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Abstract 

This paper mainly constructs a unified model for formal contexts, consistent formal 

decision contexts and inconsistent formal decision contexts based on object oriented concept 

lattices, which is called a consistent approximate representation space. Congruence relations 

are first introduced into formal contexts and then relationships between congruence relations 

and the corresponding object oriented concept lattices are developed. Finally, consistent 

approximate representation space is defined for a formal context, which is a 

quadruple ( , , , )U A R  . It is verified that if we give R   different meanings, then we obtain the 

corresponding formal context, consistent formal decision context and inconsistent formal 

decision context with respect to object oriented concept lattices. Therefore, the quadruple 

( , , , )U A R  is a unified model for formal contexts and formal decision contexts. 

 

Keywords: Object oriented concept lattice, Formal context, Congruence relation, 

Approximate representation space 

 

1. Introduction 

Formal concept analysis, proposed by Wille in 1982 [1], is an effective tool for data 

analysis, knowledge representation and information management. At present, many efforts 

have been made to construction of concept lattice [2-5], pruning of concept lattice [6], 

acquisition of rules [4, 5], relationship with rough set [7-13], and applications [6, 14]. In [12], 

Yao compared the theory of rough sets and formal concept analysis in a common framework 

based on formal contexts. Particularly object oriented concept lattices and property oriented 

concept lattices were also constructed in [12]. In [15], an approach to knowledge reduction in 

the object oriented concept lattices and the property oriented concept lattices were presented 

which can keep all extents and their original hierarchy in a formal context. Wang et al., [16] 

provided another approach to attribute reduction in the object oriented concept lattices and the 

property oriented concept lattices, which only required preserving all extents of meet 

irreducible elements. Relatively knowledge reduction in classical concept lattices has much 

more research results. Ganter et al., [2] proposed reducible attribute and reducible object from 

the viewpoint of shortening lines or rows. Zhang et al., [17-20] presented an attribute 

reduction approach to find minimal attribute sets which can determine all extents and their 

original hierarchy in a formal context. Wang et al., [21] provided an approach to attribute 

reduction based on meet irreducible elements. Wu et al., [22] studied attribute reduction in 

formal contexts from the viewpoint of keeping granular structure of concept lattices. Liu et al. 

[23] showed an efficient post-processing method to prune redundant rules by virtue of the 
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property of Galois connection, which inherently constrains rules with respect to objects. Mi et 

al., [24] formulated a Boolean approach to calculating all reducts of a formal context via the 

use of discernibility function. In [25], a rule acquisition oriented framework of knowledge 

reduction was proposed for real decision formal contexts and a corresponding reduction 

method was formulated by constructing a discernibility matrix and its associated Boolean 

function. In [26], based on fuzzy K-means clustering, Kumar and Srinivas proposed a method 

to reduce the size of the concept lattices by employing corresponding object-attribute matrix. 

In [27], approaches to attribute reduction in a formal context and in a consistent formal 

decision context were proposed by preserving congruence relation classes. Wang et al., [28] 

studied notions and approaches to attribute reduction in an inconsistent formal decision 

context based on congruence relation classes. 

Since databases obtained from real world are usually very complicated, knowledge 

reduction in formal concept analysis becomes more complex. On the other hand, through 

analyzing the above methods of knowledge reduction, we know that there are different places 

existing in knowledge reduction of different contexts even if we use the same type of method. 

And it makes the application of formal concept analysis more difficult. In order to solve this 

problem, we construct a model to unify the formal contexts, consistent formal decision 

contexts and inconsistent formal decision contexts, which is a quadruple ( , , , )U A R  . It is 

verified that if we give R   different meanings, then we obtain corresponding formal context, 

consistent formal decision context and inconsistent formal decision context. Therefore, the 

quadruple ( , , , )U A R  is a unified model for formal contexts and formal decision contexts. 

Therefore, we can consider methods of knowledge reduction or rule acquisition of consistent 

approximate representation space as a whole, which can reduce the complexities of different 

contexts. 

The paper is organized as follows. Section 2 recalls preliminaries on formal concept 

analysis and dependence space. Section 3 constructs a model named consistent approximate 

representation space and then studies relationships between consistent approximate 

representation spaces and the corresponding formal contexts. Finally, Section 4 concludes the 

paper. 

