and CV2, and all elements in CV2 are 2 times of those in CV, the 

aliquot block in CV2 needs to be further bisected until CV2 is empty. The distribution algorithm 

of vMDS is described as follows. 

Algorithm ALLOC-VIRTUAL-MDS 

Input: hash factor: β(β>1); vMDS number: ρ(ρ>0);  vMDS recycling list: ζ = List { vMDS 

} 

Output: vMDS set A 

BEGIN 

(1) Def  N =2
β
-1, Nγ = N/ρ, Δ = Nγ, P γ = 0, A = [ ] 

(2) IF ζ ∈ ø :   A1 ← P γ + Δ/2 

        (3) FOR i = (1:1: ρ] DO: Ai ← Ai-1 + Nγ  ENDFOR 

        (4) P γ ←P γ +Δ 
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        (5) IF P γ →Nγ:   Pγ ← 0,   Δ ← 0  ENDIF 

(6) ELSE:    A ← rm(ζ0),  FOR  j = (1:1: ρ]  DO:  Aj ← Aj-1 + Nγ  ENDFOR 

(7)ENDIF 

END 

Δ keeps rotating within [0,N/ρ) with the existing distribution of Vd, so that vMDSs are rela-

tively evenly distributed. The distribution of vMDSs allows metadata to be indirectly mapped 

to MDSs via vMDSs, creating a balanceing mechanism between MDSs and metadata that 

contributes to the better response performance of MDS cluster. 

Fact 1. MDSs and metadata items are mapped to the same hash space, and metadata K re-

sides in Mx when and only when ((∄ Mi, MKi>MKx) ⋀  MKx>K) ⋁  (MKx=0 ⋀  (∄ Mj, 

MKj>K)). 

Theorem 1 The consistency of MDS cluster will not be influenced any MDS joins in. 

Proof: Allow the existing cluster C to have m MDSs, namely M0, M1,…,Mm that are 

mapped to Sh, and whose Key value is MK0, MK1,…,MKm respectively. According to Fact 1, 

metadata items {K | K ∈ [MKm,MK0)}=> M0，{K | K ∈ [MK0,MK1)} => M1，…，{K | K ∈ 

[MKi,MKi+1)} => Mi+1, …,{K | K ∈ [MKm-1,MKm)} => Mm. If new node Mx with the Key value 

of MKx is to join in C, MKx ∈ [MKi, MKi+1) (MKi and MKi+1 are the Key value of Mi and Mi+1 

respectively.), the metadata deployment within [MKi, MKi+1) must be adjusted to fulfill the 

constraint of Fact 1 {K | K ∈ [MKi,MKx)} => Mx，{K | K ∈ [MKx,MKi+1)} => Mi+1. There 

will still be {K | K ∈ [MKm,MK0)} => M0，{K | K ∈ [MK0,MK1)} => M1，…，{K | K ∈ 

[MKm-1,MKm)} => Mm after adjustment to meet the constraints of Fact 1. To sum up, Mx does 

not have any influence on the consistency of C, or new node(s) can join in MDS cluster 

freely. □ 

Theorem 2 The metadata server interruption time in MDS cluster during the process of 

new MDS joining in is 0. 

Proof: Allow Md to be the MDS newly joining in cluster C, Mr to be the MDS responsible 

for registration, and Md to be distributed between Ma and Mb. The MDS-JOIN algorithm de-

scribed in this section is now followed. First, Mr asks for votes from all MDSs to see if new 

MDS is allowed to join and, if yes, records will be newly made for Md in the local LT of Mr. 