 

2. Preliminaries 

Some basic notions and properties about formal concept analysis and dependence space are 

introduced in this section. 

 

2.1. Basic notions about Formal Concept Analysis 

Definition 1 ([2]) A formal context ( , , )U A I  consists of two sets U  and A , and a 

relation I U A  . The elements of U  are called objects and the elements of A  are called 

attributes of the formal context.  

For X U  and ,B A Yao  [12] defined two closure operators as follows:  

= { | , },X a A x U xR a x X      

= { | , }X a A x U xR a x X


     ， 

= { | , },B x U a A xR a x B      

= { | , }B x U a A xR a a B


     . 

Definition 2 ([2]) Let ( , , )U A I  be a formal context. The formal context ( , , )
B

U B I  is called 

a subcontext of ( , , )U A I , where ( )
B

I I U B    for any B A .  
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Let ,
B B  stand for the operator in the subcontext ( , , )

B
U B I  for any B A . Clearly, for 

X U ， ,
B A

X X B 
B A

X X B
 

   and ,
A A

X X X X
 

  .  

Definition 3 ([12]) An object oriented concept of a formal context ( , , )U A I  is a pair 

( , )X B  with , ,X U B A 
 

X B


  and B X . We call X  the extent and B the intent of 

the object oriented concept ( , )X B .  

The concepts of a formal context ( , , )U A I  are partially ordered by 
1 1 2 2

( , ) ( , )X B X B  if 

and only if (iff for short) 
1 2

X X ( iff  
2 1

B B ), where
1 1

( , )X B  and 
2 2

( , )X B  are two object 

oriented concepts. The set of all object oriented concepts of ( , , )U A I  partially ordered in this 

way is denoted by ( , , )
O

L U A I  and is called the object oriented concept lattice of the formal 

context ( , , )U A I . The infimum and supremum are given by:  

 1 1 2 2 1 2 1 2
( , ) ( , ) ( ) ,X B X B B B B B


     

 1 1 2 2 1 2 1 2
( , ) ( , ) , ( )X B X B X X X X     

We denote the extent set of ( , , )U A I  by ( , , ) { | ( , ) ( , , )}
O U O

L U A I X X B L U A I  . It is 

evident that ( , , ) ( , , )
O U D O U

L U D I L U A I for any D A . 

Proposition 1 ([12]) Let ( , , )U A I  be a formal context, 
1 2

, ,X X X  be object sets, and 

1 2
, ,B B B  be attribute sets, then 

 
1 2 1 2 1 2

1 2 1 2 1 2

( i ) , ,

, ,

X X X X X X

B B B B B B

 

 

   

   

 

(ii ) , ,X X X B B B
   
     

( iii ) , ,

, ,

X X B B

X X B B

 

     

 

 

 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

( iv ) ( ) ,

( ) ,

( ) ,

( ) .

X X X X

X X X X

B B B B

B B B B

  

  

  

  

  

  

 

 

2.2. Dependence Space based on a Formal Context 

In [29], Novotny defined a congruence relation on the attribute power set P(A) and 

dependence space in information systems. 

Definition 4 ([29]) Let ( , , )U A F  be an information system.   is an equivalence relation 

on P(A). Then, Кis called a congruence relation on ( ( ), )P A  , whenever it satisfies the 

following condition:  if 
1 1 2 2

( , ) , ( , )B C B C   , then 
1 2 1 2

( , )B B C C    . 

Definition 5 ([29]) Let A be a finite nonempty set, К a congruence relation on ( ( ), )P A  . 

Then the ordered pair ( , )A   is said to be a dependence  space. 
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3. Main Results 

In this section, we first intoduce congruence relations into formal contexts to obtain the 

relationships between congruence relations and the corresponding object oriented concept 

lattices. And then a unified model of formal contexts and formal decision contexts is 

constructed, which is called a consistent approximate representation space. It is proved that 

formal contexts and formal decision contexts are special cases of the consistent approximate 

representation space. 

 

3.1. Relationships between Congruence Relations and the Corresponding Object 

Oriented Concept Lattices 

In this subsection, we first give the definition of a congruence relation based on formal 

contexts, and then obtain the relationships between congruence relations and the 

corresponding object oriented concept lattices. 