Second, Mb is the next hop node of Md, and {K∣ K∈Ma ∧ K<Md} needs to be migrated to 

Md and written to Tu based on the lazy policy. Marking the indices of first Key and last Key is 

enough as they are in order on LT. Third, Mr broadcasts the alteration of LT. Apparently, the 

update marking process and the alteration broadcasting process by Mr and the voting process 

are asynchronously executed with metadata servers, and these three processes don’t damage 

the consistent layout of metadata whose services are still available normally. The broadcast-

ing process of LT alteration will attach write locks to the metadata of Mb, but the lookup ser-

vices can still operate normally. Other MDSs don’t have this request. To sum up, in the pro-

cess of a new MDS joining in the cluster, the lookup service interruption time is 0. Only one 

MDS will stop its write service in the alteration broadcasting process while other MDSs can 

be normally accessed for write. Therefore the system service interruption time is 0.  

Corollary 1 DSVL has good MDS scalability. 

Algorithm MDS-JOIN 

Input：MDS for MDS registration：Mr ; New MDS; Md  

Output：LT of Md 
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BEGIN 

(1) T ← FetchLayout ( Mr )       /* gain LT of Mr*/ 

(2) IF vote ( T.c, Mr) = size ( T.c )    /* executed only after all MDSs allow Md to join */ 

(3)   Global_LockLayout ( T, Mr )    /* MDSes execute in parallel*/ 

(4)  FOR Mx in T.c PARALLEL-DO: 

(5)    AddMDS ( Tthis, Md, Mr) 

(6)   IF Md → Mx     /* lazy update and forced update of the next hop of Md */ 

(7)     Al ← split ( Tthis.m, Md ) 

(8)      FOR K in Al DO: Log_Migrate ( K, Mx, Md )  ENDFOR 

(9)     Am ← find (Tthis.l, Md ) 

(10)    FOR K in Am DO: UPDATE-KEY-ITEM ( K, K, Tthis, ‘mv’)   ENDFOR 

(11)  ENDIF 

(12) ENDFOR 

(13) Global_UnlockLayout ( T, Mr ) 

(14) ENDIF 

END 

 

4. MDS Failover 

Persistence of in-memory data is an important issue for storage systems. DSVL addresses 

this issue with Standby Node [16-18].  

Definition 5 M0 is the standby node of Mt in the MDS instance and marked as M0 ш Mt 

when and only when (∄ Mx , Kx ∈ [K0,Kt)) ⋁  (K0 = 0 ∧ Kt = N), in which Kx, K0, and Kt are 

the Key value of Mx, M0, and Mt respectively and N is the size of hash space. 

DSVL adopts the checkpoint mechanism. Every MDS must have a Standby Node whose 

distribution mechanism is shown in Fig. 5. Hash space grows anticlockwise while the distri-

bution of Standby Node is clockwise, M2 ш M1, M3 ш M2, ….. When M3 fails, its metadata 

and the backup data of M2 all fail. M4, the Standby Node of M3, will first discover M3 failure 

and quickly retrieve the backup data in M3 into the MDS instance of M4. The Standby Node 

of M4 will be redirected to M2 and download the latest memory dump of M2. 

 

Tx.ReadTx.Write
NFSNFS

Active

MDS

Standby

MDS

M1

M2
M3 M4

 

Figure 5. Standby-Node Mechanism 

Theorem 3 All metadata of any MDS after its failure will not be lost but taken over by 

other MDSs. 

Proof: It can be inferred from the DSVL architecture described in Section 3.1, the descrip-

tion of Standby Node mechanism in this part, Definition 5 as well as the checkpoint mecha-

nism that every MDS must have a Standby Node, in which the log update of this MDS and 

the latest checkpoint data will be backed up. Hypothesize the failed MDS is Mf, the failure 

time is Tf, and the last checkpoint creation time of Mf is Tc, it’s obvious that Tc < Tf. Allow the 

memory dump of Mf at Tc to be Ic, then the update record of Ic during Tf ~ Tc is SEQlog= {OP0, 

OP1,…,OPk}, in which OPi is one updated log containing target data items, original data, new 

data, alteration type and timestamp. Obviously, Ic describes the latest state of the memory 
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dump while SEQlog, all the dynamic behavior of memory dump during Tc ~ Tf. As the infor-

mation recorded by SEQlog contains the original data, this dynamic process can be re-done. In 

other words, the dynamic alteration process of memory dump can be re-executed by redoing 

the log record as long as Ic and SEQlog are both available. The latest correct memory dump 

can be shown as In = Ic ≏  SEQlog. Therefore, the correct state of Mf can be recovered through 

latest checkpoint and log files. 

Theorem 4 The failure of a certain MDS will have no influence on the service state of oth-

er MDS instances. 

Proof: Allow the failed MDS to be Mf, Ms ш Mf, Mf ш Mt. It can be learned from Definition 

2 that the metadata set of Mf, Ms and Mt is respectively SKf={K | K∈[Kf, Ks)}, SKs={K | K∈

[Ks, Kx)}, SKt={K | K∈[Ky, Kt)}, and Ky<Kt<Ks<Kx, so SKf ∩ SKs ∩ SKt = ∅ . Computation for 

all MDSs accordingly can lead to SKi ∩ SKi+1 ∩… SKn = ∅ , in which n is the number of 

MDSs. In accordance with the checkpoint mechanism, there is backup for log files and the 

latest checkpoint of Mf on Ms, while the backup for Mt is on Mf. After Mf fails, the backup da-

ta of Mt will be lost, but Mt can immediately create the latest checkpoint locally to be down-

loaded by the new Standby Node as it doesn’t fail. Therefore, the failure of a certain MDS 

will have no influence on the metadata server state of other MDSs. 

Theorem 5 The network load in the MDS failover is 0. 

Proof: Assign Mf as the failed MDS and Ms ш Mf. Mf fails at time t. According to Defini-

tion 5 and the checkpoint mechanism, all updated logs before t and after last merging of 

checkpoints has been backed up on Ms, and the latest checkpoint is also on Ms. According to 

the DSVL consistency principle described in Section 3.1, the original metadata of Mf must 

reside in Ms after Mf fails, so the target MDS for failure recovery is Ms. On the other hand, 

there are already the latest checkpoint and log files of Mf in Ms, which, according to the 

checkpoint mechanism, can completely recover the memory dump of Mf. Therefore, failover 

takes place totally in Ms without causing any network load. The theorem is thus proved.  

Corollary 2 DSVL has good MDS fault tolerance and failure recovery capability.  

 

5. Experimentation 

Prototype system is developed based on the Hadoop Project
[6]

. The default minimum 

MDS number in prototype system is 3, and the data sets used in the experiment are 

Windows XP Professional SP3, the metadata of Ubuntu-Desktop 12.04 LTS.  

 

5.1. Lookup 

Figure 6 shows the relevance between metadata amount and lookup performance with dif-

ferent MDS count. It clearly shows that metadata amount has very little influence on lookup 

latency. Figure 7 shows that the bigger the MDS count is, the smaller the lookup latency is, 

despite different concurrency. The DSVL architecture determines that every MDS, loaded 

with different metadata section, can serve simultaneously with high concurrence. Therefore, S 

is capable of rapid direct positioning with fast lookup speed as DSVL is based on numerous 

MDS and hash. 
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Figure 6. Metadata Amount VS. Average Lookup Latency 

10 20 30 40 50

0

0.5

1

1.5

Number of MDS

A
v
e
ra

g
e
 L

a
te

n
c
y
/m

s

  REQ=1000

  REQ=800

  REQ=500

  REQ=200

  REQ=100

500 1000 1500 2000

1

2

3

4

Number of vMDS

B
la

n
c

e
d
 F

a
c
to

r 
*
 1

0
•
3

MDS=5
MDS=20

MDS=30MDS=40 MDS=50MDS=60

 

Figure 7. MDS Count VS. Average                Figure 8. vMDS Count VS. 
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5.2. Metadata Distribution Balance 

Figure 8 shows the relevance between vMDS count and metadata distribution evenness 

with different data amount, in which vMDS Count refers to the number of virtual MDS 

nodes, and STDEV, metadata distribution evenness (standard deviation). Tests with different 

metadata amounts are done in the experiment, so the metadata distributed to MDSs need to be 

normalized. It can be seen that STDEV is at 10
-3

 magnitude, indicating good metadata bal-

ance in DSVL. STDEV fluctuates periodically but stays within a small range with the growth 

of vMDS count. The bigger the sample amount (metadata amount) is, the closer the experi-

ment result is to reality because the Key value computed by the metadata items is random. 