Let ( , , )U A I  be a formal context. For B A , we define a binary relation on the object 

power set ( )P U  as follows: 

= { ( , ) ( ) ( ) | = } .
B B B

R X Y P U P U X Y   

It is obvious that  for any B A , B
R is a congruence relation on ( ( ), )P U   and ( , )

B
U R  

is a dependence space according to Proposition 1. We then define 

[ ] = { ( ) | ( , ) }
B

B
R

X Y P U X Y R   the congruence class respect to X, and 

( ) { | [ ] } .BB RR

IN X Y Y X     

Lemma 1  Let ( , , )U A I  be a formal context. For , ,X Y Z U  and B A , the following 

statements hold:   

(1)  ( ( ), )
B

B
R

IN X X R  , 

(2)  ( )
B

R

IN X  is an inner operator , 

(3)  If X Y Z   and ( , )
B

X Z R , then ( , )
B

X Y R  and ( , )
B

Y Z R .  

Proof. (1) Since    ( ) { | [ ] }B

BB

B
R R

IN X Y Y X  
[ ]

B
R

B

Y X

Y


 
B

X holds by 

Proposition 1, we have
 ( ( ), ) .

B

B
R

IN X X R  

(2) In order to prove that ( )
B

R

IN X  is an inner operator, we should prove that 

(a) ( )
B

R

IN X X  for any X U  ; (b) if X Y , then ( ) ( )
B B

R R

IN X IN Y ; and (c) 

 ( ) ( )
B B B

R R R

IN X IN IN X  

Obviously, (a) ( )
B

R

IN X X holds by the definition of ( )
B

R

IN X . (b) Since 

( ( ), )
B

B
R

IN X X R and ( ( ), )
B

B
R

IN Y Y R  hold for any X and Y, we have 

( ( ) ( ), )
B

B B
R R

IN X IN Y X Y R   according to Definition 4. Thus, if X Y , 

then ( ( ) ( ), )
B

B B
R R

IN X IN Y X R  holds which shows that 

( ) ( ) ( )
B B B

R R R

IN X IN Y IN X   . Therefore, ( ) ( )
B B

R R

IN X IN Y . (c) Finally, since 

( ( ), )
B

B
R

IN X X R and  ( ) , ( ( ) )
B

B B B
R R R

IN X IN IN X R , we have 
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 , ( ( ) )
B

B B
R R

X IN IN X R , which leads to ( ) ( ( ) )
B B B

R R R

IN X IN IN X . So 

( ) ( ( ) )
B B B

R R R

IN X IN IN X  holds. 

(3) Since ( , )
B

Y Y R  and ( , )
B

X Z R , we have ( , )
B

X Y Z Y R   . So if X Y Z  , 

then we have ( , )
B

X Y R . Combining ( , )
B

X Z R and ( , )
B

X Y R , we have ( , )
B

Y Z R . 

 

 Lemma 1 shows that ( )
B

R

IN X  is the minmum element in [ ]
B

R

X . An object subset 

X U  is called 
B

R

IN -closed if ( )
B

R

IN X X . The set of all 
B

R

IN -closed sets is denoted 

by 
B

 . 

Lemma 2  Let ( , , )U A I  be a formal context. For X U  and B A , we have   

(1) ( )
B B

B
R

IN X X


 .  

(2) ( , , )
B O U B

L U B I  .  

(3) ( ( ), ) ( , , )
B

B O U B
R

IN X X L U B I .  

Proof.  (1) By Proposition 1 and Lemma 1, we have  ( ) ( )

B B
B B

B B
R R

X IN X IN X




  . 

Conversely, B B B B
X X


 by Proposition 1. So [ ] B

B B

R
X X


 . Then, ( )

B B

B
R

IN X X


 . 

Therefore, ( )
B B

B
R

IN X X


 .  

 (2)  For any ( , , )
O U B

X L U B I , it is clear that B B
X X


 . Then, by (1), we have 

( )
B B

B
R

IN X X X


  , i.e., X  is a 
B

R

IN -closed set. Therefore, ( , , )
O U B B

L U B I   . 