STDEV reduces with the increase of metadata amount. The bigger the metadata amount is, 

the more dense and more overlapped the images are, indicating gradual stability. Figure 9 

shows such relevance even more clearly: STDEV reduces gradually with the increase of 

metadata amount. STDEV decreases more quickly when the metadata amount is smaller than 

0.8×10
6
, and gradually stabilizes afterwards. In conclusion, big metadata amount is condu-

cive to distribution evenness. 
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5.3. Migration Overhead  

As shown in Figure 10, the failure of a certain node causes big data migration when MDS 

count is small, while such data migration gradually drops and flattens out after 30 as MDS 

count grows. The data migration gradually increases with rising data amount even when MDS 

count remains small. Such gap, gradually shrinks when MDS count is 30 to 40. Therefore, the 

failure migration efficiency is highly enhanced when MDS count is 30 given the conditions of 

this experiment. It’s also shown that the percentage of data migration amount in total metada-

ta amount is smaller than 1:1000, or even 1:100000 when MDS count is 30, indicating ex-

tremely low logic failure migration in DSVL. Likewise, Fig. 11 shows the relevance between 

MDS count and data migration amount caused by new MDS node joining in cluster. Howev-

er, no data migration will actually occur in the process of MDS failure and joining after laten-

cy strategy is adopted in DSVL. Therefore, the results of the experiment are based on the 

computation of logic metadata migration. 
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6. Discussions  

Table 1 compares DVSL with other typical metadata management schemas. Hash-based 

schema performs well in load balance and metadata lookup but has to pay big cost for cluster 

alteration, so it’s not applicable to clusters needing flexible scalability. Subtree-based sche-

mas have good directory operation because its data structure is familiar with file system hier-

archy semantics also experience big cost for scalability. Static-tree-based schema appears bet-

ter than dynamic-tree-based schema in data migration. Hash-based DSVL comes with good 

load balance and quick lookup response as well as, because of some relevant improvements, 

low metadata migration amount and favorable scalability. In the meantime, however, DSVL 

still doesn’t perform as well as sub-tree-based schemas in terms of directory operation, which 

needs to be further worked on. 

Table 1. Comparations of Typical Metadata Management Schemas 

 Schema Impl Load 
Balance 

Lookup Time Migrate 
Cost 

Scalability Memory 
Overhead 

Dir  
Operation 

Single MDS HDFS
[6]

 No O(logn) 0 No huge O(1) 

Hash-based zFS
[10]

 Yes O(1) Huge High Cost 0 Low 

Static Tree NFS
[7]

Coda
[8]

 No Large Latency 0 Much Migration O(1) O(1) 

Dynamic Tree Ceph
[9]

 Yes O(logd) Huge Much Migration O(d) O(1) 

DSVL DSVL Yes O(1) 0 Flexible Low cost O(1) General 
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7. Conclusion 

The paper proposes DSVL based on consistent hash, a decentralized metadata management 

schema with good scalability and failover, low data migration, and balanced MDS load. Vir-

tual MDS structure is added onto the consistent hash structure, enhancing the work load bal-

ance of the whole MDS cluster. The failure recovery and metadata migration mechanism 

based on Standby Node and latency strategy enable DSVL to have better MDS fault tolerance 

and zero-migration in the MDS cluster alteration process, greatly enhancing the system’s 

scalability and reducing the cluster’s upgrading cost. Future work will be: introducing auxilia-

ry nodes to enhance dir operations and solving the potential problem that both standby node 

and master node fail. 
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