Furthermore, for any
B

X    , we have ( )
B

R

IN X X  . Using (1) again, 

( )
B B

B
R

IN X X X


   , that is ( , , )
O U B

X L U B I . Therefore we conclude 

( , , )
B O U B

L U B I  .  

(3) follows immediately from (1) and Lemma 1.  

 

Lemma 2 says that all the 
B

R

IN -closed sets form the extent set of ( , , )
B

U B I  exactly. 

Lemma 3  Let 
1 1

( , , )U A I  and 
2 2

( , , )U A I  be two formal contexts with the same object set. 

If 
2 2 1 1

( , , ) ( , , )
O U O U

L U A I L U A I , for X U , we have  the following two statements: 

   (1)   
1 2 2

( ) ( )
A A A

R R R

IN IN X IN X , 

(2)  
2 1

( ) ( )
A A

R R

IN X IN X .  

 Proof. (1) Since 
2 2 1 1

( , , ) ( , , )
O U O U

L U A I L U A I  and for X U  

2 2
2

( ) ( , , )
A O U A

R

IN X L U A I  by Lemma 2, we have 
2 1

1
( ) ( , , )

A O U A
R

IN X L U A I  and 

 
1 1

2 2

( ) ( )

A A

A A
R R

IN X IN X



 . Combined with    
1 1

2 1 2

( ) ( )

A A

A A A
R R R

IN X IN IN X



 , (i) is 

concluded.  

(2)  Since 
1

A
R

IN and 
2

( )
A

R

IN X are two inner operators, we have 
2

( )
A

R

IN X X and 

 
1 2 1

( ) ( )
A A A

R R R

IN IN X IN X . Thus, 
2 1

( ) ( )
A A

R R

IN X IN X  follows directly from (i).  
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Theorem 1  Let 
1 1

( , , )U A I  and 
2 2

( , , )U A I  be two formal contexts with the same object set. 

Then we have, 1 2

2 2 1 1
( , , ) ( , , ) .

A A

O U O U
L U A I L U A I R R    

Proof.  Sufficiency. Assume 
2 2 1 1

( , , ) ( , , )
O U O U

L U A I L U A I does not hold, then there exists 

2 2
( , , )

O U
X L U A I  such that 

1 1
( , , )

O U
X L U A I . Thus, 

1 2

( ) ( )
A A

R R

IN X X IN X   is 

concluded by Lemma 1. Since 1 2
A A

R R implies 
1 2

[ ] [ ]A A
R R

X X , we have 

2 1

( ) ( )
A A

R R

IN X IN X , which is a contradiction to 
1 2

( ) ( )
A A

R R

IN X IN X . Consequently, 

2 2 1 1
( , , ) ( , , )

O U O U
L U A I L U A I . 

Necessity. Assume 1 2
A A

R R does not hold, then there exits X U  such that 

1 2
[ ] [ ]A A

R R
X X does not hold. Thus, there exists 

1
[ ] A

R
Y X  such that 

2
[ ] A

R
Y X . We 

prove it from two cases: 
1 1

( , , )
O U

X L U A I  and 
1 1

( , , )
O U

X L U A I . 

Firstly, we suppose 
1 1

( , , )
O U

X L U A I . Since 
1

[ ] A
R

Y X  and 
2

[ ] A
R

Y X , we obtain 

1

( )
A

R

X IN Y Y  . Combining with 
2 1

( ) ( )
A A

R R

IN Y IN Y  by Lemma 3, we have 

2

( )
A

R

IN Y X Y  . Due to Lemma 1, 2( , )
A

Y X R , which is a contradiction to 
2

[ ] A
R

Y X . 

Therefore, 1 2
A A

R R  holds. 

Secondly, we suppose 
1 1

( , , )
O U

X L U A I . According to the above discussions, we have  

1 1 1 2

[ ( ) ] [ ( ) ]
A A A A

R R R R

IN X IN X due to
1 1

1

( ) ( , , )
A O U

R

IN X L U A I . Since 
1

[ ] A
R

Y X , it is 

evident that 
1

( )
A

R

IN X Y  and 
1 2

[ ( ) ]
A A

R R

Y IN X . Combining with 

2 1

( ) ( )
A A

R R

IN X IN X  we have 
2

( )
A

R

IN X Y . Since 
1 2

[ ( ) ]
A A

R R

Y IN X , we obtain 

 
2 1 2

( ) ( )
A A A

R R R

IN IN X IN Y . According to 
1

( )
A

R

IN X X , we 

have  
2 1 2

( ) ( )
A A A

R R R

IN IN X IN X . Thus, 
2 2

( ) ( )
A A

R R

IN Y IN X Y  . By Lemma 1, 

2

2

( ( ) , )
A

A
R

IN X Y R  holds. That is, 2( , )
A

X Y R , which is a contradiction to 
2

[ ] A
R

Y X . 

Therefore, 1 2
A A

R R  is concluded. 

Consequently, if 
2 2 1 1

( , , ) ( , , )
O U O U

L U A I L U A I  , then 1 2
A A

R R  holds.  

 

3.2. Consistent Approximate Representation Space for Formal Contexts and Formal 

Decision Contexts 

In this subsection, we define the consistent approximate representation space to unify 

formal contexts and formal decision contexts. 

Definition 5 Let ( , , )U A I  be a formal context.  { }
{ ( ) ( ) | }

a
R P U P U a A      is a 

family of equivalence relations on ( )P U  and R   is an equivalence relation on ( )P U . A 

quadruple ( , , , )U A R   is said to be an approximate representation space of the 

context ( , , )U A I . 
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Definition 6 Let ( , , , )S U A R    be a consistent approximate representation space 

and { }B a

a B

R R


  for any B A  . If 
A

R R  , then S is called a consistent approximate 

representation space of the context ( , , )U A I . 

Obviously, ( , , , )
A

S U A R  is a consistent approximate representation space of ( , , )U A I . 

In fact, for any a A , { }a
R  and A

R are both equivalence relations on ( )P U  and A A
R R , 

therefore ( , , , )
A

S U A R   is a consistent approximate representation space of 

( , , )U A I according to Definition 6. 

 

Definition 7 Let ( , , )U A I  and ( , , )U C J  be two formal contexts with the same object set. 

( , , , , )U A I C J  is called a formal decision context, where ,I U A J U C     and 

A C   . A and C are called condition attribute set and decision attribute set respectively. 

 

Definition 8 Let ( , , , , )U A I C J  be a formal decision context. ( , , , , )U A I C J  is said to be 

consistent if 
A C

R R , otherwise, it is said to be inconsistent. Where 

= { ( , ) ( ) ( ) | = }
C C C

R X Y P U P U X Y  . 

 

Combining Theorem 1 and Definition 8, we have ( , , , , )U A I C J  is consistent if and only if 

( , , ) ( , , ) .
O U O U

L U C J L U A I So we have the following result directly. 

Theorem 2 Let ( , , , , )U A I C J be a formal decision context and B A . Then 

( , , , )
C

S U A R   is a consistent approximate representation space of ( , , , , )U A I C J  iff the 

formal decision context ( , , , , )U A I C J  is consistent. 

 

In the following text, we will develop the notions of consistent approximate representation 

space based on inconsistent formal decision context. 

Let ( , , , , )U A I C J  be an inconsistent formal decision context. C
R partitions U into a 

family of disjoint subsets /
C

U R , we denote 
1 2

/ { , , ..., }
C

t
U R D D D , where ,1

j
D j t   is 

the decision congruence class. For any ( )X P U , B A  and / , 1
C

j
D U R j t   , we 

define
| [ ] |

( / [ ] )
| [ ] |

B

B

B

j R

j R

R

D X
P D X

X


 ,    the degree in which the condition congruence class 

[ ] B
R

X  belongs to the decision congruence class 
j

D . 

A membership distribution function : ( ) [0 ,1]
B

P U  is defined as follows: 

 1 2
( ) ( / [ ] ) , ( / [ ] ) , . . . , ( / [ ] )B B BB tR R R

X P D X P D X P D X  . 

Evidently, ( )
B

X  is a conditional probability distribution on /
C

U R . For any ( )X P U , 

we denote the maximum decision function by  

0 0
1

( ) { | ( / [ ] ) m a x ( / [ ] )}B BB j j jR R
j t

X D P D X P D X
 

  . 

Theorem 3 Let ( , , , , )U A I C J  be an inconsistent formal decision context and B A  . And 

we denote = { ( , ) ( ) ( ) | ( ) = ( )}
A A

R X Y P U P U X Y


   and 
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= { ( , ) ( ) ( ) | ( ) = ( )}
A A

R X Y P U P U X Y


   .
 

Then ( , , , )S U A R



   and ( , , , )S U A R




  are both consistent approximate 

representation spaces of ( , , , , )U A I C J . And we call ( , , , )S U A R



  the distribution 

consistent approximate representation spaces, and ( , , , )S U A R



   the maximum 

decision consistent approximate representation spaces of ( , , , , )U A I C J . 
 

For any B A , the lower and upper approximation distribution functions of inconsistent 

formal decision context ( , , , , )U A I C J  are defined as follows: 

1 2
( ( ), ( ) , ... , ( ))

B B B B

t
R R D R D R D , 

1 2
( ( ), ( ) , ... , ( ))

B B B B

t
R R D R D R D , 

Where ( ) { [ ] | [ ] }B B

B

j jR R
R D X X D  , ( ) { [ ] | [ ] }B B

B

j jR R
R D X X D    . 

The set of the condition congruence classes which belong to the decision congruence class 

j
D  is determined by ( )

B

j
R D , while ( )

B

j
R D  is the set of the condition congruence classes 

which possibly belong to
j

D . 

For any B A  and ( )X P U , we denote 

( ) { / | [ ] }B

C

B j jR
G X D U R X D   , 

( ) { / | [ ] }B

C

B j jR
M X D U R X D     . 

Theorem 4 Let ( , , , , )U A I C J be an inconsistent formal decision context and B A  . And 

we denote 

= { ( , ) ( ) ( ) | ( ) = ( )}
A A

R X Y P U P U G X G Y   

= { ( , ) ( ) ( ) | ( ) = ( )}
A A

R X Y P U P U M X M Y   

Then ( , , , )S U A R   and ( , , , )S U A R  are both consistent approximate 

representation spaces of ( , , , , )U A I C J . And we call ( , , , )S U A R   the lower consistent 

approximate representation spaces, and ( , , , )S U A R   the upper consistent 

approximate representation spaces of ( , , , , )U A I C J . 

 

Suppose ( , , , )S U A R   is a consistent approximate representation space. According to 

Theorem 2-4, we obtain the following results: 

(i) If A
R R  , then ( , , , )S U A R   can be regarded as the consistent approximate 

representation space of the context ( , , )U A I . 

 (ii) If C
R R  , then ( , , , )S U A R   can be regarded as the consistent approximate 

representation space of the consistent formal decision context ( , , , , )U A I C J . 

(iii) If R R


  , then ( , , , )S U A R   can be regarded as the distribution consistent 

approximate representation space of the inconsistent formal decision context ( , , , , )U A I C J . 
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(iv) If R R


  , then ( , , , )S U A R   can be regarded as the maximum decision 

consistent approximate representation space of the inconsistent formal decision context 

( , , , , )U A I C J . 

(v) If R R  , then ( , , , )S U A R   can be regarded as the lower consistent approximate 

representation space of the inconsistent formal decision context ( , , , , )U A I C J . 

(vi) If R R  , then ( , , , )S U A R   can be regarded as the supper consistent 

approximate representation space of the inconsistent formal decision context 

( , , , , )U A I C J . 

Therefore, formal contexts and formal decision contexts have the unified form 

consistent approximate representation space. Furthermore, we can obtain knowledge on 

reduction and rule acquisition of formal contexts and formal decision contexts through 

discussing the corresponding results in consistent approximate representation space. 

 

4. Conclusion 

This paper has developed the notion of consistent approximate representation space 

in order to construct the unified model of formal contexts and formal decision contexts 

based on object oriented concept lattices. It is shown that formal contexts and formal 

decision contexts can be regarded as special cases of consistent approximate 

representation space. In further research, we will study knowledge reduction and rule 

acquisition of consistent approximate representation space based on object oriented 

concept lattices in order to obtain the corresponding results in formal contexts and 

formal decision contexts, which can reduce the complexities of different contexts. 
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